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Abstract: Dielectric electroactive polymers (DEAPs) undergo large deformations when subject to an
electric field, which make them an attractive material for use in novel actuator systems. This article
presents the possibility of using DEAPs to model an innovative pumping actuator structure. The model
was used to map important object parameters at individual operating points of the modeled pump.
The experimental work involved designing the membrane and testing its changes in elasticity under
the influence of varying forces and voltage supplies. In the further part of the work, a finite element
model (FEM) of a pumping device was implemented. In the new construction of the pump, pressure
is generated by membrane deformation. This is due to electrostatic compressive force between two
electrodes applied to the polymer surface and forces generated by permanent magnets. The results
are presented graphically, confirming the compliance of the model with the measurements.
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1. Introduction

Smart materials are ones that can change their properties in a controlled manner in response to
environmental stimuli. Such materials can be used both as sensors and actuators [1,2]. Electroactive
materials like DEAPs (dielectric electroactive polymers) are included in the group of smart materials
and are increasingly used in many automation and robotics systems [3]. This work presents the concept
of a device using an electroactive polymer that changes its mechanical properties under the influence
of voltage excitation.

Finite element model (FEM) modeling of the behavior of DEAPs is a useful tool to understand
such systems better and help in the optimal design of prototypes. The modelling and simulating of
DEAP actuators is a cost-effective way of providing a better understanding of the devices built with
their usage. DEAPs offer excellent performance, are lightweight, flexible and inexpensive. Therefore,
dielectric elastomers, provide many potential applications as micro-actuators. A technique to accurately
model this material—taking into account its nonlinearities as well as its large deformations—is being
developed in this study. This work presents a model of the innovative construction of the pump using
DEAP membrane deformation.

There are many works that describe different modeling methods and analytical models [4].
One of the works presents a technique for accurate modeling of electroactive polymer taking into
account nonlinearities and large deformations [5]. The authors simulated an algorithm in the ANSYS
environment that considers the electromechanical coupling of the EAP (electroactive polymers) model.
Simulation of charge distribution and electrostatic force is the subject of another work which uses
COMSOL software [6]. Another work focuses on studying the kinematics of forming and loading,
along with thermodynamics [7]. While much theoretical and computational modeling effort has gone
into describing the ideal, time-independent behavior of these materials, viscoelasticity is a crucial
component of the observed mechanical response, and hence has a significant effect on electromechanical
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actuation. In [8], the authors show that viscoelasticity provides stabilization that delays the onset
of instability under monotonic loading and may fully suppress instabilities under sufficiently fast
cyclic loading, which may be desirable for many applications. Although all of these models provide
advantageous insights into the behavior of the elastomer material, they lack the ability to accurately
predict the complete DEAP actuator structure. They focus on several aspects of modeling but are not
able to reflect the full complexity.

In this work, an FEM model was made that was verified faithfully with measurements. First,
the relationship between static deformation and applied force was presented. Next, three series of
displacement measurements were compared for a given force during alternating voltage applied to the
membrane. The results prepared in this way allowed us to identify the values of the virtual Young’s
modulus corresponding to individual points of states by collecting a sufficient number of real object
measurements. Using the work state mapping method, it was possible to model devices with sufficient
precision having the knowledge how the membrane will deform; it was not necessary to calculate the
full complexity of the model each time.

2. Principle of Operation of DEAP Actuator

A DEAP membrane is made of a silicone membrane that is pre-stretched during the production
process. Then, the carbon grease electrodes are printed. In principle, DEAPs are similar to flexible
capacitors. As can be seen in the Figure 1, they consist of an elastomeric film sandwiched between two
electrodes. Applying voltage to them leads to compression of the elastomer, which causes a change in
capacity [9–13].
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Figure 1. Principle of operation of dielectric electroactive polymer actuator

For this circular geometry, the deflection of the DEA membrane is described by the radial stretch
λr, circumferential stretch λc and thickness stretch λz [14].

λrλcλz = 1 λr =
l
l0
=

√
l20+d2

l0
λz =

z
z0

λc = const (1)

z = z0
l0
l = z0

l0√
l20+d2

sin(θ) = d√
l20+d2 (2)

I propose a dynamic model composed of a set of nonlinear, time-invariant differential equations
describing the dynamic relationship between the input voltage u and the output actuator displacement
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d. I present a model which accurately describes the behavior of the actuator, both in transient and steady
state, and for different mass loads. The vertical force equilibrium causing membrane deformation can
be defined as:

m
..
d = mg + FL − sin(θ)

(
FM + Fh + F f

)
(3)

where d is a distance, θ is an angle, m is the mass of the initial load, g means standard gravity and
FL defines the external load. The electromechanical coupling is produced by Maxwell Stress which
compresses the membrane when a voltage u is applied to the DEAP. The actuation is in the thickness
direction and due to constant volume produces the change of radial stretch yr. The value of FM is
equal to:

FMsin(θ) = c1c2du2 (4)

c1 =
2πrz0

l0
, c1 = −

ε0εr

z2
o

(5)

where ε0 is vacuum permittivity and εr is the relative permittivity of the polymer material.
The parameters z0, l0 and r describe the geometry of DEAP actuator and are defined in Table 1.
Force Fu considers dynamic viscoelastic process according to:

Fhsin(θ) = c1dσe

 l20
l20 + d2

 (6)

σe = −keεe + ke(λr − 1) + σe (7)

.
εe = −

ke

ηe
εe +

ke

ηe
(λr − 1) (8)

Table 1. DEAP actuator model parameters.

Parameter Symbol Value Unit

mass m 125 g
standard gravity g 9.81 m/s2

vacuum permittivity ε0 8.85*10−12 F/m
relative permittivity εr 8.73 -
coefficient of
viscoelasticity ke 3.11 MPa

coefficient of
viscoelasticity ηe 13.4 MPa·s

damping coefficients b 1.45 Nms
Ogden model coefficients β1 11.4 kPa
Ogden model coefficients β2 50.3 kPa
Ogden model coefficients β3 44.1 kPa
Ogden model coefficients γ1 −118 kPa
Ogden model coefficients γ2 −30.4 kPa
Ogden model coefficients γ3 23.3 kPa

There are many hyperelastic strain energy density functions, such as Yeoh, Ogden, Arruda-Boyce,
etc. Similar to [11], I use the Ogden model and define two parameters βi and γi to obtain to the
expression for the hyperelastic stress σe:

σe =
3∑

i=1

(
βiλ

αi
r − γiλ

−αi
r

)
(9)

where αi is 2, 4 and 6. The main difficulty encountered with the identification of the DEAP parameters
in the dynamic case is to obtain the damping coefficients b and the coefficients of the viscoelastic ke and
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ηe. In this case the optimization procedure is based on both a step response and a frequency response
(the results of this work were published in the [15,16]). Viscous friction is defined as:

F f sin(θ) = b
.
λrsin(θ) =

b
.
dd2

l30 + l0d2
(10)

where b is damping coefficient.

3. Experiments

3.1. Static Characteristics

In order to develop a faithful mathematical model, it was necessary to obtain real device
parameters by measuring and identification process. Figure 2 presents the laboratory set used to
collect displacement measurements depending on the static force acting on the DEAP membrane.
The laboratory set contained a high voltage amplifier TREK MODEL 10/10B-HS, laser distance sensor
Micro-Epsilon optoNCDT ILD1320–10 with 1 µm accuracy and an Inteco RT-DAC/USB data acquisition
card. The actuator presented in our research was made of 3M VHB tape which was pre-stretched
during the production process (1 mm to 200 µm thickness). The dimensions of the actuator created by
the author are presented in detail in Table 2.
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Table 2. Dimensions of dielectric electroactive polymer actuator.

Parameter Symbol Value Unit

Pre-stretch tape diameter - 94 mm
Post-stretch tape diameter 2 - 210 mm
Pre-stretch tape thickness - 1 mm
Post-stretch tape thickness z0 200 µm
Internal plate radius r 25 mm
External plate outer diameter - 210 mm
External plate inner diameter - 180 mm
Electrode width l0 65 mm

The obtained data were used to identify the value of Young’s modulus in the developed FEM
model. Figure 3 shows the membrane’s FEM model loaded with force 1.42 [N]. Table 3 and Figure 4
provide a faithful comparison of simulations with measurements in the full load range of the actuator.
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Table 3. The comparison of the displacements for different load force.

Force
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0.00 0.00 0
0.64 6.83 5.93
1.03 10.37 9.54
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3.2. The Identification Process

The operation of the device in an actuator mode using the DEAP membrane requires a power
supply. To collect reference data, a number of experiments on the deformation of the actuator
membrane were carried out under the influence of various supply voltages. The relatively narrow
range of membrane supply was sampled at nine points from 5.0 [kV] to 7.0 [kV] with a 0.25 [kV] step.
This approach allowed the determination of the virtual value of Young’s modulus compensating for
the nonlinear structure of the DEAP model.

To verify the correctness of the actuator modelling methodology, measurements were made
for three different forces acting on the actuator. Tables 4–6 show the results of measurements and
simulations carried out respectively for loads 1.03 [N], 1.23 [N] and 1.42 [N]. Figures 5–7 demonstrate
the obtained convergence of the model with experimental measurements for the mentioned values
of forces.

Table 4. The comparison of the displacements for different voltage supply and load force 1.03 [N].

Voltage Supply
[kV]

Displacement
Measurement [mm]

Displacement Model
[mm]

Virtual Young Modulus
[MPa]

5.00 12.02 12.08 7100
5.25 12.39 12.36 6950
5.50 12.80 12.76 6700
5.75 13.23 13.25 6450
6.00 13.76 13.71 6250
6.25 14.33 14.28 6000
6.50 15.00 15.03 5700
6.75 15.73 15.73 5450
7.00 16.56 16.56 5150

Table 5. The comparison of the displacements for different voltage supply and load force 1.23 [N].

Voltage Supply
[kV]

Displacement
Measurement [mm]

Displacement Model
[mm]

Virtual Young Modulus
[MPa]

5.00 14.12 14.06 7300
5.25 14.51 14.43 7100
5.50 14.96 14.88 6900
5.75 15.51 15.52 6625
6.00 16.09 16.06 6400
6.25 16.78 16.83 6075
6.50 17.51 17.50 5850
6.75 18.39 18.39 5575
7.00 19.33 19.26 5300

Table 6. The comparison of the displacements for different voltage supply and load force 1.42 [N].

Voltage Supply
[kV]

Displacement
Measurement [mm]

Displacement Model
[mm]

Virtual Young Modulus
[MPa]

5.00 16.47 16.47 7200
5.25 16.90 16.87 6975
5.50 17.43 17.34 6775
5.75 18.00 18.02 6600
6.00 18.76 18.8 6300
6.25 19.60 19.58 6050
6.50 20.40 20.35 5800
6.75 21.30 21.40 5550
7.00 22.40 22.24 5300
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The results of these experiments show that the parameters obtained from the voltage test sufficiently
accurately describe the behavior of the membrane and can be used in the model.

4. Pump FEM Model with DEAP Membrane

Based on the obtained values of the virtual Young’s module, a pump model was developed.
In order to increase the force and thus the scope of the pump operation, two permanent magnets were
implemented (see Figure 8). The model used neodymium magnets with a diameter of 17 [mm] and a
height of 2 [mm]. The mass of each magnets was 3.4 [g] and the lifting capacity was about 2 [kg] for
the induction of remanence 1.22–1.25 [T]. The force between two identical cylindrical magnets was
approximately calculated according to Gilbert’s model [17,18]. This force in the start position without
the pump supply was 0.8 [N], which caused a static deformation of membranes equal to 8 [mm].Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 13 
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Figure 9. A pump concept built using a DEAP membrane and permanent magnets.

The boundary conditions applied in ANSYS software closely match the boundary conditions
during the experiments. In the experiments the frame of the DEAP was clamped rigidly and the force
was applied at the central part of the actuator. The actuator was designed to move out of plane by
adding a fixed boundary constraint to the perimeter of the material. The scheme of the applied forces
and the mechanical boundary conditions applied in ANSYS are as shown in the Figure 10.
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Figure 10. Mechanical Boundary conditions for experiments and ANSYS Environment.

Since, the outer plastic frame was rigid as compared to the elastomer, the outer end of the elastomer
could be considered fixed to a rigid frame. Similarly, the circular part of the frame at the center of the
EAP was rigid and hence no radial displacement of the polymer occurs at the inner end. The force was
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In the suction cycle, the inlet slot (valve) opens and the outlet slot (valve) closes. In order to pump
out the medium, the valves change their state and a voltage of 7 [kV] is applied to the membranes.
The change in volume of one pump chamber ranges from 135.64 cm3 to 379.81 cm3 and its graph
over time is shown in Figure 12. In the suction cycle, the inlet valve opens, and the outlet valve
closes. In order to pump out the liquid, the valves change their state and the voltage on the membrane
electrodes is switched on.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 13 
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5. Conclusions

DEAPs are a subclass of electroactive polymers in which actuation is produced by an elastic
deformation resulting from the compressive electrostatic forces. Their most important advantages like
energy efficiency, lightweight and scalability are key features for actuators in applications such as pumps.
Dielectric electroactive polymer technology is able to fulfill requirements as well as commonly used
technology e.g., solenoids, but its limitations concern relatively low force [19,20]. One way to increase
force generated by these devices can be the application of neodymium permanent magnets. The concept
for pump presented in this paper consists of a stack of DEAP membranes combined with a permanent
magnets. These two components are combined in a novel pump construction, which allows a compact
design by integrating the biasing mechanism with the DEAP membranes. Subsequently, the single
components are manufactured, tested, and their force-displacement characteristic is documented.
Identifying the parameters experimentally allowed to develop a faithful FEM model of the pump
device and make its simulations for different voltage. FEM modeling of the DEAP membrane behavior
is a useful tool to understand such systems better and helps to create the optimal design of prototypes.
These modeling efforts must account for the electromechanical coupling in order to accurately predict
their response to multiple loading conditions expected during real operating conditions. Because of the
complexity of the nonlinear processes, the finite element analysis is reasonable to be used and study
the behaviour of dielectric elastomer pump. The experiments under static and transient considerations
have been performed to validate the design and implementation. It is shown, that the model is in close
agreement with the measured responses of the real DEAP actuator. The collected data allow for the
analysis of various other device designs using DEAP membrane in the future.
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