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Abstract: We investigated the applicability of three task-specific ionic liquids (ILs) as heavy metal 
extracting agents by contrasting extraction capabilities with algal toxicity. The compounds tested 
were trihexyltetradecylphosphonium-, methyltrioctylphosphonium- and methyltrioctylammonium 
3-hydroxy-2-naphthoates. Experiments were performed to assess if these ILs can provide 
environmentally safe residual concentrations of the target metals after extraction. Both pure water 
and natural mineral water samples were spiked with 20 µg L−1 of Cu, Ag, Cd, Hg and Pb, 
respectively. Quantitative extraction (>99%) of Hg and Ag was achieved. Cu and Hg were below 
the respective no-observed-effect-concentrations (NOECs) after extraction and Ag below 0.03 µg 
L−1. Acute toxicity assays were conducted using two freshwater green algae Raphidocelis subcapitata 
and Tetradesmus obliquus. Growth inhibition and maximum photochemical quantum yield of 
photosystem II after 72 h were assessed. ILs were less toxic than similar compounds, but still must 
be classified as acute toxicants for algae. An inhibiting effect on both growth and chlorophyll 
fluorescence was observed. The leaching of the ILs into the samples remains a limitation regarding 
their environmental-friendly applicability. Nonetheless, the extremely efficient removal of Cu, Ag 
and Hg under environmentally relevant conditions calls for further research, which should focus 
on the immobilization of the ILs. 

Keywords: task-specific ionic liquids; heavy metal extraction; algal toxicity; growth inhibition; 
chlorophyll fluorescence 

 

1. Introduction 

Ionic liquids (ILs) are generally defined as low-melting organic salts, often described as liquid 
below 100 °C, and represent a relatively new class of chemical compounds [1]. They exhibit a variety 
of useful physico-chemical properties, including very low volatility, high thermal, chemical and 
electrochemical stability, a wide liquid range and varying lipophilicity. Some of these characteristics 
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are sought-after, environmentally favorable attributes, which has led to frequent proposal for ILs as 
more sustainable alternatives in numerous applications [2]. Successful uses of ILs were reported in 
the fields of solvent extraction and separation [3,4], organic synthesis [5], electrochemistry [6], among 
many others. Their versatile properties enable numerous applications ranging from carbon dioxide 
(CO2) capture [7] to their use as a drug carrier in the pharmaceutical industry [8]. An increasing 
number of studies has also exploited these properties to extract heavy metals, in the desire to improve 
the applicability and sustainability of traditional methods [9]. In this regard, the synthesis of task-
specific ionic liquids (TSILs) has received growing interest because they can be “tailored” to meet the 
intended properties: Introducing metal-chelating functional groups to either the respective cation or 
anion can fine-tune the affinity of the ILs towards metal ions, improving the efficacies in the 
extraction processes [10]. Incorporating anions with functional groups has proved to be successful in 
extracting various heavy metals or trace elements. For instance, ILs with a Sulphur functionality, e.g., 
thiosalicylate, thioglycolate or thiocyanate groups, showed a high affinity towards copper, silver, 
cadmium, platinum or mercury [11–13].  

Meeting the claim of ILs as “green” solvents, starting with their production, involved proposing 
enhanced synthesis routes achieving higher yields and fewer byproducts while avoiding 
environmentally harmful chemicals [14,15]. Regarding green applicability, however, the liquid–
liquid extraction of metals from aqueous phases revealed a major drawback: partial dissolution of 
the ILs during extraction, so-called leaching [9]. Moreover, the prevalent extraction mechanism can 
also decompose the IL: excellent extraction capabilities can be accomplished through a cation-
exchange mechanism, which considerably limits the practicability of ILs in liquid-liquid extraction 
[16]. Utilizing more hydrophobic ILs, e.g., by increasing the length of alkyl chains on the cation, 
combined with a strongly coordinating, functional anion, enables a shift from ion exchange to neutral 
extraction mechanisms, thus improving the leaching behavior [17]. However, even using highly 
hydrophobic ILs cannot guarantee the complete inhibition of ion exchange [18]. The antimicrobial 
activity of quaternary ammonium compounds has long been known, and imidazolium-based ILs, for 
example, were recently tested for their antibiofilm activity [19]. Accordingly, this inevitable (even if 
only partial) loss of the ILs during extraction requires a stronger focus on their hazard potential [20]. 
The regularly attributed green status of ILs is mainly derived from their non-volatile nature, ignoring 
their potential bioactivity [21], which represents an often-neglected parameter in the optimization of 
TSILs [22]. For example, the hydrolysis of fluorinated anions and the subsequent toxicity makes ILs 
based on fluorinated anions inadequate for use in extraction processes [21,23]. Recent work has 
therefore highlighted both the ecotoxicity and degradability of ILs [21,24]. Kumar et al. [25] 
investigated the in vitro cytotoxicity of various TSILs using human breast cancer cells. The authors 
showed a positive correlation between alkyl chain length and cytotoxicity. Determining the 
ecotoxicity through algal growth assays proved to be another useful tool, because this approach is 
easy to perform, and algae are important primary producers. For instance, the toxicity of pyridinium 
and imidazolium ILs for the alga Selenastrum capricornutum was reported to be between two and four 
orders of magnitude higher than that of traditional organic solvents [26]. Likewise, phosphonium- 
and ammonium-based TSILs used in heavy metal extraction were acutely toxic to freshwater algae 
[13]. While toxicity depends on several factors, e.g., the alkyl chain length or the nature of the 
functional group [27], the results vary tremendously depending on the applied biological test [22]. 
These findings underpin that testing the ecotoxic potential of TSILs proposed as extracting agents is 
a prerequisite before use: improved extraction capabilities should not be accompanied by increased 
toxicity. Furthermore, these assays should be straight-forward, reproducible and comparable to each 
other.  

The recently characterized TSILs trihexyltetradecylphosphonium-, 
methyltrioctylphosphonium- and methyltrioctylammonium 3-hydroxy-2-naphthoates displayed 
great potential as heavy metal extractants; the best results were achieved for Cu, Ag, Cd and Pb [28]. 
The performed extraction experiments with model solutions were in the mg L−1 concentration range, 
which is commonly performed. Nonetheless, follow-up investigations using trace level 
concentrations are rarely reported. Fischer et al. [11] found a positive correlation between extraction 
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efficacies and initial concentrations for several cases, emphasizing that high extraction efficacies in 
the mg L−1 concentration range do not necessarily apply in lower concentration ranges. This 
highlights the importance of using trace level concentrations in extraction experiments, which are 
reported here for the first time for the ILs under investigation. The experiments were designed to 
show if environmentally safe residual concentrations after extraction could be achieved, even when 
initial metal concentrations were in the µg L−1 range. For this study, we also included investigations 
on mercury, for which experiments have not been conducted before. To further assess their 
applicability with respect to toxicological concerns, the toxicological potential of the Ils towards the 
freshwater green algae Raphidocelis subcapitata and Tetradesmus obliquus was investigated in acute 
toxicity assays. These tests included growth inhibition assays and were enhanced by monitoring the 
photosynthetic performance via chlorophyll fluorescence. We propose this non-invasive and fast 
method as a first ecotoxicity screening of novel TSILs used as extracting agents in aqueous phases. 
The combined results from extraction experiments and acute toxicity assays should help to shed light 
on the practicability and feasibility of using highly hydrophobic ammonium- and phosphonium-
based TSILs as metal extracting agents.  

2. Materials and Methods  

2.1. Materials 

The ionic liquids trihexyltetradecylphosphonium 3-hydroxy-2-naphthoate ([P66614][HNA]), 
methyltrioctylphosphonium 3-hydroxy-2-naphthoate ([P1888][HNA]) and methyl-trioctylammonium 
3-hydroxy-2-naphthoate ([N1888][HNA]) were synthesized as described elsewhere [29]. For the 
preparation of feed solutions as well as instrument calibration, 1000 mg L−1 atomic absorption 
spectrometry elemental standards of Cu, Cd, Pb (Honeywell Fluka, Charlotte, NC, USA) and Ag 
(VWR, Radnor, PA, USA) in 2 wt% HNO3 and Hg in 12 wt% HNO3 (Fluka) were used. HNO3 (trace 
select, ≥ 69%) purchased from Fluka and NaOH (50% in water) from Sigma-Aldrich (St. Louis, MO, 
USA) were used to adjust feed solution pH. Ultra-pure water (resistivity < 18.2 MΩ cm) was obtained 
from a Millipore Milli-Q Advantage A10 apparatus (Merck Millipore, Burligton, MA, USA). 

Batch cultures of the freshwater green algae species Tetradesmus obliquus (strain SAG 276-1) and 
Raphidocelis subcapitata (strain ASW05231) were obtained from the Culture Collection of Algae at the 
University of Göttingen (Göttingen, Germany) and from the Algensammlung Wien at the University 
of Vienna (Vienna, Austria), respectively. Studies were performed using Bold’s Basal Medium with 
vitamins (BBM + V) [29]. 

2.2. Apparatus 

Extraction samples were put on a Vibramax 100 shaker (Heidolph, Schwabach, Germany) and 
centrifuged using an EBA 20 centrifuge manufactured by Hettich (Tuttlingen, Germany). pH values 
were measured with a Lab 850 pH Meter (SI Analytics, Mainz, Germany). The metals Cu, Ag, Cd and 
Pb were quantified by graphite furnace atomic absorption spectrometry using a PinAAcle 900 z 
spectrometer by Perkin Elmer (Waltham, MA, USA). In the case of Hg, cold vapor atomic absorption 
spectrometry was utilized, using a FIMS 400 system by Perkin Elmer (Waltham, MA, USA). Dissolved 
organic carbon (DOC) was measured with the TOC Analyzer TOC-V CHP (Shimadzu, Kyoto, Japan). 
The major components of mineral water were determined using flame atomic absorption 
spectrometer AAnalyst 200 (Perkin Elmer, Waltham, MA, USA), photometer Spectroquant NOVA 
60a (Merck Millipore, Burlington, MA, USA) and conductivity meter FiveGo F3 (Mettler-Toledo, 
Columbus, OH, USA). 

For growth inhibition assays, cell numbers were estimated using a Neubauer improved cell 
counting chamber with 0.1 mm depth (Marienfeld, Lauda-Königshofen, Germany) under a 
compound microscope Neovar 2 (Reichert-Jung, Vienna, Austria). Chlorophyll fluorescence was 
measured with the pulse-amplified modulated (“PAM”) fluorometer PAM-2500/USD (Walz, 
Effeltrich, Germany).   
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2.3. Extraction Experiments 

In order to evaluate the potential of the synthesized ILs for metal extraction, 100 mg of the 
respective IL were weighed into glass vials and 5 mL of the respective feed solution were added. The 
two ILs that were solid at room temperature, [P1888][HNA] and [N1888][HNA, were melted, weighed 
in molten state, and the feed solution was added after solidification. The ILs remained solid during 
extraction, resulting in a solid–liquid extraction in these cases. Firstly, a time-dependent extraction 
using a feed solution with 1 mg L−1 mercury adjusted to an initial pH of 3.5 was performed. For this, 
samples were kept at room temperature and shaken with 300 rpm for 1, 2, 3, 4, 5 and 6 h, respectively. 
Afterwards, the aqueous phase was recovered by pipetting and centrifuged at 5000 rpm before being 
measured for the respective metal and DOC content. Experiments were conducted in triplicates. To 
consider a loss of metal due to possible oxidation, precipitation and adhesion effects in the glass vials, 
reference samples containing the respective metal concentrations without IL were treated equally to 
the samples with ILs; the metal concentration was determined before and after the respective 
extraction time. Secondly, extraction experiments were carried out for an extraction time of 2 h with 
spiked pure water feed solutions adjusted to pH 3.5 and pH 8.0, as well as with bottled natural 
mineral water whose major composition was characterized before use (Table 1). These feed solutions 
were spiked with 20 µg L−1 of the respective metal. 

Table 1. Major parameters and components of the mineral water feed solution; El.Cond.: Electrical 
Conductivity, all ions in (mg L−1). 

pH  El. Cond.   Na+ K+ Mg2+ Ca2+ Cl− SO42− 

7.22  846 (µS cm−1)  14.2 1.8 39.5 95 23 221 

The extraction efficacy was calculated as the percentage of metal removed from the feed solution after 
the extraction experiment compared to reference samples, using Equation (1)   (%) = − ∗  (1) 

CRef represents the metal concentration in the reference samples after the respective extraction time 
and Ct the metal concentration in the sample after extraction. 

To evaluate the degree of leaching, the dissolved organic carbon concentration in samples after 
extraction was measured and leaching expressed in mg L−1 as well as relative loss of IL (Equation (2) 
and (3))  (  ) =  (2) 

 (%) = ∗ ∗ ∗  (3) 

DOC (mg L−1) was the measured concentration of dissolved organic carbon in the sample after 
extraction, Vs (L) the feed solution volume and mIL (mg) the mass of IL used. CIL represents the carbon 
content of the respective IL and was used to calculate the leaching of the entire liquid based on the 
carbon leaching, whereby the cation and anion of the IL were assumed to leach equally. The 
calculated value therefore represents the percent loss of IL during extraction and serves as an 
estimation of the reusability in liquid–liquid/solid–liquid extraction setups. 

2.4. Growth Inhibition Assays 

The first step involved preparing an aqueous phase saturated with the respective IL. Here, 100 
mL of pure water were added to 1 g of the respective IL and shaken overnight. Afterwards, the 
dissolved organic carbon (DOC) content in the aqueous phase was measured in order to calculate the 
IL concentration for the subsequent acute toxicity assays. Algal growth was then monitored based on 
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ISO Norm 8692, with cultures of the freshwater green algae species Tetradesmus obliquus and 
Raphidocelis subcapitata. All tests were performed as batch cultures in sterilized 200 mL Schott flasks 
in 0.45 µm filtered (cellulose acetate, Sartorius, Göttingen, Germany) Bold’s Basal Medium with 
vitamins (BBM + V) [13].. The algae stock solution was grown under photoautotrophic conditions in 
a water bath at 20 °C (± 0.5 °C) and stirred at 300 rpm, using plant growth fluorescence lamps (mean 
PAR intensities of 165 µmol m−2 s−1, measured at the flask surface), until a sufficient cell density was 
reached to conduct growth inhibition experiments. Algal density was then diluted to 105 cells mL−1 
using an inoculum from the stock algae solution and subsequently exposed to different 
concentrations of the test substances for 72 h. All samples were prepared as triplicate and were stirred 
at 300 rpm throughout the test period. After the test time, cell densities were estimated and the 
growth rate µ was calculated as follows (Equation (4)) μ =  ∗

 
(4) 

where N0 is the initial algal concentration, N72 the final algal concentration after 72 h and t the 
exposition time (72 h). The inhibition (I) in % was then calculated for the respective toxicant 
concentrations using Equation (5) =  μ − μμ  (5) 

where I is the growth inhibition after 72 h, µc the growth rate in control and µi the growth rate of IL-
exposed cells after 72 h. Ultimately, fitted dose–response curves were obtained by plotting the 
inhibition and logarithm of the IL concentration using Origin®2015 (Vers. 9.2, OriginLab, 
Northampton, MA, USA). 

2.5. Chlorophyll Fluorescence 

Maximum photochemical quantum yield of PS II (φM = Fv/Fm) was measured by means of pulse-
amplified modulated fluorescence. First, samples were pre-darkened for 10 minutes. Then, minimum 
chlorophyll fluorescence (Fo) was determined, followed by maximal fluorescence (Fm) during a 
saturation pulse. Fv/Fm = (Fm-Fo)/Fm is treated as a proxy parameter for the overall photosynthetic 
performance of plants and for healthy plants around 0.75–0.80; lowered values indicate stress [30]. 
The results for chlorophyll fluorescence parameters were evaluated as described elsewhere [31,32], 
the relevant parameters are given in Equation (6) =  − =   

 (6) 

By way of illustration, these data are presented in percent with reference to φM values obtained for 
reference samples not exposed to the ILs (Equation (7)) . (%) =  ( )( ) ∗  (7) 

For comparison, EC50 (refers to the concentration of a toxicant that causes 50% of an observed effect, e.g., 
growth inhibition or a maximum photochemical quantum yield of PS II after the specified time of the test 
compared to samples not exposed to the toxicant (reference sample)) were calculated equal to the growth 
inhibition results, as proposed by, e.g., [33]. 

3. Results and Discussion 

3.1. Extraction Experiments 

The three ILs utilized in this study have been previously tested for their capability to extract the 
heavy metals Cu, Ag, Cd and Pb from pure water as well as from several synthetic and natural waters, 
including drinking water and seawater. High extraction efficacies have been described at mg L−1 
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levels in liquid–liquid as well as in a solvent bar micro-extraction setup [28,34]. The extraction of Hg 
had not been tested before. 

3.1.1. Extraction of Hg 

Before conducting extraction experiments at trace level concentrations, we investigated if the 
three ILs are adequate extracting agents for Hg. The results for this time-dependent extraction are 
summarized in Figure 1. All three ILs displayed high extraction efficacies, with [P66614][HNA] 
achieving the highest value of 95.2% ± 1.7% after 1 h. 

 
Figure 1. Time-dependent Hg extraction (filled symbols) from a pure water feed solution at pH 3.5 
containing 1 mg L −1 Hg and leaching of the ILs into the aqueous phase (open symbols); n = 3, error 
bars = ± standard deviation (SD). 

The results are in good agreement with observations by Germani et al., where increasing alkyl 
chain lengths, and therefore the hydrophobicity, correlated negatively with the time needed for 
quantitative extraction of Hg [35]. Leaching values also are in line with previous data, with highly 
hydrophobic [P66614][HNA] achieving the lowest leaching of 80.0 ± 10.4 mg C L−1 (0.40% ± 0.05%),  
while similar but slightly higher values were obtained for [P1888][HNA] and [N1888][HNA] [28]. These 
results promise high reusability of the ILs because the relative dissolution ranged from 0.4% to 0.9% 
and separation from the aqueous phase after extraction was simple. This warrants further 
experiments regarding the back-extraction of the target metals and subsequent cycles of extraction 
and back extraction, which was successfully achieved with similar compounds by Platzer et al. [15] 
using, e.g., simple washing steps with 0.5 M HNO3. 

3.1.2. Extraction of Cu, Ag, Cd, Hg and Pb from 20 µg L−1 Feed Solutions 

The results on the extraction capability are summarized in Table 2, given as residual 
concentration remaining in feed solutions after extraction and the respective relative efficacy in 
brackets. The highest extraction efficacies were achieved for Hg and Ag using [P66614][HNA], which 
is additionally depicted in Figure 2. 

Remarkably, Hg could be extracted to final concentrations under the limit of detection of 0.1 µg 
L−1 from all three feed solutions using [P66614][HNA]. Changing the feed solution concentration from 
1 to 20 µg L−1 decreased the metal content after extraction from 50 to less than 0.1 µg L−1, displaying 
a successful removal even of trace levels of Hg. In both cases, the residual concentration would 
conform to the Water Framework Directive 2000/60/EC of the European Union concerning limit 
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values and quality objectives for industrial mercury discharges, with a threshold value of 50 µg L−1 
[36]. 

Table 2. Residual concentrations of metals after extraction experiments from pure water at pH 3.5, 
pure water at pH 8.0 and spiked natural mineral water for an extraction time of 2 h; extraction 
efficacies in percent are given in brackets, n = 3. n/a = not applicable: no metal in solution in reference 
samples after 2 h. 

 Residual concentration mean ± SD (µg L−1) 
Sample IL Cu Ag Cd Hg Pb 

Pure water 
pH 3.5 

[P66614][HNA] 16.2 ± 0.5 (21.3) < 0.03 (> 99) 7.5 ± 0.3 (64.4) < 0.1 (> 99)  17.7±0.1 (< 5) 
[P1888][HNA] 7.8 ± 2.3 (62.4) 13.2 ± 0.1 (14.3) 18.5 ± 1.0 (13.3) 1.7 ± 0.2 (91.3) 4.3 ± 0.1 (75.6) 
[N1888][HNA] 2.2 ± 0.8 (89.1) 3.6 ± 0.2 (76.1) 14.8 ± 1.3 (30.4) 2.6 ± 0.4 (86.7) 1.2 ± 0.6 (93.0) 

Pure water 
pH 8.0 

[P66614][HNA] 10.5±1.8 (< 5) < 0.03 (> 99) 6.5 ± 0.9 (37.3) < 0.1 (> 99) n/a 
[P1888][HNA] 6.6 ± 0.8 (36.1) 7.0 ± 0.9 (33.1) 9.3 ± 0.2 (10.5) 2.4 ± 0.2 (87.8) n/a 
[N1888][HNA] 4.2 ± 0.7 (59.7) 6.8 ± 0.5 (35.0) 11.7±0.8 (< 5) 2.9 ± 1.2 (85.4) n/a 

Mineral 
water 

[P66614][HNA] 1.3 ± 0.4 (90.4) < 0.03 (> 99) 12.7 ± 0.1 (35.4) < 0.1 (> 99) 6.0 ± 1.2 (28.2) 
[P1888][HNA] 1.1 ± 0.2 (90.8) 3.5 ± 0.3 (75.3) 16.0 ± 0.9 (18.8) 6.4 ± 0.1 (68.0) 4.5 ± 0.6 (45.6) 
[N1888][HNA] 0.8 ± 0.3 (93.3) 2.3 ± 0.7 (83.6) 13.5 ± 0.7 (31.3) 6.7 ± 0.2 (66.3) 5.2 ± 1.2 (38.3) 

Figure 2. Extraction of 20 µg L−1 Hg and Ag, respectively, from pure water feed solutions at pH 3.5 
and 8.0 as well as a spiked mineral water sample. Extraction time = 2 h, n= 3, error bars = ± SD. 

Furthermore, concentrations after the trace level extraction experiment are below the Austrian 
drinking water act threshold of 1.0 µg L−1 [37] and potentially comply with the threshold value of 0.07 
µg L−1 defined in the directive on environmental quality standards for surface waters in the European 
Union [38]. Regarding toxicity to freshwater algae, the achievable extraction also conforms with 
predicted no observed effect concentrations (NOEC) for Hg towards several freshwater algae, 
including R. subcapitata, of 0.6–3.2 µg L−1, reported by Rodrigues et al. (2013) [39]. 

[P66614][HNA] was equally suitable for extracting Ag, achieving > 99% extraction from the three 
feed solutions. The remaining concentrations below the limit of detection of 0.03 µg L−1 were 
significantly lower than the EC50 values found in the literature: the lowest EC50 for aquatic biota have 
been reported for fish, with LC50 (refers to the concentration of a toxicant in the respective medium, that 
causes the death of 50% of a tested population after a specified time) between 2 and 30 µg L−1 [40]; EC50 for 
certain freshwater algae are as low as 10 µg L−1 [41], whereas 125 µg L−1 were reported for R. 
subcapitata [42].  

Cu was extracted > 90% from the mineral water feed solution for all three investigated ILs. The 
positive effect that we previously reported [28] of a mineral water composition on Cu extraction at 
mg L−1 levels remained valid in the present extraction setup. The low residual concentration after 
extraction, approx. 1 µg L−1, is below the lowest reported NOEC of 4.2 µg L−1 for R. subcapitata in 
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natural waters [43], underlining the high capability of the three ILs to extract Cu from freshwater 
matrices. Regarding Pb, [N1888][HNA] achieved an extraction of 93.0% ± 0.6%, but only from pure 
water at pH 3.5. For mineral water, the extraction efficacies were comparably low for all three ILs, 
with values ranging from 28% to 45%, equivalent to residual concentrations of 4.5–6.0 µg L−1. Cd 
extraction likewise was decreased compared to studies using 1 mg L−1 feed solutions [28], revealing 
comparably high residual concentrations between 6.5 and 18.5 µg L−1. The highest efficacy was 
achieved from pure water at pH 3.5 using [P66614][HNA]: 64.4% ± 2.1%. Both Pb and Cd displayed a 
dependence on initial metal concentration, as described by Fischer et al. [11], and furthermore suggest 
that the extraction of trace level concentrations is more susceptible to sample matrix effects. 

In sum, beyond the high extraction efficacies from mg L−1 feed solutions reported in previous 
studies, the investigated ILs also displayed a high capability to extract trace level concentrations of 
the target metals. The residual concentrations achieved for Cu, Ag and Hg were well below known 
concentrations of concern regarding algae and fish. 

3.2. Leaching  

Results for IL leaching into the aqueous phase during extraction are summarized in Table 3. 

Table 3. Leaching of the respective ionic liquid into the aqueous feed solution during extraction for 
an extraction time of 2 h; percentage of dissolution given in brackets, n = 3. 

 Leaching ± SD (mg L−1) 
Sample [P66614][HNA] [P1888][HNA] [N1888][HNA] 

Cu       
Pure water pH 3.5 76.7 ± 1.1 (0.38) 24.7 ± 2.0 (0.12) 139.3 ± 23.8 (0.70) 
Pure water pH 8.0 75.9 ± 0.9 (0.38) 25.7 ± 2.3 (0.13) 136.8 ± 30.7 (0.68) 

Mineral water 62.9 ± 1.1 (0.31) 27.6 ± 3.8 (0.14) 78.6 ± 6.0 (0.39) 
Ag       

Pure water pH 3.5 75.0 ± 2.4 (0.38) 25.3 ± 0.4 (0.13) 168.1 ± 5.7 (0.83) 
Pure water pH 8.0 80.3 ± 0.7 (0.40) 23.2 ± 0.9 (0.12) 132.4 ± 9.8 (0.66) 

Mineral water 74.4 ± 1.6 (0.38) 24.8 ± 7.9 (0.12) 99.8 ± 9.3 (0.50) 
Cd       

Pure water pH 3.5 83.7 ± 2.5 (0.42) 25.6 ± 1.5 (0.13) 97.4 ± 6.1 (0.48) 
Pure water pH 8.0 78.6 ± 2.5 (0.39) 25.4 ± 1.2 (0.24) 80.4 ± 10.4 (0.39) 

Mineral water 84.3 ± 0.5 (0.42) 43.5 ± 3.2 (0.33) 81.8 ± 6.0 (0.35) 
Hg       

Pure water pH 3.5 80.2 ± 1.6 (0.40) 25.6 ± 2.0 (0.13) 137.1 ± 15.0 (0.68) 
Pure water pH 8.0 78.4 ± 0.6 (0.39) 24.8 ± 0.4 (0.12) 87.5 ± 2.3 (0.44) 

Mineral water 65.4 ± 0.8 (0.33) 27.6 ± 2.4 (0.14) 80.6 ± 6.0 (0.40) 
Pb       

Pure water pH 3.5 73.2 ± 8.0 (0.36) 25.4 ± 2.4 (0.13) 76.7 ± 2.7 (0.38) 
Pure water pH 8.0 74.6 ± 1.7 (0.37) 28.5 ± 1.5 (0.14) 107.1 ± 12.5 (0.53) 

Mineral water 63.6 ± 1.2 (0.32) 27.3 ± 0.2 (0.14) 110.8 ± 4.8 (0.55) 

In general, we were able to reproduce the low leaching values reported in previous extraction 
experiments [28]. Values ranged between a partial dissolution of 0.1%–0.8%, implying a high 
potential for reusability of the three ILs in liquid–liquid extraction setups. In contrast to the multi-
elemental setup of past works [28,34], the single metal experiments in the present study enabled an 
examination of metal-dependent changes in leaching. This provides insights into the prevalent 
extraction mechanisms. Overall, differences in leaching due to varying sample matrices or the 
respective target metal, however, were small. The most pronounced effects were recorded for 
[N1888][HNA], which we previously reported to be more susceptible to sample composition [28]. This 
difference could reflect a higher probability of a cation exchange extraction mechanism for 
[N1888][HNA] in the pure water feed solution at pH 3.5, enabled through the weak ionic strength and 
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acidic conditions in the sample [17,44]. This effect is best visible for the extraction of Ag, where 
leaching decreased from 0.83% to 0.50% for the mineral water solution. [P66614][HNA] and 
[P1888][HNA] displayed almost equal leaching data for each metal and feed solution, respectively, 
suggesting that the mode of extraction remained constant under all conditions. Based on the 
consistent data and the highly hydrophobic character of the two ILs, we assume that all target metals 
were mainly extracted via a neutral extraction mechanism. This is further supported by constant 
leaching, regardless of whether or not the respective target metal could be extracted.  

3.3. Acute Toxicity Assays  

Results for the concentration-dependent growth inhibition and maximum photochemical 
quantum yield of PS II of R. subcapitata are depicted in Figure 3, for T. obliquus they are given in Figure 
S1. The EC50 (72 h) values calculated from the data of both parameters are summarized in Table 4. 
Most importantly, our data do not support the general assumption that the effect of anions on acute 
toxicity is small compared to alkyl chain lengths of the cation [27,45]. This means that an overall 
consensus on this matter remains elusive. Compared to previous studies that utilized ILs with the 
same cations, we achieved lower toxicity using [HNA]− as anion in our work [13]. At the same time, 
the effects on the toxicity of different alkyl chains or the central atom in the cation were comparably 
small. The detailed results are discussed in the following paragraphs. 

 
Figure 3. Effect of the three ILs on algal growth (filled symbols) and chlorophyll fluorescence (Rel. φ, 
open symbols) in 72 h acute toxicity assays with Raphidocelis subcapitata, n=3, error bars = ± SD. 

3.3.1. Growth Inhibition 

EC50 (72 h) values were significantly lower for R. subcapitata than for T. obliquus: the values range 
from 0.28 to 0.47 mg L−1 for the former and 1.76–2.68 mg L−1 for the latter (Table 4). This agrees with 
an observation by Platzer et al. [13], that thioglycolate-based ILs [N1888][C6SAc] and [P1888][C6SAc] as 
well as commercially available ILs [N1888][Cl] and [P66614][Cl] exhibited higher values for T. obliquus. 
This was attributed to the inert character of the biological polymer sporopollenin, covering the cell 
walls of T. obliquus, thus reducing diffusion into the cells. 

In further comparing our results to [13], our EC50 values were significantly higher for R. 
subcapitata and, additionally, the chosen anion had a clear effect on acute toxicity. Moreover, a 
comparison of three different anions is possible for cation [N1888], with acute toxicity decreasing in 
the order [C6SAc]− > [Cl]− > [HNA]−. For the latter, a value of 0.28 ± 0.01 mg L−1 signifies a decreased 
toxicity by a factor of 4 compared with [Cl]− and by a factor of 5.6 for [C6SAc]. The same holds true 
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for [P66614][Cl] and [P66614][HNA] and is highly pronounced for [P1888][C6SAc] and [P1888][HNA], with 
EC50 values of 0.04 ± 0.01 and 0.39 ± 0.05 mg L−1, respectively. The chloride anion was proposed as a 
reference point in determining anion toxicity because no effect of chloride on the overall toxicity of 
the compound is assumed [45]. Accordingly, [HNA]− has a positive effect on IL acute toxicity. The 
exact interaction with cells is unclear, but recent work revealed a positive influence of 3-hydroxy-2-
naphthoate on cell activity [46], which indicates a generally lower toxicity of [HNA]− compared to 
[C6SAc]−. 

Whereas no effect of alkyl chain length could be detected for growth of R. subcapitata, 
[P66614][HNA] exhibited a slightly higher toxicity compared to the less hydrophobic cations [P1888]+ and 
[N1888]+ for T. obliquus. This agrees with the literature on the alkyl-length-dependent toxicity of 
imidazolium-based ILs on T. obliquus [47]. EC50 values (72 h) for ILs with alkyl chains ≥ C10 and 
chloride anion were below 0.06 mg L−1 [48] and below 0.11 mg L−1 in the case of bromide [47], which 
indicates a higher acute toxicity compared to the ILs we tested. Likewise, [49] reported an EC50 value 
(72 h) of 0.06 mg L−1 for 1-decylpyridinium bromide. 

Comparing cations with the same alkyl chains revealed no influence of the central atom on 
toxicity, yielding similar results for [P1888][HNA] and [N1888][HNA] towards both T. obliquus and R. 
subcapitata. As is frequently suggested, predicting the toxicity of ILs based on chemical structures is 
complicated by the distinct reactions of different test organisms. Moreover, Stolte et al. [45] described 
overadditive effects on toxicity by specific cation–anion combinations. 

Although the three ILs we tested here displayed a lower acute toxicity than similar compounds 
in previous studies, it is important to emphasize that they nevertheless are classified as “acute toxic 
1” (EC50 ≤ 1 mg L−1) towards R. subcapitata and as “acute toxic 2” (1 mg L−1 ≤ EC50 ≤ 10 mg L−1) towards 
T. obliquus for an exposure time of 72 h in the Globally Harmonized System of the Classification and 
Labelling of Chemicals (GHS) [50]. As such, their potential application must be further reviewed in 
greater detail, e.g., by assessing their toxicity on additional organisms or conducting studies on 
biodegradability. 

Table 4. Influence of the ILs on growth and chlorophyll fluorescence after 72 h (EC50 values ± SD) in 
acute toxicity assays. 

Ionic Liquid MW [g mol−1] Growth Inhibition Max. PSII Quantum Yield 

  T. obliquus 
EC50± SD 

R. subcapitata  
EC50± SD 

T. obliquus 
EC50± SD 

R. subcapitata 
EC50± SD 

[P66614][HNA] 671.03 1.76 ± 0.17 0.47 ± 0.01 1.81 ± 0.03 0.52 ± 0.05 
[P1888][HNA] 572.86 2.61 ± 0.06 0.39 ± 0.05 1.86 ± 0.06 0.13 ± 0.03 
[N1888][HNA] 555.88 2.68 ± 0.44 0.28 ± 0.01 2.04 ± 0.22 0.24 ± 0.06 

[N1888][C6SAc] * 543.98 0.93 ± 0.16 0.05 ± 0.01 n/a n/a 
[P1888][C6SAc] * 560.95 8.96 ± 0.43 0.04 ± 0.01 n/a n/a 

[N1888][Cl] * 404.16 0.30 ± 0.03 0.07 ± 0.01 n/a n/a 
[P66614][Cl] * 519.31 0.39 ± 0.02 0.10 ± 0.01 n/a n/a 

* Platzer et al [13]; n/a=not available 

3.3.2. Chlorophyll Fluorescence 

PAM fluorometry has been established as a simple and rapid screening method to determine a 
compound’s toxicity on photoautotrophs [51]. We therefore used this method to obtain additional 
information complementing the results of the growth inhibition assays. Figure 3 depicts the results 
of the two tests, displaying the concentration-dependent growth inhibition as well as the maximum 
photochemical quantum yield of photosystem II. Table 4 provides the EC50 values calculated from 
both assays. 

These results demonstrate a clear negative correlation between growth inhibition and 
photosynthetic performance. For instance, NOECs for both parameters towards T. obliquus are 
estimated to be 0.33 mg L−1 for [P1888][HNA] and 0.52 mg L−1 for [P66614][HNA]. Intermediate 
concentrations likewise displayed similarly pronounced impacts on both parameters. This signifies 
that the tested ILs simultaneously affect PSII and inhibit algal growth to equal extent, which is also 
reflected in the comparable EC50 values of both tests (Table 4): EC50 values of e.g. [P66614][HNA] were 
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equal among the same algae species, with values of 1.76 ± 0.17 mg L−1 for growth inhibition vs. 1.81 ± 
0.03 mg L−1 for Fv/Fm of T. obliquus. The same pattern between the two parameters for T. obliquus was 
reported by [49] at approximately 60 µg L−1 for IL 1-decylpyridinium bromide. In contrast, no 
correlation between growth inhibition and Fv/Fm has been found for explicitly non-photosynthetic 
inhibitors. In this respect, Fai et al. [52] reported on the behavior of herbicide Alachlor: it did not 
affect the chlorophyll fluorescence of R. subcapitata, even though it displayed the highest growth 
inhibition of the tested compounds. 

EC50 values for [N1888][HNA] were equal regarding R. subcapitata and similar for T. obliquus, 
whereas a significantly stronger impact of [P1888][HNA] on chlorophyll fluorescence was observed at 
lower concentrations than its effect on growth inhibition. Nevertheless, the overall strong relation 
between both parameters qualifies the fast and non-invasive PAM fluorescence measurement as a 
suitable first screening of IL toxicity on photoautotrophs.  

3.3.3. Ionic Liquid vs. Heavy Metal Toxicity 

Concentrations of dissolved IL after extraction significantly exceeded the calculated EC50 values 
in all samples. Even in the most favorable cases, leaching still equaled 18 mg IL L−1 (Table 3). To better 
understand these results in light of possible applications, the retention in treatment plants and 
biodegradability of these ILs needs to be assessed. Amongst others, several readily biodegradable (> 
60% in the 28-d bottle test) naphthenic acid-based ILs were synthesized [53]. Moreover, guidelines 
on designing biodegradable ILs recommend long, hydrophobic alkyl chains on the cation and anions 
derived from organic salts [24]. This suggests that the ILs studied in this work have potential in this 
regard. This should be the subject of further investigation. The potential biodegradability described 
for ILs stands in contrast to the environmental properties of heavy metals, which are persistent and 
non-degradable [54]. Algal toxicity for heavy metals already has been reported for different algal 
strains and under various testing conditions. For the two target algae of interest, diverging results 
have been published: For instance, EC50 values regarding the growth inhibition of R. subcapitata range 
from 13 to 110 µg L−1 for Cd, 10–280 µg L−1 for Cu or 27–330 µg L−1 for Hg [55–58]. Concerning T. 
obliquus, the reported values lie in the same order of magnitude, with, e.g., 58 µg L−1 for Cd [59]. 
Likewise, a significantly higher impact on overall photosynthetic performance was reported for the 
target metals compared to the tested ILs. Thus, Juneau et al. determined EC50 (96 h) values of 50 µg 
L−1 for Cu [60] and 37 µg L−1 for Hg [33] towards R. subcapitata. Although the different data are not 
fully comparable due to varying setups, available data suggest that heavy metal toxicity greatly 
exceeds that of the tested ILs.  

Our results clearly indicate that environmentally favorable conditions in the sample solution 
after extraction cannot be easily achieved even when using highly hydrophobic ILs. Certainly, the 
leaching behavior of ILs can be improved in several ways: we demonstrated that immobilizing ILs 
on solid supports can substantially decrease leaching by up to 88% [34,61], leaving residual IL 
concentrations in the feed solution at concentrations approximate to the EC50 values. 

4. Conclusions 

We examined the suitability of three recently developed ionic liquids, namely 
trihexyltetradecylphosphonium-, methyltrioctylphosphonium- and methyltrioctylammonium 3-
hydroxy-2-naphthoate, as heavy-metal-extracting agents by contrasting their extraction capabilities 
with acute algal toxicity. To elucidate their extraction behavior under environmentally relevant 
conditions, we spiked water and natural mineral water samples with 20 µg L−1 of the heavy metals 
Cu, Ag, Cd, Hg and Pb and extracted them using a liquid–liquid extraction setup. We were able to 
reproduce the high extraction capabilities we previously reported towards mg L−1 concentrations. 
Moreover, the ILs displayed great potential in achieving residual metal concentrations well below 
hazardous concentrations for algae and fish. The best results were obtained for the extraction of Ag 
and Hg from a spiked mineral water feed solution using trihexyltetradecylphosphonium 3-hydroxy-
2-naphthoate. This yielded final metal concentrations below 0.03 and 0.1 µg L−1, respectively.  
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Acute toxicity assays revealed comparable EC50 (72 h) values of the ILs on both growth and 
photosynthetic performance for two freshwater green algae Raphidocelis subcapitata and Tetradesmus 
obliquus. The functional anion 3-hydroxy-2-naphthoate was less toxic than similar compounds; 
nonetheless, all three compounds must be considered as acute toxicants for algae according to the 
Globally Harmonized System of the Classification and Labelling of Chemicals. The leaching of the ionic 
liquids into the samples was low but remains a limitation regarding technical applications due to 
their ecotoxicity. Further research should therefore focus on IL ecotoxicity and biodegradability on 
one hand and on the development of environmentally friendly extraction setups on the other. 

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-3417/10/9/3157/s1, 
Figure S1: Effect of the three ILs on algal growth (filled symbols) and chlorophyll fluorescence (Rel. φ, open 
symbols) in 72 h acute toxicity assays with T. obliquus, n=3, error bars = ± SD.  
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