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Abstract: Rapid Visual Screening (RVS) is a procedure that estimates structural scores for buildings
and prioritizes their retrofit and upgrade requirements. Despite the speed and simplicity of RVS,
many of the collected parameters are non-commensurable and include subjectivity due to visual
observations. This might cause uncertainties in the evaluation, which emphasizes the use of a
fuzzy-based method. This study aims to propose a novel RVS methodology based on the interval
type-2 fuzzy logic system (IT2FLS) to set the priority of vulnerable building to undergo detailed
assessment while covering uncertainties and minimizing their effects during evaluation. The proposed
method estimates the vulnerability of a building, in terms of Damage Index, considering the number
of stories, age of building, plan irregularity, vertical irregularity, building quality, and peak ground
velocity, as inputs with a single output variable. Applicability of the proposed method has been
investigated using a post-earthquake damage database of reinforced concrete buildings from the
Bingöl and Düzce earthquakes in Turkey.

Keywords: fuzzy logic system; earthquake safety assessment; seismic vulnerability assessment;
Interval Type-2 Fuzzy logic; rapid visual screening; reinforced concrete buildings

1. Introduction

Averting a subsequent natural calamity is certainly relatively impractical. However, due to the
rapid progress of simulation science and seismological studies, it is quite possible to mitigate the
catastrophic effects post-disaster. If earthquake safety (risk) assessment of buildings is viewed as
Heinrich’s domino theory of cause and effects [1], damage results from a chain of sequential events,
metaphorically like a line of dominoes falling over. Where the first piece is the seismic hazard, which
plays an important role and is inherently unavoidable, followed by the building vulnerability, then
construction characteristics, which lead to seismic risk and damage of buildings and cause loss and
injury of residents, respectively. When one of the dominoes falls, it triggers the next one, and the
next, but improving or removing a key factor (such as retrofitting buildings) prevent or minimize
the impact of the chain reaction of dominoes. As it is not possible to modify the seismic hazard to
reduce the risk, emphasis should be placed on the study of vulnerability assessment and reduction as
a measure of damage/loss mitigation. In urban areas midst, the construction of new building stock
is a substantial number of structures still in service, which were constructed either when national
seismic codes were not evolved due to lack of research or they were not strictly enforced by the law.
For instance, in Istanbul, Turkey, as a high seismic area, around 90% of buildings are substandard,
which can be generalized into other earthquake-prone regions in Turkey [2]. The reliability of this
building stock resulting from earthquake-induced collapse currently is uncertain. Nonetheless, it is
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also not feasible to perform a detailed seismic vulnerability analysis on each building as a solution to
the scenario, as it is complicated and expensive to perform. This indicates the necessity of a reliable,
rapid, and computationally easy method for seismic vulnerability assessment, commonly known
as Rapid Visual Screening (RVS). In RVS methodology, a observational survey of buildings will be
performed, and according to the data collected during the visual inspection, a structural score will
be calculated without performing any structural calculations to determine the expected damage of
a building and whether the building needs detailed assessment [3]. Although this method might
save time and resources due to the subjective/qualitative judgments of experts who performed the
inspection, the evaluation process is dominated by vagueness and uncertainties, which vagueness
can be handled adequately through the fuzzy set theory [4] but do not cover all sort of uncertainties
due to its crisp membership functions [5]. In this study, a novel method of rapid visual hazard safety
assessment of buildings against earthquake is introduced in which an interval type-2 fuzzy logic
system (IT2FLS) would be used to cover uncertainties. In addition, the scope of this paper is on the
reinforced concrete buildings.

2. Review of Rapid Visual Screening Procedures

Federal Emergency Management Agency (FEMA), USA in 1988 has proposed the initial Rapid
Visual Screening (RVS) methodology as “Rapid Visual Screening of Buildings for Potential Seismic
Hazards: A Handbook” [6]. Furthermore, in 2002, because of earthquake disasters in the 1990s,
the methodology was modified to integrate the latest technological advancements [7]. RVS has been
widely used in seismic countries as a practical and simple tool for evaluating the vulnerability of
buildings; therefore, this challenge is in the interest of many researchers and still is under development
and improvement. In this manner, some efforts have been made to develop national RVS for
India (IITK-GSDMA) [8], Turkey (EMPI) [9], Italy [10], and the Philippines [11]. Some practical
comparisons carried out between different national RVS methods and their robustness have been
discovered [12–14]. Although RVS is an acceptable estimation method that gives a general overview to
do proper earthquake mitigation planning, the variables considered contain a level of uncertainty [15].

In addition to national and local RVS methods, there are many other RVS methods developed
by using linear regression [16,17], Multi-criteria decision making [3], Artificial Neural Networks
(ANNs) [18–21], Fuzzy Logic (see Table 1), and some other methods concerning their consideration
and experiences on a region or country scale [22]. These methods can be categorized into two groups:
(a) methods based on statistical and machine learning approaches, like linear regression and ANN,
and (b) methods based on expert systems such as fuzzy-based methods.

Methods based on statistical approaches reduce the problem to a linear relationship between
inputs and the output, which is not realistic as the relation between building parameters, seismicity
parameters, and damageability is a non-linear relation. Methods based on machine learning approaches
suffer from a lack of data where there is not enough datasets consisting of building parameters before
earthquakes and type of damage after earthquakes. In addition, these approaches are local and limited
to a specific area; last approaches, based on fuzzy systems, consider the expert’s opinion, and model
vagueness exist in words that describe the building parameters. Table 1 presents a summary of the
fuzzy systems applied for RVS purposes.

Fuzzy systems contributed significant achievements in vulnerability assessment because of
making definite decisions based on imprecise or ambiguous data [23]. The main problem with all
previous studies based on conventional type-1 fuzzy logic system (T1FLS) is that they only consider
vagueness in membership functions while does not including all types of uncertainties due to its
crisp membership functions. However, this issue can be solved by implementing IT2FLS as their
membership functions (MFs) are themselves fuzzy [5]. Therefore, an RVS method based on an IT2FLS
is considered to overcome the weakness of RVS methods based on the type-1 fuzzy system.
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Table 1. Summary of Fuzzy Logic application in visually earthquake hazard safety assessment
of buildings.

Author(s) Year Studied Data Purpose Parameters Fuzzy Inference
Ketsap
et al. [15]

2019 Chiang Rai, Thailand Earthquake risk
evaluation of

buildings by using
Fuzzy risk model

Building occupancy
(occupancy risk index),
building vulnerability

(FEMA 154 final score),
Seismic hazard (PGA)

Hierarchical
fuzzy

rule-based

Irwansyah
et al. [24]

2017 1450 (1000 modeling,
400 tests, 50 outlined)

non-engineered
buildings in Aceh,

Indonesia

A three-stage fuzzy
rule-based model to

determine the hazard
rate of building on the
impact of earthquake
for non-engineered

houses

Structural (ring balk,
floor block, column,

foundation),
non-structural (wall

crack, wall cover, floor
cover, tombak layer),

ground condition (PGA,
slope, fault distance)

Three-Stage
Fuzzy

Rule-Based

Shahriar
et al. [25]

2012 43 Steel buildings in
Northridge, USA

A risk-based seismic
vulnerability

assessment method
using fuzzy-TOPSIS

for damageability
evaluation of steel

buildings.

Structural system,
vertical irregularity, plan

irregularity, year of
construction,

construction quality,
spectral acceleration

Fuzzy-TOPSIS,
Mamdani

Şen [26] 2011 747 RC buildings in
Istanbul, Turkey

Proposed a fuzzy logic
model as supervised

hazard center
classification inference
methodology for rapid

and rational hazard
classification.

Building height, soft
height ratio, cantilever

extension ratio, moment
of inertia, frame number,
column ratio, shear wall

ratio, and PGV

Supervised
fuzzy

rule-based,
Mamdani

Şen [27] 2010 1249 RC buildings in
Istanbul, Turkey

Proposed a fuzzy logic
model and software

for rapid visual
earthquake hazard

evaluation of existing
buildings.

Story number, cantilever
extension, soft story,
weak story, building

quality, pounding effect,
hill-slope effect, and

PGV

Fuzzy
rule-based,
Mamdani

Tesfamariam
and
Saatcioglu
[4]

2010 28 RC buildings in
Bingöl, Turkey

Proposed a risk-based
seismic vulnerability
assessment based on

fuzzy logic for
prioritizing buildings
for retrofit and repair.

Soft story, weak story,
and short column effect,
relative strength at joints,

plan irregularity,
torsional irregularity,

diaphragm continuity,
re-entrant corners,

structural walls,
construction and design

quality, code
enforcement, damage

from previous
earthquake, damage due
to deterioration, relative

height of slabs

Hierarchical
fuzzy

rule-based,
Mamdani

Tesfamariam
and
Saatcioglu
[28]

2008 93 RC (73 modeling
and 20 test) buildings
in Northridge, USA

Proposed a risk-based
seismic vulnerability
assessment based on
FEMA154 and fuzzy
logic for prioritizing
buildings for retrofit

and repair.

Structural system, plan
irregularity, vertical
irregularity, year of

construction,
construction quality,

building importance and
occupancy

Hierarchical
fuzzy

rule-based,
Mamdani



Appl. Sci. 2020, 10, 2375 4 of 14

Table 1. Cont.
Author(s) Year Studied Data Purpose Parameters Fuzzy Inference

Moseley and
Dritsos [29]

2008 101 and 454 buildings
in Athens, Greece

Proposed a fuzzy logic
rapid visual screening

procedure based on
Greece method to

improve the screening
procedures

Same as below
parameters

Hierarchical
fuzzy

rule-based,Sugano

Demartinos
and Dristos
[30]

2006 102 buildings in
Athens, Greece

Fuzzy logic–based
rapid visual screening

procedure for
categorization of

buildings into five
different types of

possible damage with
respect to the potential
occurrence of a major

seismic event.

Seismic hazard (ground
motion, soil quality,

building height),
structural strength

(building height, infill
wall layout, soft story,
short columns, design
code), regularity (plan

regularity, torsion
possibility, height

regularity, pounding
possibility, plan

regularity), structure’s
condition (previous

damage, maintenance)

Hierarchical
fuzzy

rule-based,
Sugano

3. Type-2 Fuzzy Logic System

Zadeh has introduced the initial concept of fuzzy set (type-1) in 1965 [31] and later in 1975
developed the extension of it as the type-2 fuzzy set [32]. In this paper, it has been assumed that the
reader is familiar with the basics of the fuzzy logic system and type-1 Fuzzy Logic Systems (T1FLS) so
that here the focus is entirely on the IT2FLS and its advantages over T1FLS. The main limitations of the
T1FLS is that it cannot adequately handle the linguistic, measurement and parameter uncertainties [33]
due to [5]: 1—the expressions and words that are used in the antecedents and consequences of
rules can be uncertain, and 2—consequences may have a histogram of values associated with them,
mainly when knowledge is obtained from a group of experts who do not all agree. In this regard,
IT2FLS, characterized by MFs that are themselves fuzzy, therefore, in case there are difficulties in the
determination of membership grade even as a crisp number in [0, 1], type-2 fuzzy sets are then adequate
to use. So far, IT2FLSs have been used in different areas to deal with high uncertainty, non-linearity
and time-varying behavior [34], including computing with words [35], intelligent controllers [36],
pattern recognition [37]. A typical IT2FLS consists of five parts as fuzzifier, rule base, inference engine,
type-reducer, and defuzzifier. Moreover, in T2FLS, at least one of the fuzzy sets (membership functions)
in the rule base must be type-2. All parts of T2FLS are similar to T1FLS except the type-reducer, which is
introduced to convert the type-2 membership functions into a type-1 before defuzzification. The process
of type reduction is usually performed by the most popular computationally intensive Karnik–Mendel
(KM) iterative algorithms proposed by Wu and Mendel [38]. A type-2 fuzzy set Ã can be defined by its
type-2 membership function µÃ(x, u) as:

Ã =
∫

x∈X

∫
u∈Jx

µÃ(x, u)
(x, u)

(1)

where x ∈ X, u ∈ Jx ⊆ [0, 1], and X represents the universe of the primary variable x of Ã. Here
∫∫

denotes all the admissible x and u. The point-value representation of Ã is as:

Ã =
{
((x, u), µÃ(x, u)) | ∀x ∈ X, ∀u ∈ [0, 1]

}
(2)
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The secondary MF of Ã is also called a vertical slice of µÃ(x, u):

µÃ(x = x′, u) ≡ µÃ(x′) =
∫

u∈Jx′

fx′(u)
u

(3)

where 0 ≤ fx′(u) ≤ 1, and µÃ(x′) denotes the secondary MF of Ã. The secondary membership grades
of IT2FLS all equal 1, that is to say, for any x = x’, fx′(u) ≡ 1.

Type-2 carries the UMFs, LMFs, and FOU. The FOU is uncertainty in the primary membership
grades of a type-2 MF, which consists of a bounded region; the UMF is a subset that has the maximum
membership grade of the FOU, and the LMF is a subset that has the minimum membership grade of
the FOU. The two-dimensional µÃ(x, u) is referred to as the footprint of uncertainty (FOU) of Ã:

FOU(Ã) =
⋃

x∈X
Jx = {(x, u)|u ∈ Jx ⊆ [0, 1]} (4)

where Jx is the primary membership of Ã; here the lower MF (LMF) µ
Ã
(x) and upper MF (UMF) µÃ(x)

comprise the FOU, where [39]:

µ
Ã
(x) = LMF(Ã) = inf{u|u ∈ [0, 1], µÃ(x, u) > 0} (5)

And,

µÃ(x) = UMF(Ã) = sup{u|u ∈ [0, 1], µÃ(x, u) > 0} (6)

There are two types of T2FLSs as Mamdani and Takagi–Sugeno [34]. Here the focus is on
Mamdani-type as it is more popular than Takagi–Sugeno. Therefore, the rules of IF-THEN [40] can be
written as:

R̃l : IF x1 is F̃l
1 and ... xp is F̃l

p THEN y is G̃l l = 1, ..., N (7)

Or in another way:
R̃l : F̃l

1 × ...× F̃l
p → G̃l = Ãl → G̃l (8)

where l is the rule number, xi and F̃l
i are the ith (i = 1, ..., p) input and antecedent set of rule l, respectively,

Gl are consequent sets and A is the input fuzzy sets, while y is the input and “∼” shows that the fuzzy
set is a type-2 fuzzy set.

According to Equation (8), the output of inference engine for each rule can be defined as [34]:

µB̃l (y) = µÃl→G̃l (x, y) = µF̃l
1(x′1)
∩ ...∩ µF̃l

p
(x′p) ∩ µG̃(y) =

[ p⋂
i=1

µF̃l
i
(x′i)

]
∩ µG̃(y) (9)

While adopting the popular centroid TR [41], the firing output set B̃l is generated from by each
fuzzy rule and the corresponding consequent IT2FLS, i.e.,

B̃l :


FOU(B̃l) = [µ

B̃l (y | x′), µB̃l (y | x′)]
µ

B̃l (y | x′) = f l(x′) ∩ µ
G̃l (y)

µB̃l (y | x′) = f
l
(x′) ∩ µ

G̃l (y)

(10)

While ∩ denotes the minimum or product t-norm operation. The final output B̃ can be achieved
by merging all the rule firing output sets B̃l :

B̃ :


FOU(B̃) = [µ

B̃
(y | x′), µB̃(y | x′)]

µ
B̃
(y | x′) = µ

B̃l (y | x′) ∪ ...∪ µ
B̃M (y | x′)

µB̃(y | x′) = µB̃l (y | x′) ∪ ...∪ µB̃M (y | x′)
(11)
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Here ∪ indicates the maximum operation. Then the type-reduced set Yc(x′) can be obtained by
computing the centroid CB̃ of B̃ :

Yc(x′) = CB̃(x′) =
1

[lB̃(x′), rB̃(x′)]
(12)

To find the final crisp output value for the inference process, the aggregate type-2 fuzzy set
is first reduced to an interval type-1 fuzzy set, which is a range with lower limit and upper limit.
This interval type-1 fuzzy set is commonly referred to as the centroid of the type-2 fuzzy set. In theory,
this centroid is the average of the centroids of all the type-1 fuzzy sets embedded in the type-2 fuzzy
set. In practice, it is not possible to compute the exact values of lower and upper limits. Instead,
iterative type-reduction methods are used to estimate these values. Here the two points lB̃(x′) and
rB̃(x′) can be calculated by common type-reduction algorithms such as Karnik–Mendel (KM) [42],
Enhanced Karnik–Mendel (EKM) [43] and weighted EKM [44].

RVS Modeling Based on Interval Type-2 Fuzzy System

Figure 1 presents the schematic structure of a proposed RVS model based on IT2FLS. The model
consists of 6 input variables and one output variable as damage category (damage index).

Story number

Plan irregularity

Vertical irregularity

Age of building

Soil type

PGV

Inference engine
(Mamdani)

Rule base

Type-reducer

Fuzzification Defuzzification

Damage category
(damage index)Type-2 

fuzzy input 
sets

Type-2 fuzzy 
output sets

Type-1 fuzzy 
sets

Figure 1. The structure of the proposed RVS based on IT2FLS

Following are the explanation of different parts of the model: Input variables represent
structural and environmental characteristics, which affect the global seismic response of a structure.
These characteristics are presented in Figure 1 as input variables and in the fuzzification component.
Each characteristic is described in linguistic terms that indicate its state. These terms are attributed
to fuzzy sets, which are defined over the variable’s universe of discourse via MFs. As can be seen
in Figure 1 the fuzzifier of maps a vector of six inputs x = (x′1, ..., x′6)

T into six IT2 fuzzy sets X̃i,
i = 1, 2, ..., 6. In this study a non-singleton fuzzifier has been considered because it is useful when the
measurements are corrupted by non-stationary noise and has shown better performance [45].

Generally, there is no restriction on the number of MFs one could use; however, it is practically
recommended to use less than 7 MFs in each input domain of a type-1 or type-2 fuzzy system to
reduce computational cost, reduce number of rules, and make interpreting more straightforward [46].
The common MF shapes in type-2 are Gaussian, bell-shaped and piecewise linear. Figure 2 shows the
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Gaussian and generalized bell-shaped MFs for story number, plan irregularity, vertical irregularity,
age, soil type, and PGV, respectively. While a few of these variables have numerical values, the others
are all in linguistic forms. However, in the classical modeling the inputs, plan irregularity and vertical
irregularity are quantified as 1 implying existence (yes) and 0 as nonexistence (no) of the effect
according to the crisp two-valued logic. The linguistic terms used for the definition of each variable
and the respective fuzzy sets are described as:

• Story number: Depending on the number of stories, one of the following classes should be selected.
The classifications on this study are for mid-rise buildings as the number of stories less than 3
(Low), between 3 and 6 (Medium), and more than 6 (High) as presented in Figure 2a.

• Plan Irregularity: This parameter should be considered when any of the irregularities, for instance,
buildings with re-entrant corners (L, T, U, E, + shape) and buildings with different lateral resistance
in both directions, have been observed. Any asymmetrical plan and distribution of vertical
elements can cause torsion to the building (Figure 2b).

• Vertical irregularity: If any of the irregularities such as steps in elevation view, inclined walls,
buildings on a hill, soft story, buildings with short columns, and discontinuity in frames are
identified, then this parameter should be considered (see Figure 2c).

• Age of building: This parameter is classified into three different input variable membership
function as New (age <15 years), Moderate (15 < age < 30), and Old (age > 30) as presented in
Figure 2d.

• Soil type: The soil type is classified into three different input variable membership function as A/B
(rock and dense soil), C (stiff soil), and E (soft) as shown in Figure 2e.

• Peak Ground Velocity (PGV): The velocity is used to characterize the amplitude of seismic motion
at intermediate frequencies therefore, it is useful to indicate the potential damage for structures
sensitive to the field of intermediate frequencies [9,47]. In this paper, the PGV numerical values at
any desired locations are based on the micro zoning studies by Sucuoglu and Yilmaz [48], which
are fuzzified into three MFs as Low, Medium, and High, which are illustrated in Figure 2f.

Lastly, the output variable damage index represents the possibility that a structure will suffer
a particular damage type. Five MFs for the building damage categorization (Output variable) are
considered to be: No damage, Low, Medium, Severe, and Collapse. Figure 3 presents the building damage
index categorization MFs.

Following the above explanations, the logical rules for each variable are presented with the
building assessment, and their fuzzification can be achieved by considering fuzzy words for input
variables and damage categories. The defined rules in this study are 3 × 2 × 2 × 3 × 3 × 3 = 324 rules,
of which some examples are presented in Table 2. In this paper Mamdani fuzzy system is considered
where the rules consequent is fuzzy IT2 sets. Therefore, all rules defined based on Mamdani Type.

Minimum and product t-norms are the most popular inference methods to compute firing intervals
of the rules for IT2 fuzzy systems. However, there are not much difference between the outcome
of each method. Therefore, minimum t-norm is applied for the inference engine. Finally, for Type
reduction, the EKM method is applied as it is modification of the Karnik–Mendel (KM) algorithm with
an improved initialization, modified termination condition, and improved computational efficiency.
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(a) Story number (b) Plan irregularity

(c) Vertical irregularity (d) Age

(e) Soil type (f) PGV

Figure 2. Gaussian and generalized bell-shaped membership functions for input variables (a) story
number, (b) plan irregularity, (c) vertical irregularity, (d) age, (e) soil type, (f) PGV.
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Figure 3. Generalized bell-shaped membership functions for damage as output variable.

Table 2. The structure of the T2FLS in this study.

Rule
No.

Input Variable Output
(Damage)NS PI VI Age ST PGV

1 Low and No and No and Old and A/B and Low Then No damage

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

171 Medium and Yes and No and Old and E and Medium Then Severe

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

324 High and Yes and Yes and New and E and High Then Severe

4. Results and Discussion

The methodology based on IT2FLS was implemented on MATLAB (MATLAB is a registered
trademark of The MathWorks, Inc.) using the provided Fuzzy Logic Toolbox. The version of the
IT2FLS toolbox used allows the intuitive implementation of IT2FLSs, where it can cover all the phases
of its design. Furthermore, the proposed method has been examined by evaluating the buildings
database of the Bingöl earthquake (2003) and Düzce earthquake (1999) in Turkey. For this purpose,
the information of 28 reinforced concrete buildings in Bingöl, and 484 reinforced concrete buildings
in Düzce have been selected from the SERU (Structural Engineering Research Unit) database [49],
which was collected from the street survey by a team of researchers from Middle East Technical
University (METU), Ankara. The Bingöl earthquake struck with a magnitude Mw = 6.4, reported peak
ground acceleration (PGA) 0.556 g and PGV 34.5 cm/s [50]. Moreover, studies by Akkar et al. [51] and
Harirchian et al. [12] provide detailed technical information about the characteristics of the Bingöl
earthquake and the information about the observed buildings, respectively. A report from the observed
damage to the buildings in different places in Bingöl stated that damages were mostly due to the
properties of structures, and not due to the foundation conditions or any ground deformation [52].
Therefore, it has been assumed that for assessing the vulnerability of the buildings in Bingöl there are
no corrections or additional parameters required for different soil conditions, and the soil condition
of the selected area are quite uniform, predominantly granular alluvial deposits, which are dense to
very dense (Soil Type A or B) [53]. In 12 November 1999, a powerful earthquake struck the city of
Düzce (Turkey) within a magnitude of Mw = 7.1, PGA 0.821 g and PGV 66.9 m/s [53]. A district
in Düzce with a total number of 484 three- to six-story RC buildings was surveyed and collected by
SERU [49] after the Düzce earthquake. Moreover, soil conditions were uniform, and stiff clays with
interbedded layers of dense sands and gravels. The measured (Vs 30) at DZC station was 294 m/s,
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which categorized the soil as a ground type C according to classification in this study, and topography
was flat over the surveyed district [54]. Düzce is located under a high seismic zone and the information
extracted from the database was similar to Bingöl.

Figures 4 and 5 show the distribution of the observed damage categories of buildings in Bingöl
and Düzce, respectively [49]. Moreover, the estimation based on the fuzzy synthetic evaluation
proposed by Tesfamariam [55] on the same Bingöl dataset, and the estimation by the proposed method
in this paper based on IT2FLS can be seen. It shows that the proposed method has a good agreement
with the observed damage state distributions. From the data in Figures 4 and 5, it can be manifested
that the proposed method considered safety factor by overestimating the damage states more than
moderate and underestimate low damage and no damage because of caring more about safety and
expecting higher risk. Moreover, by modifying fuzzy parameters, these values can be adjusted for
different regions and purposes based on the authority’s requirements. However, in comparison with
the Tesfamariam method, the proposed method in this paper has provided a more regular distribution
and classification for each damage state. Table 3 contains the description of the damage state in
Figures 4 and 5 with relative decisions and recommendations for each of them.

No damage Low damage
Moderate

damage

Severe

damage
Collapse

Observed damage 21.4 32.1 25 17.9 3.6

Estimated by Tesfamariam 25 32.1 7.2 35.7 0

Estimated by proposed method 14.3 21.4 32.1 25 7.1
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Figure 4. Damage state of selected building data of Bingöl from RVS methodologies.

No damage Low damage
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damage

Severe

damage
Collapse

Observed damage 12.8 30.9 31.2 11.9 13.2

Estimated by proposed method 8.2 22.5 35.6 19.2 14.5
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Figure 5. Damage state of selected building data of Düzce.
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Table 3. Description of damage levels and recommended decision (adopted from [56]).

Damage State Description Decision

No damage No damage, small cracks Safe

Low damage Isolated non-structural damage, cracks in
the interior walls or ceilings, damage in
water lines, etc.

Slightly safe, might need small repair

Moderate damage Significant non-structural damage and
slight structural damage

Moderate safe, needs repair and
retrofitting

Severe damage Heavy non-structural damage and
important structural damage

Slightly dangerous, need immediate
repair and strengthening

Collapse Collapsed buildings or condemned to
demolition

Dangerous, evacuation and demolish
needed

5. Conclusions

The assessment of earthquake resistance identification of existing buildings in the pre-earthquake
period presents a very significant task, which must be accomplished in a rapid, simple, economical,
and efficient manner. In this regard, the RVS methods were developed to assess the seismic vulnerability
of buildings via an observation survey. Despite its efficiency, the evaluation process is dominated by
vagueness-type uncertainty. This issue has been addressed by proposing a novel interval type-2 fuzzy
system of rapid visual hazard safety assessment of buildings against earthquakes. Later, for efficiency
validation of the proposed method, the method has been used to estimate the building damage
category of the Bingöl and Düzce earthquake dataset, which shows a better estimation than the
proposed method by Tesfamariam [55].

Nonetheless, the small size of the existing database did not result in a robust method and requires
further investigation using additional data. Therefore, it is worthwhile to spend time and funds
to collect data after future seismic events to optimize the proposed method, when considering that
pre-earthquake assessment aims to reduce seismic risk, which in turn can be interpreted in terms of
economic benefits and life protection.
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