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Abstract: The cultivation of cassava (Manihot esculenta) is widely spread in a variety of tropical
countries with an estimated annual production of 291.9 million tons. The crop is the most important
source of carbohydrates in producing countries. In Malaysia, cassava is mainly cultivated for starch
production. Despite the economic and nutritional importance of cassava, there is only limited
knowledge available regarding the overall environmental impacts of cassava starch production or the
production of alternative food products like cassava crisps. This study presents an environmental
assessment of different scenarios of cassava production and processing by a life cycle assessment
(LCA) approach. The results indicate that the environmental impacts of cassava-based products
can be reduced considerably with the utilization of processing residues for anaerobic digestion if
the resulting biogas is used for the production of electricity and heat. In the industrial scenario, the
results indicate that the highest relative reductions are achieved for cumulated energy demand (CED),
global warming potential (GWP) and deforestation (DEF) with −39%, −26% and −18%, respectively,
while in the advanced scenario, environmental impacts for CED, GWP, ozone formation potential
(OFP) and water stress index (WSI) can be reduced by more than 10% with −281%, −37%, −16% and
−14%, respectively. The impacts for global warming potential found in this study are slightly higher
compared to other studies that focused on the carbon footprint of starch production from cassava,
while the savings due to biogas production are similar.

Keywords: LCA; life cycle assessment; cassava crisps; anaerobic digestion; renewable energy;
circular economy

1. Introduction

The cultivation of cassava (Manihot esculenta) is widely spread in a variety of tropical countries
with an estimated annual production of 291.9 million tons [1]. Cassava products are used for human
nutrition, animal feed as well as for industrial applications and energy supply [2]. Both the roots
and leaves of cassava can be used as food. The crop is the most important source of carbohydrates
in producing countries and it can contribute to the supply of proteins, micronutrients and minerals
additionally [3]. The latter nutrients are mainly provided by cassava leaves, if consumed. As reported
by Vetter [4], both cassava roots and leaves contain cyanogenic components that vary in concentration
according to genetic variety and growth stage and need to be detoxified before utilization in animal or
human nutrition.
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Due to the diversity of ingredients and its suitability for different applications, cassava is a
valuable feedstock for cascade use. An example for the implementation of cascade use is the concept
of the green biorefinery [5]. In comparison with conventional production systems, processing in green
biorefineries can lead to environmental advantages. However, the dissemination of such concepts in
developing countries is still very limited. A simple implementation of cascade use is a utilization of
residues for energy production and plant nutrition. While recent studies assessed the potential of
several substrates for biogas production in Malaysia [6,7], there is only little knowledge available about
the utilization of residues from cassava processing and its environmental consequences. In Malaysia,
cassava is mainly cultivated for starch production [8]. Different technologies exist for processing of
cassava roots to cassava starch [9]. In addition, alternative food products can be produced that are rich
in carbohydrates, like cassava crisps, which are deep-fried cassava slices.

Torquati et al. have shown that there can be trade-offs between economic and ecological benefits
in agricultural production systems [10]. However, despite the economic and nutritional importance
of cassava, there is only limited knowledge available regarding the overall environmental impacts
of cassava starch production or the production of alternative food products like cassava crisps. In
several studies, the carbon footprint was evaluated, while full life cycle assessment (LCA) studies for
cassava starch production are not available yet to our knowledge, especially not for Malaysia. For
Thailand, Usubharatana and Phungrassami [11] found that producing 1 t of cassava starch causes
about 600 kg of CO2-equivalents (CO2-eq) where the agricultural production dominated the impact
(40–59%). Hansupalak et al. [12] reported higher emissions with 609–966 kg CO2-eq. For starch
production in Thailand, Vietnam, Colombia, Tran et al. [9] reported 93–539 kg CO2-eq without taking
into consideration the production of cassava roots. Olaniran et al. assessed the environmental impacts
of processing cassava roots to flour [13] and reported 11 kg CO2 eq per kg of flour. For the production
of cassava crisps, however, there is no information available yet. The lack of knowledge about the
environmental impacts of cassava products becomes relevant in the context of the international goals
for sustainable development [14]. Sala and Castellani propose a method based on life cycle assessment
(LCA) as an indicator and basis for monitoring the sustainable development goal No. 12 “sustainable
production and consumption” [15].

This study presents an environmental assessment of different scenarios of cassava production and
processing by a life cycle assessment (LCA) approach. In addition to estimating the absolute level of
environmental impacts, the question is answered to what extent the production of biogas from residual
materials can contribute to a reduction in the environmental impacts of cassava starch production. As
previous studies indicate a major influence of primary agricultural production on the greenhouse gas
emissions of cassava starch production, it is also hypothesized that other environmental impacts are
significantly influenced by this production step. Therefore, a specific focus is set on primary production.

2. Materials and Methods

2.1. Description of the System under Study

2.1.1. Feedstock for the Production of Starch, Crisps and Biogas

Cassava is considered the main feedstock. Cassava cultivation covers all steps starting from the
production of seedlings, including essential disinfection, field preparation, planting, fertilization and
pest control as well as harvesting. The processing of the main parts of the cassava plant (roots, stems
and peel) is included in the scenarios. For the evaluation of different cultivation intensities besides
the traditional cultivation based on manual labor, a modern, i.e., fully mechanized scenario, was also
modelled. Table 1 shows the assumptions for the traditional system and the modern system. Both
systems were modelled with two sub-scenarios where leaves are (i) left on the field and burned or
(ii) harvested. For the combustion of leaves, the following emissions were taken into consideration:
CO2, SO2, dust (PM10 and PM2.5) as well as NOx.
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Table 1. Main characteristics of traditional and modern cassava production system under study.

Parameter Traditional Modern

Plowing (number of crossings) manual (1) mechanized (1)
Harrowing (number of crossings) - mechanized (2)
Mulching (number of crossings) manual (1) mechanized (3)

Planting, pcs/ha 26,000 26,000
Harvesting manual mechanized

Loading of crops manual mechanized
Fertilizing manual mechanized

Cattle manure, kg/ha - 15’000
Manure application - mechanized

NPK (15/15/15), kg/ha 350 350
Cutting stems and leaves manual mechanized

Tuber yield, t/ha 5.0 17.8
Leaves yield, t/ha 0.6 2.04

2.1.2. Processing of Roots

The main characteristics and assumptions of the different processing steps are given in Table 2.

Table 2. Main characteristics and assumptions for cassava starch extraction (based on [16]).

Parameter Unit Value

Cassava peeling
Peel, percentage of fresh roots % 10

Wastewater per ton of fresh roots m3/t 1.3
Energy demand per ton of fresh roots MJ/t 1.7

Cassava chopping
Energy demand per ton of peeled roots MJ/t 16.67
Water demand per ton of peeled roots m3/t 0.3

Fiber and pulp separation
Water demand per ton of chopped roots m3/t 1.4

Sulphur demand per ton of chopped roots kg/t 0.13
Waste fibers, wet per ton of chopped roots t/t 1.01

Starch extract, wet per ton of chopped roots t/t 0.89

Starch separation and dewatering
Water demand per ton of starch extract m3/t 0.5

Electricity for dewatering per ton of starch extract MJ/t 12.5
Electricity, separation per ton of starch extract MJ/t 18

Starch loss per ton of starch extract kg/t 2.3
Starch per ton of starch extract t/t 0.18

Starch drying
Thermal energy demand per ton of wet starch MJ/t 1.0

Starch loss per ton of dry starch kg/t 5.0

Wastewater disposal (all processing steps)
Wastewater per ton of fresh roots m3/t 4.5

BOD per m3 waste water g/m3 1410
Cyanide per m3 waste water g/m3 0.17
Nitrate per m3 waste water g/m3 470

It was assumed that peeling is done with a commercially available abrasive peeling machine.
For the production of dried native starch, the following production steps were assumed: (i) root
washing, (ii) chopping and grinding, (iii) the separation of fibrous residues, (iv) dewatering and protein
separation, (v) dehydration, (vi) drying, and (vii) packaging.
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For producing cassava crisps, it was assumed that the harvested roots are peeled like in the starch
production scenario. After peeling, the roots are sliced with an electric slicer with an energy demand
of 4.6 kWh per ton of cassava roots. During slicing, 10% losses are considered. After slicing, the raw
cassava chips are deep-fried using energy from LPG (70% Propane/30% Butane). The frying pan was
considered to be equipped with a 1.2 kW burner, 80% occupancy and a cassava throughput of 100 kg/h.
Frying oil consumption was estimated at 0.25 t per ton of raw cassava chips and mass ratio of fried
crisps to raw chips at 1:2, based on data provided by Mouron et al. [17] and Vitrac et al. [18]. For frying,
the use of palm oil is assumed, which would be reused three times before replacement.

2.1.3. Cassava Leaves

For the handling of the cassava leaves, two scenarios were modelled. In scenario 1, leaves remain
on the field and are burnt with emissions of particulate matter, SO2 and NOx, calculated according
to [19]. As a potential alternative, leaves could also serve as biogas substrate. If the leaves are removed
from the field, the amount of required fertilizer increases accordingly.

2.1.4. Biogas Production and Utilization

Residues from cassava production and processing (i.e., leaves, peels and pulp) as well as from
frying cassava crisps (i.e., waste palm oil) can be converted to biogas in anaerobic digestion plants.
Substrate specific biogas production potential was determined in previous studies using the so-called
“Hohenheimer Biogasertragstest (HBT)” (Universität Hohenheim—Landesanstalt für Agrartechnik
und Bioenergie, Stuttgart, Germany), which is based on standard VDI 4630 [20]. The results showed a
methane production potential of 0.239 and 0.292 m3 per kg of volatile solids (VS) for cassava leaves
and cassava pulp, respectively [21,22]. To ensure the sufficient trace element supply of the biogas
process, animal manure was added with a share of 25% on the substrate mixture. Produced biogas is
assumed to be burned in a combined heat and power plant (CHP) to substitute conventional electricity
(Malaysian grid mix) and heat (natural gas). Biogas digestate is assumed to be used as organic fertilizer
and thus substitutes NPK fertilizer.

2.2. Life Cycle Inventory (LCI)

2.2.1. Goal, Scope and Functional Unit

The aim of this study is the assessment of different utilization pathways for cassava biomass in
starch production from an environmental perspective. As the main purpose of cassava products is to
supply carbohydrates in the form of starch, the functional unit (FU) is defined as 1 kg of cassava starch,
either in the form of dried native starch or based on the corresponding starch content in cassava crisps.
In addition to the absolute level of environmental impacts, the contribution of biogas production from
residues to reducing environmental impacts is also assessed.

2.2.2. System Boundaries

The system was modelled from cradle to factory gate, as shown in Figure 1. The inputs of organic
and mineral fertilizers, plant protection products, agricultural machinery, as well as seedlings and
the input of energy carriers are considered. Different scenarios are modelled as described in Table 1.
Cassava cultivation and processing is modelled based on data from a case study in Malaysia and is
supplemented by data from literature to close existing data gaps. The processing of cassava includes
different pathways with native cassava starch and cassava crisps as products. Stems are assumed
to be used for the provision of seedlings. Residues from starch extraction and crisp production are
rich in highly degraded fiber material and can be used in an anaerobic digestion plant for further
degradation. Cattle manure is added to the substrate as inoculum and to increase process stability and
gas yield. The utilization of digestate as organic fertilizer in cassava cultivation is considered with the
corresponding content of nitrogen, phosphorus and potassium.
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Figure 1. System boundaries of the life cycle assessment (LCA) study (FU: 1 kg of cassava starch, either
in the form of dried native starch or based on the corresponding starch content in cassava crisps).

The modelling principles are based on the international standards ISO 14040 and 14044 [23,24].
“SimaPro 9.0” software (PRé Sustainability, LE Amersfoort, The Netherlands) was used for LCA
modelling with “ecoinvent 3.5” database (ecoinvent, Zurich, Switzerland) [25] for background life
cycle inventories (LCI) such as infrastructure, the provision of energy carriers, agricultural machinery
and mineral fertilizers as well as for the calculation of savings from avoided products. Agricultural
primary production, including the calculation of direct field emissions was modelled according to the
Swiss Agricultural Life Cycle Assessment method (SALCA) (Agroscope, Zurich, Switzerland) [26]
based on the methodological approach described in [27].

2.2.3. Scenarios

Four scenarios were differentiated. A basic distinction was made between primary agricultural
production and processing. In both cases, there are two sub-scenarios. Primary production is divided
into: (i) a traditional scenario where the field work is carried out manually and (ii) a modern scenario
where the field work is mechanized. In both cases, at harvest, the leaves of the cassava plants are
left and burned in the field. In terms of processing, a distinction has been made between: (i) the
industrial scenario where starch is produced, and (ii) an advanced scenario where crisps are produced.
In both cases, there is a sub-scenario at which it was assumed that the leaves are harvested and used
together with the processing residues as feedstock for biogas production. An overview of the described
scenarios can be found in Table 3.

Table 3. Composition of scenarios.

Production Step Traditional Modern Industrial Advanced

Manual field-work x - - -
Mechanized field-work - x x x

Leaves burnt x x - -
Leaves harvested - - x x
Starch production - - x -
Crisp production - - - x

Biogas - - x x
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2.2.4. LCI Data

The primary data for cassava cultivation were collected in Malaysia by a questionnaire in the
years 2016/2017 and complemented with data from literature. Pesticide application was modelled
based on data from [28]. Table 4 shows the emission models used in this study for calculation of direct
field emissions.

Table 4. Emission models used (adapted from [27]).

Emission Emission Model

Ammonia (NH3) EMEP Tier 2 [29]
Nitrogen oxides (NOx, NO, NO2) EMEP [29]

Nitrous oxide (N2O) IPCC Tier1 [30]
Nitrate (NO3

−) SQCB [31]
Phosphorous (P, PO4

3−) SALCA-P [32]
Heavy metals (Cd, Cr, Cu, Hg, Ni, Pb, Zn) Freiermuth [33]

Carbon dioxide (CO2) IPCC [30]

In more detail, the following formulas were used for calculation of direct emissions (adapted
from [27]).

For ammonia (NH3) emissions to air, the following equation was used:

NH3 =
17
14
·

∑m

1
((p·EFam + (1− p)·EFbm))·Nmin·Mm− 1), (1)

where NH3 is ammonia emission after mineral fertilizer application (kg NH3), m is fertilizer type (M is
number of fertilizer types), EFam is emission factor on soils with pH ≤ 7 (kg NH3-N/kg N), EFbm is
emission factor on soils with pH > 7 (kg NH3-N/kg N), p is fraction of soils with pH ≤ 7 (%/100) and
Nmin is mineral fertiliser application (kg N/ha).

The emissions of various nitrogen oxides (NOx, NO, NO2) were calculated based on the remaining
N after NH3 emission. The emission factor for the application of all types of mineral and organic
fertilizer is 0.012 kg NOx-N per kg of applied N based on [29].

For the calculation of nitrate (NO3) leaching to ground water, the SQCB-NO3 model was used as
reported in [31]:

NO3 = 21.37 +
P

C·L

(
0.0037·Nsup + 0.0000601 · Norg − 0.00362·Nup

)
, (2)

where NO3 is leached NO3-N (kg N/(ha a)), P is precipitation and irrigation (mm/year), c is clay content
(%), L is rooting depth (m), Nsup is nitrogen supply through fertilizer (kg N/ha), Norg is nitrogen in
organic matter (kg N/ha) and Nup is nitrogen uptake by crop (kg N/ha).

Nitrous oxide (N2O) from nitrification and denitrification processes are considered by the
following equation:

N2O =
44
28
·

(
0.01

(
Ntot + Ncr + Nsom +

14
17
·NH3 +

14
46
·NOx

)
+ 0.0075 ·

14
62
·NO3

)
, (3)

where N2O is the emission of N2O (kg N2O/ha a), Ntot is total nitrogen in mineral and organic
fertiliser (kg N/ha), Ncr is nitrogen contained in the crop residues (kg N/ha), Nsom is nitrogen from the
mineralization of soil organic matter (kg N/ha), NH3 is the loss of nitrogen in the form of ammonia
(kg NH3/ha), NOx is losses of nitrogen in the form of nitrogen oxides (kg NO2/ha) and NO3 is the loss
of nitrogen in the form of nitrate (kg NO3/ha).

For urea application, in addition, CO2 emission were also calculated at 1.57 kg CO2 per kg of
applied urea-N.
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Regarding phosphorus emissions to water, the following pathways have been differentiated
according to [27,32]: (i) leaching of PO4 to ground water, (ii) run-off of PO4 to surface water, and (iii)
phosphorus emissions to surface water through soil particles transported by water erosion.

Heavy metal emissions to soil, surface water and ground water were calculated for Cd, Cr, Cu, Pb,
Hg, Ni, Zn according to the SALCA-heavy metal method, as described in [33].

Pesticide emissions were modelled based on the assumption that 100% of the active ingredients
applied will end up in the soil. This assumption is in accordance with the current modelling approach
of renowned LCI databases like “ecoinvent” and “USDA LCA digital commons” [34].

2.3. Life Cycle Impact Assessment (LCIA)

The following impact categories were selected for this study, each of which are related to 1 kg
starch output (FU): cumulated energy demand (CED) in Megajoule (MJ), deforestation (DEF) in m2

forest loss, water stress index (WSI) in m3 consumed water, global warming potential (GWP) in kg
CO2-eq, photochemical ozone formation potential (OFP) in kg NMVOC-equivalents (non-methane
volatile organic compounds), acidification potential (AP) in mol H+, human toxicity potential (HTP)
and aquatic ecotoxicity potential (ETP) both in kg 1,4-DB-equivalents (dichlorobenzene). More details
regarding the selected impact assessment categories are described by Bystricky et al. [35].

3. Results and Discussion

3.1. Cassava Cultivation

Impacts from cassava cultivation are expressed per kg of harvested cassava root and a distinction
is made between the following contribution groups: (i) direct field emissions, (ii) mineral fertilizer
production, (iii) field work processes, (iv) pesticide production, (v) transport, and (vi) the burning of
cassava leaves. Direct field emission means environmental impact from those emissions that are caused
by the application of fertilizers and pesticides in the field. Mineral fertilizer production and pesticide
production describe the environmental impact of providing the respective inputs of mineral fertilizers
and pesticides. Transport includes both the provision and the operation of the means of transport.
Burning means the environmental impacts from the combustion of cassava leaves on the field.

Environmental impacts of traditional cassava cultivation are dominated by the production of
mineral fertilizers (75–98%) for input-related LCIA categories (CED, DEF, WSI) and by direct field
emissions (40–100%) for output-related LCIA categories (GWP, OFP, AP, HTP, ETP) (Figure 2). Mineral
fertilizer production is governing CED because of the high energy demand of chemotechnical nitrogen
and phosphate recovery. Emissions contributing to the GWP of traditional cassava cultivation are
mainly N2O and CO2 from fertilization with 60% and 37%, respectively. The burning of the leaves
causes environmental impacts mainly in the two impact categories OFP and AP, with contributions of
39% and 6%, respectively. Most relevant emissions in this context are N2O and SO2, which are causing
98% and 2% of the total OFP impacts, respectively.

For modern cassava cultivation, Figure 2 shows that the direct field emissions dominate most
output-related LCIA categories (GWP, AP, HTP and ETP) system with 39%, 84%, 86% and 100%,
respectively. A high share of direct emissions in total environmental impacts is also reported by
Bystricky et al. for potato production [36]. Emissions contributing to the GWP of cassava are mainly
CO2 and N2O with 60% and 36%, respectively. Direct field emissions from nitrogen fertilization are
the source of N2O, while exhaust gases from tractors and harvesting machines used in the modern
cultivation system are causing more direct CO2 emissions in comparison to traditional production.
The burning of leaves contributes with 11% and 2% to OFP and AP, respectively. Input-related LCIA
categories (CED, DEF) are mainly dominated by field-work processes (40%, 46%) and transport (35%,
44%), while, for WSI, the production of mineral fertilizers (64%) is the biggest contributor. The great
influence of mineral fertilizer production on the WSI is initially surprising. In a more in-depth analysis,
it was found that impacts for WSI from mineral fertilizer production are mainly caused by up-stream
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processes for phosphate recovery, namely phosphoric acid and sulfuric acid. Even more surprising is
the high influence of transport processes on DEF. Again, an up-stream process is responsible for this;
onshore wells that produce the fuels used in the transport processes cause 95% of these impacts.

In addition to the difference in mechanization, different yields in both systems lead to differences
in the results.Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 12 
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Figure 2. Environmental impacts of traditional (1) and modern (2) cassava cultivation per kg of
harvested cassava root; cumulated energy demand (CED) in MJ, deforestation (DEF) in 4 × 10−3 m2,
water stress index (WSI) in 4 × 10−2 m3, global warming potential (GWP) in 4 × 100 kg CO2-eq,
ozone formation potential (OFP) in 10−2 kg NMVOC-eq, acidification potential (AP) in 2 × 10−1 mol
H+, human toxicity potential (HTP) in 10−4 kg 1,4-DB-eq and ecotoxicity potential (ETP) in 10−2 kg
1,4-DB-eq.

3.2. Cassava Processing and the Utilization of Processing Residues for Biogas Production

Figure 3 shows the environmental impacts of industrial and advanced cassava processing,
including cassava cultivation and taking into consideration the credits from biogas production and
utilization. Environmental impacts are expressed per kg of starch content to allow a comparison of
the two main products from both production systems, i.e., cassava starch and cassava crisps. The
following contribution groups are differentiated: (i) the processing of peeled cassava roots to starch and
crisps, respectively, (ii) the washing and peeling of harvested cassava roots, (iii) cassava cultivation,
and (iv) credits from the utilization of processing residues for biogas production and the utilization of
the biogas for the generation of electricity and process heat.

The total impacts of CED, DEF and GWP in the industrial scenario are 9.48 MJ/FU, 0.0001 m2/FU
and 1.02 kg CO2-eq./FU, respectively. The results indicate that, in the industrial scenario, the utilization
of cassava pulp and leaves for anaerobic digestion and the substitution of electricity and heat from
conventional sources lead to environmental advantages in all impact categories The highest relative
reductions of environmental impacts by the integration of biogas are achieved for CED, DEF and GWP
with −28%, −15% and −21%, respectively.
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Figure 3. Environmental impacts of industrial (1) and advanced (2) cassava processing per kg of starch
output; cumulated energy demand (CED) in MJ, deforestation (DEF) in 5 × 10−3 m2, water stress index
(WSI) in 5 × 10−3 m3, global warming potential (GWP) in 10−1 kg CO2-eq, ozone formation potential
(OFP) in 10−3 kg NMVOC-eq, acidification potential (AP) in 10−3 mol H+, human toxicity potential
(HTP) in 10−2 kg 1,4-DB-eq, and ecotoxicity potential (ETP) in 5 × 10−2 kg 1,4-DB-eq.

In the advanced scenario, the total impacts of CED, DEF, GWP, OFP and WSI are 4.71 MJ/FU,
0.01 m2/FU, 2.6 kg CO2-eq./FU, 0.01 kg NMVOC-eq./FU and 0.01 m3/FU, respectively. The results
indicate that the environmental impacts of cassava crisps can be reduced by the utilization of residues
for biogas production. CED, GWP, OFP and WSI can be reduced by more than 10% with −74%, −27%,
−14% and −12%, respectively. The credit for the substitution of conventional electricity and heat is
the reason for these reductions of environmental impacts. The main contribution to the credit comes
from electricity with 77% and 82% for CED and GWP, respectively. This is mainly due to the fact, that
electricity production from hard coal has a share of 39% in the Malaysian electricity mix, while only
LPG is substituted for heat.

Figure 4 shows that most LCIA categories of the industrial production are dominated by the
agricultural cultivation stage (72–100%). The exception is WSI, for which contributions of cultivation
(27%), cassava root peeling (54%) and starch production (20%) are relevant. These results are different
for the advanced production system. Here, CED, OFP, AP and ETP are also mostly driven by cultivation
with 66%, 62%, 81% and 100%, respectively. On the contrary, for DEF, GWP, and HTP, crisp production
has the biggest contribution to overall impacts with 98%, 65% and 94%, respectively. Especially for
DEF, this result was unexpected as one would assume the cassava cultivation should be most relevant
here. For all three impact categories, the high contribution to this impact is caused by a background
process used in the processing, namely palm oil for frying. For DEF and GWP, deforestation and
the related GHG emissions are responsible for this. In the case of HTP, it is pesticide application in
palm oil production. Consequently, here, a processed agricultural product from the upstream chain
has a significant influence on the overall impacts. This is linked to the fact that it was assumed that
non-certified palm oil is used. When comparing the absolute values, it is noticeable that the advanced
scenario leads to higher overall environmental impacts than the industrial scenario. This is mainly
due to the high energy demand and the use of palm oil for deep-frying the crisps, which are also the
main drivers of environmental impacts in the advanced scenario. The latter finding is in line with the
environmental hotspots of French fries described by Mouron et al. [17] as well as the results for fried
insects and soy meal-based meat substitutes, as reported by Smetana et al. [37].



Appl. Sci. 2020, 10, 2975 10 of 12

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 12 

upstream chain has a significant influence on the overall impacts. This is linked to the fact that it was 
assumed that non-certified palm oil is used. When comparing the absolute values, it is noticeable that 
the advanced scenario leads to higher overall environmental impacts than the industrial scenario. 
This is mainly due to the high energy demand and the use of palm oil for deep-frying the crisps, 
which are also the main drivers of environmental impacts in the advanced scenario. The latter finding 
is in line with the environmental hotspots of French fries described by Mouron et al. [17] as well as 
the results for fried insects and soy meal-based meat substitutes, as reported by Smetana et al. [37]. 

With regard to the entire process chain, the results show that primary agricultural production 
has a significant influence on the overall environmental impact of cassava starch in most impact 
categories. This is in line with the findings of other studies that only considered the GWP [11]. The 
total impacts of GWP found in this study are higher but in the same order of magnitude compared 
to another study that focused on the carbon footprint of starch production from cassava, while 
savings due to biogas production are similar [12]. 

 
Figure 4. Relative contribution to environmental impacts of the various processing steps in industrial 
(1) and advanced (2) cassava processing; cumulated energy demand (CED), deforestation (DEF), 
water stress index (WSI), global warming potential (GWP), ozone formation potential (OFP), 
acidification potential (AP), human toxicity potential (HTP) and ecotoxicity potential (ETP). 

4. Conclusions 

This study delivered full life cycle assessment (LCA) results from the production of cassava 
starch and cassava crisps, including the primary production of cassava roots. The results show that 
primary agricultural production has a significant influence on the overall environmental impact of 
cassava starch in most impact categories. Furthermore, the analysis showed that differences in the 
environmental impacts per kg of cassava root of traditional and modern cassava production are 
mainly due to different yields in both systems as well as the different levels of mechanization. The 
results indicate that the environmental impacts of cassava-based products can be reduced 
considerably with the utilization of processing residues for anaerobic digestion if the resulting biogas 
is used for the production of electricity and process heat. The relative contributions of these 
environmental advantages differ between the two production systems analyzed and vary between 
impact categories. In contrast, the global warming potential (GWP) of cassava crisp production is 
dominated by processing. This results in different hotspots for these two production systems and 
thus in different approaches to reduce environmental impacts. In the case of cassava starch 
production, it is advisable to optimize agricultural cultivation processes. In the case of cassava crisp 
production, it is mainly the palm oil for deep-frying that significantly contributes to environmental 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

CED DEF WSI GWP OFP AP HTP ETP

Starch

Crisps

Peeling

Cultivation

Figure 4. Relative contribution to environmental impacts of the various processing steps in industrial
(1) and advanced (2) cassava processing; cumulated energy demand (CED), deforestation (DEF), water
stress index (WSI), global warming potential (GWP), ozone formation potential (OFP), acidification
potential (AP), human toxicity potential (HTP) and ecotoxicity potential (ETP).

With regard to the entire process chain, the results show that primary agricultural production has
a significant influence on the overall environmental impact of cassava starch in most impact categories.
This is in line with the findings of other studies that only considered the GWP [11]. The total impacts
of GWP found in this study are higher but in the same order of magnitude compared to another study
that focused on the carbon footprint of starch production from cassava, while savings due to biogas
production are similar [12].

4. Conclusions

This study delivered full life cycle assessment (LCA) results from the production of cassava
starch and cassava crisps, including the primary production of cassava roots. The results show that
primary agricultural production has a significant influence on the overall environmental impact of
cassava starch in most impact categories. Furthermore, the analysis showed that differences in the
environmental impacts per kg of cassava root of traditional and modern cassava production are mainly
due to different yields in both systems as well as the different levels of mechanization. The results
indicate that the environmental impacts of cassava-based products can be reduced considerably with
the utilization of processing residues for anaerobic digestion if the resulting biogas is used for the
production of electricity and process heat. The relative contributions of these environmental advantages
differ between the two production systems analyzed and vary between impact categories. In contrast,
the global warming potential (GWP) of cassava crisp production is dominated by processing. This
results in different hotspots for these two production systems and thus in different approaches to
reduce environmental impacts. In the case of cassava starch production, it is advisable to optimize
agricultural cultivation processes. In the case of cassava crisp production, it is mainly the palm oil for
deep-frying that significantly contributes to environmental impacts that possibly could be reduced by
purchasing certified palm oil. This would have to be verified by further research.
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