
Article

Autonomous Navigation Framework for Intelligent
Robots Based on a Semantic Environment Modeling

Sung-Hyeon Joo 1,† , Sumaira Manzoor 1,† , Yuri Goncalves Rocha 1 , Sang-Hyeon Bae 1 ,
Kwang-Hee Lee 2 , Tae-Yong Kuc 1,* and Minsung Kim 3

1 Department of Electrical and Computer Engineering, College of Information and Communication
Engineering, Sungkyunkwan University, Suwon 16419, Korea; sh.joo@skku.edu (S.-H.J.);
sumaira11@skku.edu (S.M.); yurirocha@skku.edu (Y.G.R.); shbae.skku@skku.edu (S.-H.B.)

2 Robot R&D Group, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea;
leekh@kitech.re.kr

3 Department of Electronic and Electrical Engineering, Dongguk University-Seoul Campus, Seoul 04620,
Korea; mkim@dongguk.edu

* Correspondence: tykuc@skku.edu
† These authors contributed equally to this work.

Received: 17 March 2020; Accepted: 27 April 2020; Published: 5 May 2020
����������
�������

Abstract: Humans have an innate ability of environment modeling, perception, and planning
while simultaneously performing tasks. However, it is still a challenging problem in the study
of robotic cognition. We address this issue by proposing a neuro-inspired cognitive navigation
framework, which is composed of three major components: semantic modeling framework (SMF),
semantic information processing (SIP) module, and semantic autonomous navigation (SAN) module
to enable the robot to perform cognitive tasks. The SMF creates an environment database using
Triplet Ontological Semantic Model (TOSM) and builds semantic models of the environment.
The environment maps from these semantic models are generated in an on-demand database and
downloaded in SIP and SAN modules when required to by the robot. The SIP module contains
active environment perception components for recognition and localization. It also feeds relevant
perception information to behavior planner for safely performing the task. The SAN module uses
a behavior planner that is connected with a knowledge base and behavior database for querying
during action planning and execution. The main contributions of our work are the development
of the TOSM, integration of SMF, SIP, and SAN modules in one single framework, and interaction
between these components based on the findings of cognitive science. We deploy our cognitive
navigation framework on a mobile robot platform, considering implicit and explicit constraints for
autonomous robot navigation in a real-world environment. The robotic experiments demonstrate the
validity of our proposed framework.

Keywords: intelligent robot; autonomous navigation framework; triplet ontological semantic model;
environment modeling; on-demand database; knowledge-based recognition; hierarchical planning

1. Introduction

Environment modeling, recognition, and planning are fundamental components for intelligent
systems, such as mobile robots, that enable them to understand and perceive the complex environment
in the same way a human does and perform the task reliably. When mobile robots are deployed in
the real-world, numerous challenges arise: acquiring spatial models of the continuously changing
environment that leads to the problem of robotic mapping, a radically changed scene appearance that
is one of the significant factors towards the visual recognition failure [1], and the dynamic nature of

Appl. Sci. 2020, 10, 3219; doi:10.3390/app10093219 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-7068-2324
https://orcid.org/0000-0001-5512-7824
https://orcid.org/0000-0002-3513-8398
https://orcid.org/0000-0002-8447-9252
https://orcid.org/0000-0002-5858-4702
https://orcid.org/0000-0002-5816-0088
http://dx.doi.org/10.3390/app10093219
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/9/3219?type=check_update&version=2

Appl. Sci. 2020, 10, 3219 2 of 30

the operating environment that is a critical challenge for robot planning [2]. Many approaches have
been proposed to handle these issues [3]. However, among them, a growing world-wide trend is
introducing semantic information into robotic systems using ontology [4], which endows the mobile
robot with human-like mapping [5], recognition [6] and planning [7] capabilities. Inspired by these
recent advances, our framework exploits the semantic knowledge by defining a Triplet Ontological
Semantic Model (TOSM).

Recent developments in robotics have heightened the need for semantic information processing
techniques to design object and place recognition systems based on the findings of cognitive science.
Semantic recognition systems based on Convolutional Neural Network (CNN) models have made
groundbreaking advances to tackle scene understanding tasks with an emphasis on object and place
recognition [8]. The complex representation of visual information and their processing by biologically
inspired design of CNN model has shown unprecedented advancements in visual recognition.
The layered structure in the CNN model is more reliable to represent the lower area of the human visual
cortex [9]. Motivated by these developments, we combine the strengths of a deep learning-based CNN
model with an on-demand database for semantic object-based place recognition and robot localization.

When planning a task, an agent requires a description of the environment and of itself,
containing the possible states, actions, and events. Classical planners, such as Planning Domain
Definition Language (PDDL) planners [10], make use of a set of predicates and actions to generate
a valid action sequence. Those planners have been vastly used by the research community and
integrated into powerful frameworks [11]. However, they tend not to perform well on unpredictable
and dynamic environments, usually described by Partially Observed Markov Decision Processes
(POMDP). Aiming to solve POMDPs on a variety of domains, reinforcement learning approaches
try to use a large amount of data to approximate a policy capable of obtaining an optimal action
based solely on the current state. Those approaches have shown promising results, but they still
underperform when dealing with long-term scenarios. Our framework tries to overcome those
shortcomings by combining classical PDDL planners, sampling-based planners, and reinforcement
learning algorithms into a hierarchical scheme.

Autonomous navigation frameworks based on knowledge base have become essential for complex
applications of robotic systems in real-world environments. In this direction, the Ontology-Based
Unified Robot Knowledge (OUR-K) framework [12] emphasized at robot intelligence to perform
navigation, recognition, planning, and manipulation tasks using knowledge description (for contexts,
features, objects, spaces, and actions) and knowledge association for establishing relationships
between descriptions by supporting inference. The OUR-K framework considered small static
indoor environments such as an office room; however, our framework concentrates on robot
navigation in large dynamic environments using the TOSM-based architecture. The RoboEarth
framework [13] designed a knowledge-based system to generate, share, and reuse data using a cloud
database. In contrast, our framework uses the on-demand database to ensure real-time capabilities.
Furthermore, it integrates semantic modeling, information processing, and autonomous navigation
modules to perform a task. Our prior [14] work has persuaded us to introduce the navigation
framework in this study.

Our framework makes major contributions to the semantic robotic research area as follows:

• Builds a knowledge base comprising of the advanced ontological environment model.
• Creates an on-demand database considering the robot’s capabilities and missions.
• Combines state-of-the-art deep learning-based CNN recognition model with an on-demand database.
• Defines a multi-layer hierarchical planning scheme that integrates semantic knowledge, a classical

planner, and reinforcement learning to enable multi-story building navigation.

The rest of our paper is divided into five sections as follows: Section 2, gives a brief
overview of related work in other frameworks, environment modeling, recognition, and planning.
Section 3, explains the overall framework and describes each component in detail. Section 4,

Appl. Sci. 2020, 10, 3219 3 of 30

illustrates experiments and discusses the results. Finally, conclusions and future directions follow in
Section 5.

2. Related Work

In this section, we first discuss the related work for knowledge-based navigation frameworks
(Section 2.1). After that, we review the literature that deals with the individual modules of our
autonomous navigation framework distinguishing into environment modeling for robots (Section 2.2),
recognition (Section 2.3), and planning (Section 2.4).

2.1. Knowledge-Based Navigation Frameworks

Recently, there is a growing interest in integrating the knowledge-based approaches into robotic
systems, which use ontologies for knowledge representation or semantic web technologies for
linking local robotic knowledge with web resources [15]. Therefore, the focus of robotic research
community has been shifted to use these approaches for developing efficient robot navigation systems.
Suh et al. [16] proposed Ontology-based Multi-layered Robot Knowledge Framework (OMRKF).
It aimed at improving the robot’s intelligence with its four levels of knowledge related to the model,
context, perception, and activity. Its knowledge representation helped the robots to recognize
objects with incomplete information and execute a task by only determining high-level service. It
modeled the objects, actions, and concepts using Prolog [17]. Later, Lim et al. extended OMRKF
and built OUR-K [12] knowledge framework for robot navigation, object recognition, action selection,
manipulation, and planning tasks by applying ontology. It consisted of knowledge description for
low-level data integration with high-level information and knowledge association in conjunction with
bidirectional and unidirectional rules to enable the robot with reasoning capabilities when only partial
information about an object was available.

With the rise of cloud-robotics, the web-scale approaches for knowledge processing are used
by robotic frameworks. Few researchers suggest reusing and sharing abstract representations of
high-level knowledge across different platforms. However, the problem is that most data depends on
hardware-specific configurations. Besides, current database systems usually store only one type of data
in isolation. These constraints limit the data reuse efficiently. Beetz et al. [13] addressed this problem
in the RoboEarth, in which data collection, storage, and sharing were independent of specific robot
hardware. It allowed the robots to access and share real-world environment and object models. In its
web-based knowledge base, the robot’s skills, surrounding environment, and objects were defined
as generic action recipes. It generated the semantic maps for robot localization and navigation by
integrating the geometrically precise visual SLAM methods with semantically enriched models of
recognized objects that could be downloaded from the database. It relied on reference ontology and
provided the semantic representation of actions along with the support for reasoning capabilities and
rule-based learning [18]. Similarly, the KnowRob [19] knowledge processing system was a semantic
framework for performing manipulation tasks that were previously vaguely described. It reduced
the gap between detailed description and vague task description. It modeled the environment while
integrated the common sense and encyclopedic knowledge with task and object description, along with
robot capabilities. It also supported reasoning capabilities and used inference methods to query the
knowledge base.

2.2. Environment Modeling for Robots

In this section, we present the literature review for environment modeling, focusing on two key
areas: map representation and ontology-based knowledge models.

2.2.1. Map Representation

In the Simultaneous Localization and Mapping (SLAM) field, filter-based state estimation
techniques and graph-based optimization methods are well studied for building environment

Appl. Sci. 2020, 10, 3219 4 of 30

maps. Thrun et al. [20] presented a follow-up research work for an offline SLAM problem by
introducing GraphSLAM, which represented the log-likelihood of the data and generated the maps
with more than 108 features in urban environments. Ref. [21], used selective resampling operations
to reduce the number of particles in Rao-Blackwellized [22] particle filter for building accurate
map of environment. Ref. [23], addressed the motion estimation and distortion problem in lidar
cloud by proposing a real-time approach divided into two algorithms that run in parallel. The lidar
odometry algorithm estimated transform between consecutive frames at a higher frequency, while
the lidar mapping algorithm performed fine matching and registration of the point clouds at a lower
frequency. Subsequently, Parallel Tracking and Mapping (PTAM) [24] was considered the most
popular method to implement visual based SLAM because of its ability to handle large number of 3D
points. Later, Mur-Artal et al. [25] extended the adaptability of PTAM to intractable environments by
designing a new feature-based monocular ORB-SLAM system from scratch.

The semantic mapping problem has attracted the researchers’ attention in recent years.
Pronobis et al. [26] proposed a probabilistic system for extracting semantic information from different
heterogeneous modalities and combined it with common-sense conceptual knowledge. It made the
semantic maps more descriptive based on the concept of spatial properties that were represented by
the chain graph. Kostavelis et al. [27] gave a qualitative description to enhance the representation
of the environment and enabled the robot to perceive its surroundings similar to the human.
McCormac et al. [28] used CNNs and dense SLAM system ElasticFusion for providing dense
correspondence from the 2D frame into the 3D map. The semantic predictions from CNN were
obtained from multiple viewpoints and then fused into a dense map. Yang et al. [29] proposed an
incremental semantic 3D mapping system with a scrolling occupancy grid map while CNN was
used for segmentation and computation of pixel label distribution. Nakajima et al. [30] presented
an approach for incrementally building dense 3D maps that were semantically annotated. The class
probabilities were assigned to each region of the 3D map and segmented using geometric-based
techniques, while CNN enhanced frame-wise semantic segmentation. Xiao et al. [31] presented a
Dynamic-SLAM by taking advantage of deep learning-based recognition technique, known as SSD, to
recognize the dynamic objects at semantic level while recall rate was improved by proposing a missed
detection compensation algorithm.

2.2.2. Ontology-Based Knowledge Model

Ontology-based knowledge systems are required to transform a simple robot into an intelligent
one. For this, Riazuelo et al. [32] proposed a system by integrating the knowledge base with a visual
SLAM to provide a precise and continuous perception of the environment and accurate recognition of
objects. He designed the semantic mapping method based on scene geometry and object locations
by combining both the visual SLAM and the RoboEarth ontology. The knowledge base methods
used prior information of the landmarks’ locations in the semantic map to determine the potential
locations of objects for recognition and robot guidance when searching for a specific object. A robot
can efficiently perform its task if it has semantic knowledge. The explicit semantic representation of
a real-world environment enables it to decide that an object model is suitable to perform the assigned
task; if not, then the robot can determine to select among other alternative object models using semantic
information. Tenorth et al. [33] worked on this challenge and proposed semantic representation
language to speed-up this task by describing actions, articulation models, object recognition, semantic
maps of the environment, and reasoning methods about these pieces of information.

It is a challenging task to establish a relationship between representations and their entities,
known as grounding. Johnston et al. [34] extended the robotic grounding systems using semantic
web technologies. Its architecture was composed of an ontology-based vision subsystem that was
mainly focused on object recognition, reasoning, categorization, communication, and collaboration.
Autonomous household robots rely on accurate mapping and navigation that need spatial information.
Tenorth et al. [35] proposed a system that combined spatial information, encyclopedic knowledge,

Appl. Sci. 2020, 10, 3219 5 of 30

and general knowledge with activity observations knowledge for environmental map building.
Crespo et al. [36] proposed a semantic relational model based on a physical and conceptual
representation of real-world objects, places, and semantic relationships among them to endow the
robot with the capabilities of making queries about its surroundings for planning and navigation tasks.

2.3. Recognition

In this section, we focus on reviewing the object and place recognition approaches, along with
localization techniques described in the literature.

2.3.1. Object Recognition

Visual object recognition is a significant problem in mobile robots. Advanced research efforts
in object recognition [37,38] are focused on understanding how a cognitive representation, from the
filtered output of sensor data, can be achieved to empower the robot with human-like perception [39].
In [40], human-like object recognition was developed for information processing using three hypotheses
based on cognitive psychology. Deep neural networks (DNNs) inspired by neurons in the brain
have recently come out as powerful algorithms to investigate the biological vision. The neural
basis of DNNs has motivated the researchers to use them as models for information processing for
recognition tasks [41]. CNN-based object recognition models are categorized into two-stage and
one-stage detectors, in which You Only Look Once (YOLO) [42] is considered extremely fast and
performs the detection task as a regression problem. Ref. [43], presented a robust method for object
recognition based on a semantic model graph in which structural and geometrical attributes along with
semantics as intrinsic properties of objects were used to establish a link between high-level semantics
and low-level image features. Zhang et al. [44] proposed SPDA-CNN architecture consisting of two
sub-networks and introduced mid-level layers for extracting part-specific features to improve the
recognition performance. Detecting and recognizing partially occluded parts is a challenging task for
modern object detectors because they cannot deal with occlusions. Wang et al. [45] addressed this
issue by accumulating the confidence of local visual cues, also known as visual concepts, which were
extracted from the internal states of deep networks using clustering.

Many researchers have considered the ontology-based knowledge-driven approaches for the
semantic recognition task. In an early study, Choi et al. [46] proposed an approach of ontology
inference for constructing the semantic contexts extracted from robot sensors to perform object
recognition tasks in real-world environment. Web Ontology Language (OWL) was used for the
representation of object ontology in which semantic contexts were generated using axiomatic rules.
Another study [47] represented a cognitive vision approach for recognizing the categories of complex
objects. This approach was proposed for the semantic interpretation of individual objects. The visual
concept of ontology was composed of spatial, color, and texture data. These concepts were used as
an intermediate layer, while the link between symbols and sensory information was established using
machine learning techniques. Allani et al. [48] introduced a semantic information retrieval approach
to build a modular ontology and graph-based model for visual features. A seminal study in this area
was the Adaptive Bayesian Recognition framework introduced by Lee et al. [49], which endowed the
robot with semantic understanding of 3D objects in home environment. A novel FER-CNN model was
incorporated with this framework to extract and reconstruct 3D features by semantically linking to
the ontology.

2.3.2. Place Recognition

Visual place recognition (VPR) plays a vital role in achieving long term autonomy for mobile
robotic applications [1]. Several studies have shown that features extracted by CNN models
outperform traditional vision-based approaches such as SIFT. This success of deep learning-based
CNN models has motivated the researchers to use CNN based approaches for the VPR task.
Generally, VPR methods are divided into image acquisition, feature extraction, and image search [50].

Appl. Sci. 2020, 10, 3219 6 of 30

In a study, Schönberger et al. [51] proposed an approach based on 3D geometric and semantic
understanding of real-world environment by training the generative model on the semantic scene to
improve the descriptor learning for missing observations. Garg et al. [52] developed a set of semantics
and appearance-based methods for efficient VPR in a challenging scenario by extracting convolutional
features from a dense semantic segmentation network using the proposed Local Semantic Tensor (LoST)
descriptor of images. Chen et al. [53] generated condition and viewpoint-invariant features by training
two CNN models to recognize specific places with a multi-scale feature encoding method. Ref. [54],
used CNN to perform the task of recognizing revisited locations under different environmental
variations and mapping visual information to low dimensional space with Euclidean distance that
corresponds to place dissimilarity.

2.3.3. Localization

The robotic research community is making steady progress in determining the autonomous
robot localization concerning the environment using recognition techniques. Mitsuhashi et al. [55]
proposed a system for mobile robot localization with an appearance-based place recognition approach
in conjunction with the dead reckoning and gyrodometry model. Ref. [56], presented a vision-based
localization approach in the outdoor environment against a known map by combining
a place-dependent feature detector with prior experience of place. Instead of representing edges
and corners, these features represented mid-level patches of different elements like windows. Ref. [57],
presented the Visual Landmark Sequence-based Indoor Localization (VLSIL) approach and addressed
environmental variations using semantic information of steady indoor objects (landmarks) while
performed the localization using objects’ occurrence order in the video. Zhong et al. [58] proposed
a mobile robot’s self-localization method using recognition of artificial visual landmarks which were
identified using a bilayer recognition algorithm. The geometric relation was established between image
and environmental frames to get the orientation and position of the camera for robot localization.

2.4. Planning

Planning is one of the main study areas in the robotics field, especially after robots started
performing central roles in modern industry and our daily life [59,60]. Moreover, the Defense Advanced
Research Projects Agency (DARPA) challenge [61] provided real-world conditions and pushed the
boundaries of the Self-Driving Vehicle (SDV) researches. It also showed that sophisticated planning
solutions were paramount for SDVs being able to handle a broad span of driving scenarios.

Planning is referred to as a sequence of actions necessary to accomplish a goal, given an initial
state. To complete such a goal, the agent requires a description of the environment, its actions, and its
capabilities. A planner can perform different roles depending on how general they are. There are many
ways of dividing those roles, such as Global/Local planner or Mission/Behavior/Motion planner.
The Global planner, generally performed offline, generates a high-level low-resolution sequence of
actions, based on the a priori known environment, to accomplish the final goal. The local planner, on the
other hand, focuses on a low-level high-resolution sequence of actions, based on the online sensor data,
that focus on a portion of the global path [62]. In this paper, however, the Mission/Behavior/Motion
division is explored [59].

2.4.1. Mission Planning

On robots, the mission planner generally performs as a “task planner,” while on SDV, it focuses
on map-level navigation or route planning [3,63].

Task planners usually follow one of two different approaches: classical planning or
decision-theoretic planning. One of the first works to integrate classical planners into robotics was
the Stanford Research Institute Problem Solver (STRIPS) [64], first implemented on a real robot by
Nilson [65]. The planning community standardized STRIPS-based planning by introducing the PDDL,
which was later expanded to support temporal planning as well as [10]. Cashmore et al. introduced

Appl. Sci. 2020, 10, 3219 7 of 30

the ROSPlan framework [11] integrating PDDL 2.1 with the Robot Operating System (ROS), which is
vastly used by the robotics research community. By using a Knowledge Base, ROSPlan is able to
build the initial domain state automatically, validated the generated plan, and decide when to re-plan.
Estivill-Castro et al. [66] showed that PDDL-planners could also work on dynamic environments
when other agents follow a deterministic behavior. Researchers have been attempting to integrate
Hierarchical Task Network (HTN) with task planning using different techniques. Dvorak et al. [67]
proposed the first Flexible ANML Actor and Planner (FAPE) that combined most of the Action Notation
Modeling Language (ANML) [68] with HTN task decomposition. It also integrated acting that followed
Procedural Reasoning System (PRS) refinements, plan repair and re-planning. However, it used
non-recursive decomposition hierarchy which decreased the expressiveness of HTN planning.

Nonetheless, classical planners generally do not perform well in a dynamic and unpredictable
environment due to its linear nature, making it unable to reason about multiple outcomes.
Decision-theoretic planning, on the other hand, tries to maximize the probability of success (also
known as a maximum expected utility, MEU) for every possible action outcomes from any state
the robot reaches during the plan execution. It can solve Markov Decision Processes (MDP) and
even POMDPs, but its high computational cost makes decision-theoretic approaches prohibitive.
Most of the research done in this field was trying to overcome this issue. Boutilier et al. [69] tried to
solve an approximated optimal policy by identifying which propositions are relevant and using this
information to reduce the state-space. On a similar fashion, Dean et al. [70] used a known initial state
to model the world nondeterminism and restrict the planner to focus only on states that might be
encountered during the plan execution.

Some newer approaches tried to combine ontology and semantic knowledge into planning.
Hence, ontological knowledge eases semantic, temporal, and spatial representations of the
environment [4]. Galindo et al. [71] used semantic maps to extend the planner reasoning capabilities,
aiding high-level tasks understanding. KnowRob [72] is a knowledge processing framework that
combines episodic memory, mental simulation, and a generalized ontology to help a robot to reason,
plan, and learn. This work, however, focused only on manipulation tasks [73].

2.4.2. Behavior Planning

The behavior planner receives the next goal/task information from the mission planner combined
with the local sensorial data and uses such information to check feasibility, adjust the local level plan
based on environmental constraints, and re-plan when necessary. Earlier works used an Finite State
Machines (FSM) to make behavioral decisions [74]. Koo et al. [75] used a Strategy/Behavior/Motion
hybrid planning approach to control an Unmanned Aerial Vehicle (UAV) in which an FSM was
used to define the next action based on a given strategy and the perceived state. Shi et al. [76]
combined an FSM with fuzzy logic transition rules obtained from human experience and heuristics.
FSMs are, however, limited by the manually designed states, which may lead to livelocks or deadlocks
whenever the agent encounters a situation that was not explicitly encoded into the FSM structure [3].
More sophisticated planning architectures tried to overcome those issues. Wei et al. [77] used a
Prediction and Cost-Based algorithm to generate action candidates, predict the environment state,
and evaluate the best action based on several cost values.

2.4.3. Motion Planning

Motion planners receive a goal point coupled with sensor data and try to find a valid motion
sequence to reach the goal without violating any constraint, such as not hitting any obstacle along the
way. Usually, motion planners are compared based on their computational efficiency (the process run
time and its scalability with the environment growth) and completeness (its ability to find the optimal
solution in a finite time) [3]. The most notable motion planning methods are the Cell Decomposition
Methods (CDMs), the Potential Field Methods (PFMs), and the Sampling-Based Methods (SBMs).

Appl. Sci. 2020, 10, 3219 8 of 30

In cell decomposition methods, the environment’s free space is divided into small cells, and the
output is a sequence of adjacent cells that leads the initial position to the goal while avoiding obstacles.
Arney [78] used approximate cell decomposition, which does not set a fixed cell shape and size,
to navigate efficiently. Lingelbach [79] combined CDM with probabilistic sampling to improve its
scalability. Cell decomposition approaches, however, suffer from limited granularity, combinatorial
explosion, and often generating infeasible solutions [80]. In potential field methods, an attractive
potential is attached to goals while a repulsive one is attached to obstacles, and the robot follows
the gradient direction generated by the combination of those fields. Both Pradhan et al. [81] and
Kang et al. [82] showed that such approach is suitable for multi-robot navigation. Potential fields,
however, suffer from often converging to local minima, trapping the robot midway [80].

Sampling-based algorithms have attracted considerable attention due to their ability to scale
well while also being probabilistic complete, namely if the number of samples converges to infinity,
the probability of finding the optimal solution converges to 1. The most notable SBMs are Probabilistic
Roadmaps (PRM) and Rapidly-exploring Random Trees (RRT) [83]. Despite both being based on
connecting points sampled randomly, the way both algorithms connect those points largely differ.
PRM [84] maintains multiple graph expansions simultaneously, and have been shown to perform well
on high dimensional spaces, while RRT [85] rapidly explores a single graph, making it more suitable
for local planning on small sized maps. Karaman et al. [86] showed that under mild conditions,
original PRM and RRT algorithms, most of the time, returned non-optimal values. The author then
introduced asymptotically optimal versions of both methods, namely PRM* and RRT*. This advantage,
however, is overshadowed by their relatively slow convergence, which hinders their usage in real-time
scenarios. They also provided no theoretical guarantees for obtaining an optimal solution [87].

2.4.4. Deep Reinforcement Learning

Reinforcement Learning (RL) algorithms try to map a set of sensory inputs to actions by
formulating this task as a POMDP. Deep RL uses Deep Neural Networks (DNN) to approximate
such mapping. Mnih et al. [88] created a Deep Q-Network (DQN), namely a DNN, to estimate
Q-values for a value-based RL approach. Shah et al. [89] combined a DQN with several other deep
structures to map a natural language command, a segmented semantic image, and a depth image
to a motion command, aiming end-to-end map-less navigation. DQN, however, is only suitable for
discrete action spaces, thus making it less practical for navigation tasks. Lillicrap et al. [90] proposed
an actor-critic RL approach called Deep Deterministic Policy Gradients (DDPG), which used separated
neural networks for action generation and Q-value approximation. This hierarchical structure was
able to output continuous actions. Tai et al. [91] expanded this usability by creating the asynchronous
DDPG (ADDPG), which used several threads to collect experience and a centralized gradient learner.
This method was used to perform mapless navigation, and it was shown that it has a faster convergence
than the original DDPG.

Our work utilizes a similar approach to Faust et al. [92], who combined a PRM algorithm with
an RL policy to address the shortcomings of each method.

3. TOSM-Based Autonomous Navigation Framework

This section introduces a novel autonomous navigation framework that endows robots with
the capacity to perform complex missions using high-level and human-like knowledge. The
framework illustrated in Figure 1 is composed of semantic modeling framework (SMF, Section 3.1),
semantic information processing (SIP, Section 3.2) module, and semantic autonomous navigation
(SAN, Section 3.3) module.

Appl. Sci. 2020, 10, 3219 9 of 30

Figure 1. The proposed framework consists of semantic modeling framework (SMF) (blue blocks),
semantic information processing (SIP) module (orange blocks), and semantic autonomous navigation
(SAN) module (green blocks).

3.1. Semantic Modeling Framework

For robots to perform complicated missions, they must have the ability to comprehend the essence
of each mission and their working environment. However, recognition methods based on traditional
modeling techniques that utilize low-level geometric and semantic information are not suitable
for performing complex missions. In other words, robots need a novel high-level environmental
model that combines advanced knowledge information to apprehend environments. In this section,
we propose the SMF based on the TOSM that imitates the human ability to express and understand
the environment.

3.1.1. TOSM-Based Environment Modeling

To begin with, we divide the elements that make up the environment into an object,
place, and robot. Each environmental element is represented by the explicit, implicit, and symbolic
models based on the TOSM, as shown in Figure 2, to include high-level environmental information.
The explicit model refers to information that can be obtained directly by processing sensor modalities.
It encompasses metric information (pose, velocity, size), geometrical features (shape, boundary),
and image information (image features, colors) that can be measured using logical sensors based on
sensor models. In contrast, the implicit model consists of induced information based on knowledge
models and databases. The relations between environmental elements (e.g., The blue chair is inside
of the meeting room.) and facts (e.g., a car is movable.) such as human semantic memory defined in
the field of cognitive science [93] can be considered implicit model components. Finally, the symbolic
model symbolizes environmental elements so that robots and humans can interact efficiently.

Figure 2. Triplet ontological semantic model.

Appl. Sci. 2020, 10, 3219 10 of 30

Each model of TOSM is described based on classes, object properties, and datatype properties,
which are terminologies defined in the OWL reference [94]. In the following tables, we explain the
environment modeling based on TOSM using the OWL terminologies.

We use classes to group resources with similar characteristics for providing an abstraction
mechanism. Table 1 lists the example of hierarchical classes for environmental elements. Object, Place,
and Robot are defined as subclasses of the EnvironmentalElement, and each class is defined as
superclass of the classes expressed in its right column (e.g., Door is a superclass of AutomaticDoor).
Subclasses inherit the characteristics of superclasses, and the relation between two classes can
be defined as “is-a.” For example, AutomaticDoor inherits all the characteristics of Door, Object,
and EnvironmentalElement; the relationship between AutomaticDoor and Door can be described as
“An AutomaticDoor is a Door.” The classes are used to determine domains and ranges of object
properties and datatype properties. Therefore, subclasses can define more specific properties rather
than superclasses, such as AutomaticDoor describes Door in more detail. In the case of subclasses for
Robot, we use the robot description ontology model as defined in [95].

Table 1. Classes.

Environmental
Element

Object

Door
AutomaticDoor

HingedDoor
ElevatorDoor

Sign GuideSign
SafetySign

Device VendingMachine
WaterPurifier

Furniture Table
Chair

Person
Occupant
Pedestrian

Driver

Place

IndoorPlace

Corridor
Doorway

Room
Elevator
Staircase

Floor
Cafe

OutdoorPlace
Building

Road
Sidewalk

Robot

Object properties are used to represent relations between environmental elements corresponding
to the implicit model; in the OWL, object properties provide relations between individuals that
are members of the classes. The object properties can be defined using object property hierarchy,
descriptions, and characteristics. The object property hierarchy in Table 2 expresses the nodes
corresponding to the object properties in a tree-like structure; the right child node is a subproperty of
the left parent node. We use SubPropertyOf, domains, and ranges among the various descriptions of
object properties. SubPropertyOf is used to represent the subproperty relations between nodes in the
object property hierarchy (e.g., isFrontOf SubPropertyOf spatialRelation). The object properties can set
domains and ranges of each property using the classes. The individual using the property is inferred
as an instance of the domain and range class. For example, if “CIR752 isLookingAt Table34” and Robot
and Object are domain and range of isLookingAt respectively, CIR752 is inferred as Robot and Table34
as Object. We use symmetric and transitive characteristics of the object properties. “The property is
symmetric” means that it is reasonable to exchange the domain and range of the property. For example,
“B isNextTo A” can be inferred from “A isNextTo B”, because isNextTo is symmetric. In case of isInsideOf,

Appl. Sci. 2020, 10, 3219 11 of 30

the property is transitive because we can realize “A isInsideOf C” using “A isInsideOf B” and “B
isInsideOf C”.

Table 2. Object properties.

Object Property Hierarchy Domains Ranges Characteristics

spatialRelation

isInFrontOf Object Object
isNextTo Object Object symmetric

isAboveOf Object Object
isBehindOf Object Object

isOn Object Object
isInsideOf Object or Place Place transitive

isConnectedTo Place Place symmetric

robotRelation isLookingAt Robot Object or Place
isLocatedAt Robot Place

We divide relations between objects, places, and robots into spatialRelation and robotRelation.
SpatialRelation means the spatial relations between objects and places that constitute an environment.
In particular, the properties, where Object specifies both domains and ranges, express relative position
relations between objects within places. The properties can be used by robots to infer the relations
between objects. Robots can also use a database which consists of isInsideOf and isConnectedTo to
understand the environment similarly the way a human does. We explain the spatialRelation in detail
with an example in Section 3.1.2. robotRelation is used to define the properties that are determined by
the robot’s current state. When the robot is in operation, it uses isLookingAt and isLocatedAt properties
to comprehend the current state in real-time by associating it with objects and space stored in the
database. We explain the robotRelation exactly in Section 3.2

We use datatype properties to define the TOSM of environmental elements; in the OWL,
data properties are relations between instances of classes and RDF literals or XML Schema datatypes.
The datatype property hierarchy, similar to object property hierarchy, represents the subproperty
relations between datatype properties. Additionally, classes determine domains of the datatype
properties, and datatypes determine ranges.

Table 3 lists definitions of the symbolic, explicit, and implicit model for Object. The symbolic model
consists of name and ID to symbolize individuals of Object. For the sake of clarity, we describe ranges of
pose, velocity, size, and color in the explicit model as above. The ranges of these properties are defined as
an array of the datatype (e.g., float array) in the database. isKeyObject in the implicit model is utilized
to represent crucial objects used for localization and place recognition. Furthermore, the properties,
whose domains are the subclasses of Object, are used to define a more specific model of each subclass.
In the case of Door, isOpen means whether it is open or not, and canBeOpen means whether it can be
opened if it is closed. Robots can use this information when planning and performing tasks.

Table 3. Datatype properties for Object.

Datatype Property Hierarchy Domains Ranges

symbolicModel name Object string
ID Object int

explicitModel

pose Object (x, y, z, quaternion)
coordinateFrame Object string

velocity Object (µ, v, w, p, q, r)
size Object (l, w, h)

color Object (r, g, b)

implicitModel

isKeyObject Object boolean
isMovable Object boolean

isOpen Door boolean
canBeOpen Door boolean

Appl. Sci. 2020, 10, 3219 12 of 30

The definitions of the TOSM for Place and Robot using datatype properties are shown in
Tables 4 and 5 respectively. The definitions of the symbolic models are the same with Object. We
select boundary composed of polygons for the explicit model of Place. In the implicit model, complexity
informs the state of Place. capability and purpose in the implicit model of Robot are the main components
when making an on-demand database.

Table 4. Datatype properties for Place.

Datatype Property Hierarchy Domains Ranges

symbolicModel name Place string
ID Place int

explicitModel boundary Place polygon
coordinateFrame Place string

implicitModel

complexity Place float
level Floor int

purpose Room string
roomNumber Room int

Table 5. Datatype properties for Robot.

Datatype Property Hierarchy Domains Ranges

symbolicModel name Robot string
ID Robot int

explicitModel

pose Robot (x, y, z, quaternion)
coordinateFrame Robot string

velocity Robot (µ, v, w, p, q, r)
size Robot (l, w, h)

implicitModel capability Robot string
purpose Robot string

3.1.2. On-Demand Database

Figure 3 visualizes a TOSM-based environment database of a simple environment containing
a multi-floor building. The database includes individuals of defined classes, data properties
of the individuals, and object properties between individuals. In the figure, gray squares are
individuals from subclasses of Place, and blue capsule-shapes are individuals from subclasses of
Object. Unidirectional black arrows mean isInsideOf property between individuals; two-way red
and blue arrows mean isConnectedTo and isNextTo properties, respectively, that have the symmetric
characteristic. The table shown on the left side of the figure describes datatype properties for an
individual of automaticDoor.

We generate an on-demand database based on the environment database considering the robot’s
hardware-dependent functionalities when it is assigned a mission. For example, assuming a robot that
cannot drive on stairs is given a mission from room1 to sidewalk1, a database for building2 connected
to sidewalk1 and staircase1 is not necessary for the robot; we can create an on-demand database by
sorting out the database that the robot needs. Based on the on-demand database, the robot can
realize that it is in room1 inside f loor2 inside building1 using isInsideOf properties connected to room1.
Besides, the paths to sidewalk1 from room1 can be planned, utilizing the individuals of Place connected
to room1 by isConnectedTo.

Appl. Sci. 2020, 10, 3219 13 of 30

Figure 3. A simple example of the Triplet Ontological Semantic Model (TOSM)-based
environment database.

3.2. Semantic Information Processing

Our Semantic Information Processing (SIP) module endows the robot with cognitive vision
capability, inspired by the human ability, that tends to recognize the places by the objects present
there, such as “computer lab” or “printer room,” which are common terms that are used by human to
recognize the places based on their objects. Similarly, humans identify outdoor places by distinguishing
different features or objects, such as billboards.

Motivated by these ideas, our SIP module also uses an objects-based recognition approach to
form a symbolic abstraction of the places. In the SIP module, first, the objects are recognized by
a CNN model, then the inference is performed to leverage the recognized objects with their semantic
information stored in the on-demand database. It also infers the robot’s relationship information
based on the spatial information of recognized objects in the environment. Our SIP module aims at
performing recognition and localization tasks with semantically meaningful information to effectively
guide the robot’s behaviors to reach a goal location. To achieve this, we combine our recognition model
with the on-demand database, as shown in Figure 4, and perform the inference on recognized objects
against their semantic information stored in the on-demand database.

Figure 4. Semantic information processing module.

Appl. Sci. 2020, 10, 3219 14 of 30

We have selected the third version of YOLO [42] for object recognition because it presents a good
trade-off between execution time and accuracy, compared with other object detectors. For example,
its accuracy is almost similar to RetinaNet [96]; however, it is four times faster. Moreover, it is much
better than SSD variants and Darknet-53 as its backbone network architecture makes it 1.5 times faster
than ResNet-101 [42].

First, we train state-of-the-art one-stage CNN based model, YOLOv3 [42] for object recognition
with our own data set. When a mobile robot navigates in the environment, visual data captured by
a camera is passed to the CNN model; it produces a sequence of layered activations, which generate
feature vectors that have a deeply learned representation of high-level features. We perform
pre-processing step to remove the noise before passing the visual data captured by the robot’s camera
to the CNN model. Both the raw-data and the CNN model are hosted by short-term memory (STM).
Raw-data does not have access to the on-demand database, while the CNN model, which holds the
recognition components, has access to the on-demand database. Object and Place models are initially
stored in this database. We download these semantically enriched models of recognized objects from
the on-demand database when required by the robot.

Our YOLO-based recognition model consists of two phases: the processing phase and the
retrieving phase.

The processing phase is also known as an offline or training stage in which we train the YOLOv3
model for object recognition using our dataset. The training phase involves three major steps; (i) Dataset
annotation: we label objects in each image using the YOLO-Mark tool. (ii) Convolution weights: we
use YOLOv3 weights trained on ImageNet for convolutional layers. (iii) Configuration set-up: we
prepare a model configuration file that loads 64 images in the forward pass for each iteration during the
training process. The model updates the weights when backpropagating after gradients’ calculation.
Thus, for each iteration, our model uses 64 batch size with 16 mini-batches, and four images are loaded
for each mini-batch. In our configuration file, we define filter size to 60, the maximum number of
iterations 30,000 for 15 classes. The YOLOv3 has three YOLO layers; therefore, we generate nine
anchors to recognize small, medium, and large size object at its three YOLO layers. Finally, when the
training phase is completed, we get new weights for our dataset.

The retrieval phase is known as an online or testing stage. In the testing phase, weights that were
generated during model training, are used to recognize objects in a real-world environment.

In our SIP module, after object recognition using the CNN model, inference for semantic
information is performed at run-time by integrating the recognized objects with their semantic
information that contains spatial relationships between objects, described in Table 2. Through these
spatial relationships among recognized objects, we infer the relationship information of the robot by
leveraging with the semantic objects and space stored in the on-demand database as follows:

Assume x is an object recognized in the environment by the CNN model, while X is the subclass
of EnvironmentalElement (e.g., Furniture, Door, and Corridor). Then the class of object x is defined by
a class definition function IsA(x, X), which indicates that object x is class X. As shown in Figure 4,
there are two objects in the environment: table and chair. The class definition function IsA(table, Table)
and IsA(chair, Chair) states that in both cases, the class of the table is Table and the chair is Chair.
When the class is defined, we can get the datatype properties of the object from the database based on
the robot’s pose and relative pose of the object. In other words, Chair is specified chair2 (we call this Xn)
that is an instance of Chair by the database query such as illustrated in the gray table inside Figure 4.

We also use a relationship inference function SR = rel(Xn, Xm) to define relationships between
recognized objects, other objects, and places in the database. According to the class definition function,
Xn indicates an instance of class X. SR describes a spatial relationship between Xn and Xm, such that
“Xn isNextTo/isInsideO f /isInFrontO f Xm” (e.g., “table1 isNextTo chair2”.) Similarly, we can infer
the robot’s relationship in the environment; in that case, the Xn is an instance of Robot.

So, when the robot navigates in a real-world environment, and it finds two objects, table and chair,
shown in Figure 4, the robot recognizes these two objects using the CNN model and infers these objects

Appl. Sci. 2020, 10, 3219 15 of 30

with their semantic information that is saved in the database. As a result, we get spatial relationships
such as “table1 isNextTo chair2”, “table1 isInsideO f corridor2”, “robot isLookingAt chair2”, and “robot
isLocatedAt corridor2”.

We can also see that the recognition model and the TOSM-based on-demand database share
human-like memory architecture when working together for visual semantic recognition. The SIP
module is processed in working memory (Short Term Memory, STM), while prior semantic knowledge
stored in the on-demand database is hosted by Long-Term Memory (LTM), as shown in Figure 5.
When the mobile robot navigates in a real-world environment, it sends the sensory data to SIP,
which passes the pre-processed data to the recognition model that is stored in working memory and
gets the periodic visual updates as robot navigates.

Figure 5. Human-like memory architecture.

3.3. Semantic Autonomous Navigation

The Semantic Autonomous Navigation (SAN) module allows the robot to perform complex
missions through a hybrid hierarchical planning scheme. The knowledge base, combined with
a behavior database, enables autonomous navigation in a variety of environments while taking the
robot capabilities into account. Throughout this section, we use a single mission example for a clearer
understanding. Consider a multi-story building represented by the database displayed in Figure 3,
where elevators and staircases connect each floor; a robot located on the 2nd floor inside the building;
a mission given by a human that says it should retrieve a package at the sidewalk outside of the main
entrance located on the first floor. The following sections demonstrate, through this mission, how the
SAN module can enable robots to perform high-level multi-story navigation.

3.3.1. Task Planner

After receiving a mission, such as robotAt place1 (navigation) and inspected place2 (inspection),
the SMF creates the robot’s on-demand database based on the mission and its capabilities. For example,
different robots have different capabilities: some can go up and downstairs, while others can operate
an elevator autonomously, as shown in Figure 6. Considering a robot that can operate the elevator,
the on-demand database does not need to contain the staircases’ information.

The task (i.e., mission) planner access only to the on-demand database speeding up the queries
during the plan execution. The environmental implicit information, namely isConnectedTo property
together with the robot’s location, is used to populate the ROSPLAN [11] knowledge base. The
robot’s implicit information is also used to provide the domain PDDL file. Thereupon, ROSPLAN
is used to generate a valid behavior sequence. To generate a behavior sequence, PDDL planners
require two files: domain and problem. The domain file describes the environment predicates and
robot actions. As different robots can perform a distinct set of actions, a comprehensive set of
domain actions, all sharing common predicates between them, is stored into the behavior database.
Given the robot’s implicit TOSM data, a matching domain file is generated and fed to ROSPLAN by
the behavior database; the problem file is generated automatically by ROSPLAN knowledge base.
It needs, however, the environment state information to do so. ROSPLAN state update services are

Appl. Sci. 2020, 10, 3219 16 of 30

used to feed the map data into the knowledge base. After that, the behavior sequence is generated
through the Partial Order Planning Forwards (POPF) planner [97]. Despite the current state of the
behavior database not including temporal-actions, we have plans to also support them in the future.
Therefore, we opted to use the POPF planner due to its ability to deal with both simple and durative
actions. ROSPLAN also sends the current behavior to the Behavior Planner through the medium of
the Plan Dispatcher node.

(a) CIR Robot (b) 02 Robot

Figure 6. The CIR robot is equipped with a continuous track and extension arms, enabling going up
and downstairs. The 02 robot is equipped with sensors and manipulators that allow elevator operation.

In our example, the 02 robot shown in Figure 6b receives the multi-floor navigation mission.
The robot then receives the on-demand database generated by the SMF based on the robot’s implicit
information (i.e., its capabilities). This on-demand database contains the building floors and the
elevators, but no stairs, as the robot cannot transverse through them. Moreover, a domain file
containing all the possible robot actions is sent to the ROSPLAN knowledge base. An example action,
which sends a robot to a waypoint on the same floor, is shown on Listing 1. The predicates are general
and shared between all actions stored on the database, thus making possible generating the domain
file simply by querying which actions can be performed by the robot. Subsequently, the environment
TOSM data is used to populate the ROSPLAN knowledge base environment state, adding connected
waypoints, elevator, robot, and goal predicates. After running the POPF planner, the behavior sequence
shown on Listing 2 is generated and sent by the dispatcher node to the Behavior Planner module.

Listing 1. Move to waypoint action.

(: act ion goto_waypoint
: parameters (? v − robot ? from ? to − waypoint ? f l − f l o o r)
: precondition (and
(o u t s i d e _ e l e v a t o r ?v)
(robot_a t ?v ? from)
(waypoint_at_f loor ? from ? f l)
(waypoint_at_f loor ? to ? f l)
(hallway_waypoint ? from)
(hallway_waypoint ? to)
(connected_to ? from ? to)
)
: e f f e c t (and
(robot_a t ?v ? to)
(not (robot_a t ?v ? from))
)
)

Appl. Sci. 2020, 10, 3219 17 of 30

Listing 2. A behavior sequence generated by ROSPLAN.

(goto_waypoint 02 robot wp0 wp1 f l 2)
(goto_waypoint 02 robot wp1 wp4 f l 2)
(goto_waypoint 02 robot wp4 wp5 f l 2)
(e n t e r _ e l e v a t o r 02 robot wp5 wp18 e l e v a t o r 2 f l 2 f l 1)
(e x i t _ e l e v a t o r 02 robot wp18 e l e v a t o r 2 f l 1)
(goto_waypoint 02 robot wp18 wp21 f l 1)
(goto_waypoint 02 robot wp21 wp22 f l 1)

3.3.2. Behavior Planner

The behavior planner can be divided into two modules: the waypoint generator and the behavior
handler. After receiving the next goal from the task planner, one of those two modules takes care of
breaking down this behavior into atomic actions. The waypoint generator handles motion behaviors.
While complex specific activities, such as entering and exiting an elevator or going up or downstairs,
are processed by the behavior handler.

The waypoint generator receives a goal point from the task planner, the current position from
the localization module, and a local metric map obtained from the on-demand database and stored
into the STM. It then uses the PRM algorithm proposed by [84], after being adapted for mobile robot
navigation, to generate a feasible sequence of waypoints. We start by generating random samples
Ni on the metric map free space C f ree. The PRM algorithm’s goal is to generate a valid path between
the current position Np and the goal Ng by creating edges connecting two sample nodes Ek(Ni,Nj).
Initially, it generates n random samples on the 2D metric map, eliminating any sample outside of C f ree
and re-generating new random samples until n valid samples are successfully generated, whereas in
our approach, PRM works as a low-resolution path-planner, n can be of a smaller magnitude when
compared to the overall map size, speeding up the query step. Thereon, it iterates through every
sample generating valid paths connecting to the k-nearest neighbors. A path is considered valid if
the two points can be connected by a straight line which is completely inside C f ree and is smaller than
a maximum connection distance threshold. This graph generation depends only on the metric map
and can be pre-generated by the robot when idle or while executing actions that do not require a large
amount of processing power. Finally, to generate a waypoint sequence, Np and Ng are added to the
graph and the Dijkstra’s algorithm [98] is used to query the shortest path.

The behavior handler receives a specific desired behavior from the task planner and then queries
the behavior database for instructions on how to execute such activity. The behavior database (BDB)
can be seen as the human implicit memory [93], which saves cognitive skills learned throughout one’s
life. The BDB stores finite state machines (FSM) able to coordinate single behaviors, such as the one
shown in Figure 7. Each state (i.e., action) has a standardized ID and a possible events list that is used
to check the transition to the next state. After obtaining the FSM description, the behavior handler
sends the initial action ID to the action planner and waits for the returned events. Thereon, it uses the
event list to choose the next state and sends it back to the action planner. This sequence is repeated
until one of the two final states is reach: success or failure.

Both the waypoint generator and the behavior handler emit a success signal to the task planner
when the behavior is completed, allowing the planner dispatcher to send the next one. In case of failure,
a homonymous signal is sent back instead, and the PDDL planner is able to perform re-planning
starting from the current state.

Appl. Sci. 2020, 10, 3219 18 of 30

Figure 7. A Finite State Machine diagram showing a simplified version of the Enter Elevator behavior
stored on the Behavior Database.

3.3.3. Action Planner

The action planner can receive two different kinds of actions: a waypoint from the waypoint
generator or a specific action ID from the behavior handler.

When receiving an action ID, the action planner looks for the implementation of such action
inside the robot’s LTM. Each robot should have its implementation of the needed actions, as their
execution is dependent on the robot sensors and actuators. In that case, the planner is unable to find
the requested action, it returns a failure event to the behavior planner. On the other hand, if the action
implementation is found, the robot executes it and returns the events related to the conclusion of
such action.

If the requested action is related to following a waypoint instead, a different structure is
used to handle it. A mentally simulated world was generated and used to train an autonomous
navigation policy using reinforcement learning algorithms. This process is further explained on
Sections 3.3.4 and 3.3.5. The action planner uses the policy returned by the mental simulation in order
to navigate towards a waypoint while also avoiding close obstacles. After getting close enough to
the goal point, the action handler returns the success event to the behavior planner and waits for the
next instruction.

3.3.4. Mental Simulation

Mental simulation is one of the integral cognitive skills, which has been long studied by cognitive
science and neuropsychology research [99]. Nonetheless, just a few works tried to implement such
concepts into robotic platforms [72]. Some usages of the mental simulation are re-enacting memories,
reasoning about different possible outcomes, and learning by imagination. In this work, the mental
simulation module is used to perform reinforcement learning aiming for autonomous navigation.
The simulation building algorithm was originally proposed on [100].

One of the main issues of performing mental simulation on robots is the need of domain experts
to model the simulated world based on the robot working environment. Modeling the environment
is not feasible when robots navigate through large-scale dynamic environments. To overcome such
limitation, we built a middle-ware capable of generating a simulated world, including the robot
itself, using only the information stored on the on-demand database. By doing so, whenever the
robot updates its internal knowledge about the environment, the simulation is also updated in the
same manner. Whenever the simulated environment is needed, the middle-ware queries the needed
data from the on-demand database and generates Universal Robot Description Format (URDF) and
Simulation Description Format (SDF) files, which are used to create the virtual world on the Gazebo
Simulator. Figure 8 shows an example output of the simulation building algorithm. It uses the data
stored on the on-demand database to generate the simulation environment. To ensure this simulation
is robust while also maintaining its consistency with the real world, we use a library containing 3D

Appl. Sci. 2020, 10, 3219 19 of 30

meshes for common objects such as doors, chairs, and tables. If the robot encounters a real-world
object in which there is no 3D model available, a placeholder is automatically generated using the
perceived shape and color of the object. Such point can be seen on Figure 8, where the simulated door
uses a 3D mesh, while the vending-machine and the beverage storage are represented by automatically
generated shapes.

Figure 8. Example environment generated by the mental simulation building algorithm.

3.3.5. Reinforcement Learning

The main usage of the mental simulation is to generate experience tuples (S ,A,R,S ′,D), where S
is the current state, A is the chosen action, R is the reward and S ′ the next state after performing
A, and D represents whether or not the episode has ended. Those simulated episodic memories are
generated whenever the robot is idle, such as when charging. Those memories are then sampled
in batches to train a policy using the DDPG algorithm [90]. The RL structure is shown on Figure 9.
Three consecutive sparse laser scans and relative distances to the goal are concatenated as the algorithm
input. This input goes through an actor-network which outputs two different values. A sigmoid
function is used to encode the robot forward speed between 0 and 1, while a tanh function encodes the
angular speed between –1 and 1. Those outputs are concatenated with the input and served to the
critic-network, which outputs the Q-value (i.e., the expected future reward) for the action chosen on
this given state. Finally, the environment rewards are defined as

rcompletion − t ∗ rtime, when arriving to the goal at time t,

rcloser, if getting closer to the goal,

−rcollision, if too close to an obstacle,

where rcompletion, rtime, rcloser and rcollision are positive integers defined trivially.
As the training step only needs to sample the experience tuples, it can be performed either

on-board or by using a central cloud service, provided that such structure is accessible by the robot.

Appl. Sci. 2020, 10, 3219 20 of 30

Figure 9. The Deep Deterministic Policy Gradients (DDPG) structure used to approximate
an autonomous navigation policy.

4. Experiments

In this section, we present our experiments using the TOSM-based autonomous navigation
framework. The objective of the experiments is to demonstrate the framework’s validity and introduce
a possible use case.

4.1. Experimental Environments

We conducted experiments in the convention center environment expressed in Figure 10 to
apply the proposed framework. The specified working environment was a size of 5000 m2 with
dynamic pedestrians. In Figure 10a, a red circle represents the robot’s home position, and a translucent
red polygon represents the area where the robot performed the mission. Additionally, Figure 10b,c
respectively represent the home position and the working area expressed in Figure 10a. The robot
used Stereolabs’ ZED camera and Velodyne’s VLP16 to recognize the environment. The SIP and SAN
modules of the framework were operated in a ROS Kinetic with Ubuntu 16.04 environment on Intel
Zotac NUC En1070 with i5-6400T@2.2 GHz.

(a) Floor plan. (b) Home position. (c) Working area.

Figure 10. Experimental environment.

The environmental database, illustrated in Figure 11, for the first floor in the convention center
consisted of 23 instances from three subclasses of Object and 16 instances from nine subclasses of Place.
Although there were many objects on the first floor, we selected only static objects that can be worked as
dominant features for recognizing environments; We defined this property as isKeyObject in the implicit

Appl. Sci. 2020, 10, 3219 21 of 30

model for objects. In the case of objects which were not key objects (e.g., pedestrian), we considered
the objects only in the short term memory for the efficiency of memory consuming. By doing so,
the database consumed memory less than 0.1 MB in size, although it covered the large environments.

Figure 11. The TOSM-based database for experiments.

4.2. Experimental Sequences

Figure 12 illustrates how the robot performed its mission. First, the robot, located at the corridor1,
received a mission from an administrator to inspect kdjHall1 on the first floor of the convention center
and come back base1. Then the SMF, shown in a blue box, generated an on-demand database that
containd only the database needed in the first-floor database, considering the robot’s characteristics
and missions. In addition to those defined in Table 1, classes expressed in the database were used
by adding object and space classes, such as Column and InformationCenter, in consideration of the
convention center environment. The SMF also built and saved an occupancy map for estimating the
robot’s pose and generating waypoints.

Figure 12. The TOSM-based autonomous navigation framework sequence diagram.

Second, the SAN module set goals as “inspected kdjHall1” and “robot_at cir752 base1” to divide
the mission into six modular behaviors using the ROSPlan, which moved the robot to the working area,
realized the inspection, and returned to the robot base; each behavior was described on Listings 1 and 3.

Appl. Sci. 2020, 10, 3219 22 of 30

Each waypoint following behavior can be expanded, as shown in Figure 12, where the PRM algorithm
used randomly sampled points to generate a 2D graph. This graph was traversed to generate the
shortest path to the goal. Afterward, each desired point in the graph was sent sequentially to the
Action planner, which then used the trained policy to navigate safely.

Listing 3. Inspect action.

(: act ion i n s p e c t
: parameters (? v − robot ?wp − waypoint ? f l − f l o o r)
: precondition (and
(robot_a t ?v ?wp)
(waypoint_at_f loor ?wp ? f l)
)
: e f f e c t (inspected ?wp)
)

Figure 12 describes the moment of executing second behavior “goto_waypoint cir752 c2 kdjHall1
f l1”, which meant cir752 should go to kdjHall1 from c2 inside f loor1. When the robot started
executing the behavior, it got sensory inputs to recognize the environment. The SIP module recognized
objects and places using sensory inputs based on the CNN model with semantic knowledge in
the on-demand database. In this case, it could infer “cir752 isLookingAt column12, column16, and
in f ormationCenter1”, “cir752 isLocatedAt corridor2 that isInsideO f f loor1”, and “column12 isNextTo
column16”. In addition, it got datatype properties of each instance. Finally, if the robot executed the
final behavior successfully, which was goto_waypoint base1, it accomplished the mission.

4.3. Experimental Results

In this section, we evaluate the performances of the PRM-based behavior planner and the action
planner to demonstrate the validation of our framework.

4.3.1. Behavior Planner

One of the key hyper-parameters of the PRM algorithm is the number of nodes n. We
conducted experiments aiming to show the influence of this value on the algorithm performance.
Initially, four differently sized places were selected, as shown in Table 6. Using each of the places’ grid
map, we calculated the map total area by multiplying the map’s height by the map’s width in meters.
To calculate the free space ratio value, we divided the amount of pixels representing a free space on the
map image by the total amount of pixels. Finally, we multiplied the free space ratio by the total map
area to generate the free space area.

Table 6. Map information.

Place Name Place Total Mapped Area (m2) Free Space Ratio Free Space Area (m2)

floor1 39,759.4 0.123 4890.41
corridor1 13,632.0 0.258 3517.06
corridor2 4672.0 0.391 1826.75
corridor3 3124.0 0.271 846.60

We chose a set of the number of samples {50, 100, 200, 300, 400, 500} heuristically, and ran our
PRM algorithm 50 times for each n value on each map. The most important performance information
for our application was the time taken to build the PRM graph, the time taken to find the optimal
path, the length of the final path, and whether or not the algorithm was able to find a path between
Np and Ng. The average values for each of those measurements are shown in Figure 13. While the
time taken to build the PRM graph grew quadratically with the number of samples, the time taken to

Appl. Sci. 2020, 10, 3219 23 of 30

find the optimal path only grew linearly. As our approach generated the graph only when receiving a
new map, the effect of building the PRM graph can be mitigated. Smaller places showed higher times
for both, graph building and path finding, when using the same amount of samples as larger places,
because it became progressively harder for the algorithm to find free spaces when the map was nearly
filled with samples. In addition, graphs with a high density of nodes per square meter tended to have
a higher variety of possible paths, which could slow down the path search.

Additionally, we were able to show that the number of samples barely influenced the final path
length. However, it had a considerable influence on the ability to find a valid path. When the amount
of nodes was too small while comparing to the map size, some nodes could not find valid neighbors,
which led to disconnected graphs. This situation is not desirable when performing a mission, as it
would require the robot to re-generate the PRM graph whenever encountering such an issue. This can
lead to unexpected delays and even dead-locks.

(a) Graph build time (ms) (b) Path search time (ms)

(c) Path length (m) (d) Success rate

Figure 13. Influence of the number of samples (x-axis) on the PRM algorithm.

Aiming to select an optimal number of nodes based on the free space information, we performed
a linear regression while trying to minimize n with two constraints: the path search time should take
no more than 15 ms; the success rate should be above 90%. We obtained the following coefficients:

NumberO f Samples = ceil(0.057 ∗ FreeSpaceArea + 30), (1)

where ceil represents the rounding up operation. By using Equation (1), the number of samples needed
by each one of the aforementioned maps is displayed in Table 7. We ran the algorithm 50 more
times, this time using the optimal n values. It has been shown that by using the proposed formula,
both constraints were satisfied.

Appl. Sci. 2020, 10, 3219 24 of 30

Table 7. Optimized the number of samples.

Place Number Graph Build Path Search Path Success
Name of Samples Time (ms) Time (ms) Length (m) Rate

floor1 309 2489.4 11.24 152.63 92%
corridor1 231 1757.75 8.77 114.36 92%
corridor2 135 1128.89 7.09 39.42 100%
corridor3 79 375.62 4.39 50.92 92%

4.3.2. Action Planner

The policy training described in Section 3.3.5 was performed using the simulation shown in
Figure 8 generated by the mental simulation building algorithm. We used an experience database
with a maximum size of 1 million tuples and learned on batches of 512. The learning rate used
was 10−6, and the critic network decay value was 0.95. Finally, the rewards were chosen as follows:
rcompletion = 1000, rtime = 1, rcollision = 500, and rcloser were rewarded sparsely when the robot travelled
25%, 50% and 75% of the path, giving a reward proportional to rcompletion. We trained the robot for
30,000 episodes (approximately 1.3 million steps). The first 5000 episodes used a purely random policy
in order to generate a large variety of experiences. The rewards obtained on each episode can be seen in
Figure 14. It can be seen that until episode 15,000, the robot was stagnated, then learned a better policy
and started exploiting these actions, which lead to higher rewards. After 22,000 steps, the leaning
plateaued again.

Figure 14. Reward obtained by the robot on each training episode. The line in green represents
a moving average using a 100 episodes window. The line in red shows the cumulative average until
the current episode.

To demonstrate the advantage of our hybrid approach when compared to pure reinforcement
learning navigation methods, we performed the experiment shown in Figure 15. The robot started
on the red arrow, and its goal was to navigate until the red circle by avoiding collision with any
obstacle within 10 min. The simulated environment was generated by the mental simulation building
algorithm. It was based on a narrow corridor sequence inside a university building. The total path
size was 65.6 m. We performed two different experiments ten times each. The first one was using only
the policy learned to navigate the robot directly to the goal. The second one used the PRM algorithm
to generate a waypoint sequence as the one displayed in Figure 15b, which would be used as goals
for the navigation policy. The results of this experiment are summarized in Table 8. It can be seen
that the hybrid approach arrived at the goal 40% faster than the navigation done purely by using
the learned policy. When the goal was too far away, the robot kept turning itself to the goal point,

Appl. Sci. 2020, 10, 3219 25 of 30

going in the direction of a wall, then turning back to avoid a collision. This behavior slowed down the
navigation and was less predictable than the path followed by the PRM-RL approach. Both methods
had two failures. The RL method timed out after going back and forth in the first corridor. This failure
happened depending on how close the robot was to the trashcan when approaching the corner. If the
robot was too close, the laser scanner would not be able to see the second corridor’s entrance, believe it
was a dead-end, and turn back. In the case of the PRM-RL approach, the failures were caused because
the PRM algorithm created a sample too close to trashcan, which led to a collision. We believe this
could be solved by using a more robust sampling algorithm than the one currently used.

(a) Navigation Goal. (b) Generated Waypoint Sequence.

Figure 15. Autonomous navigation experiment.

Table 8. Comparison between RL and PRM-RL navigation.

Navigation Average Time Success
Method to Complete Rate

RL 8m47s 80%
PRM-RL 5m20s 80%

The experimental results show that our hybrid approach added an extra layer of robustness to
autonomous navigation based on reinforcement learning policies. It was able to perform a navigation
task 40% faster than the baseline while maintaining the success rate.

5. Conclusions

In this paper, we have introduced our cognitive science inspired navigation framework and its
three composing parts: semantic modeling framework (SMF), semantic information processing (SIP)
module, and semantic autonomous navigation (SAN) module. We also showed how we modeled
the environment employing the triplet ontological semantic model (TOSM), which allowed the three
modules mentioned above to utilize the same modeled data. The on-demand database allowed
different robots to share a common database by selectively querying the environment data based on
each robot’s intrinsic capabilities. The SIP module, performed object detection and localization using
the deep learning-based approach, while, inferred the robot’s relationship information based on the
semantic properties of recognized objects derived from the on-demand database. Moreover, the SAN
structure showed that a hybrid planning approach, which combines classical and sampling-based
planners with reinforcement learning algorithms, is able to mitigate each planner’s shortcomings
leading to a more robust planning algorithm. The performed experiment showed that our framework
can be applied to real-world scenarios, and navigation tasks on large dynamic environments can be
performed seamlessly with the aid of TOSM data.

Immediate future work is focused on expanding the framework to other environments,
more specifically outdoor environments. A modeled outdoor environment can also be used on different
platforms, such as self-driving vehicles. Moreover, a large variety of TOSM semantic information shall
be used by the SIP module when performing object recognition and localization. In addition, we are

Appl. Sci. 2020, 10, 3219 26 of 30

planning to add a large variety of possible behaviors to enable higher-level missions to be performed.
A more robust sampling algorithm can also be used to improve both the graph build time and the
success rate of navigation tasks. Finally, another line of research is using the mental simulation to
check the plan validity before its execution. For example, the feasibility of following a sequence of
points generated by the PRM algorithm can be tested on simulation. In case of failure, a new sampled
graph can be generated.

Author Contributions: Conceptualization, S.-H.J., S.M., Y.G.R., and T.-Y.K.; methodology, S.-H.J., S.M., and Y.G.R.;
software, S.-H.J., S.M., and Y.G.R.; validation, S.-H.J.; formal analysis, S.-H.J.; investigation, S.-H.B. and K.-H.L.;
data curation, S.-H.B. and K.-H.L.; writing—original draft preparation, S.-H.J., S.M., and Y.G.R.; writing—review
and editing, S.-H.J., S.M., and M.K.; visualization, S.-H.J. and S.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by Korea Evaluation Institute of Industrial Technology (KEIT) funded by
the Ministry of Trade, Industry and Energy (MOTIE) (No. 1415162366).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lowry, S.; Sünderhauf, N.; Newman, P.; Leonard, J.J.; Cox, D.; Corke, P.; Milford, M.J. Visual place
recognition: A survey. IEEE Trans. Robot. 2015, 32, 1–19. [CrossRef]

2. Alterovitz, R.; Koenig, S.; Likhachev, M. Robot planning in the real world: Research challenges and
opportunities. Ai Mag. 2016, 37, 76–84. [CrossRef]

3. Pendleton, S.D.; Andersen, H.; Du, X.; Shen, X.; Meghjani, M.; Eng, Y.H.; Rus, D.; Ang, M.H. Perception,
planning, control, and coordination for autonomous vehicles. Machines 2017, 5, 6. [CrossRef]

4. Gayathri, R.; Uma, V. Ontology based knowledge representation technique, domain modeling languages
and planners for robotic path planning: A survey. ICT Express 2018, 4, 69–74.

5. Nüchter, A.; Hertzberg, J. Towards semantic maps for mobile robots. Robot. Auton. Syst. 2008, 56, 915–926.
[CrossRef]

6. Ruiz-Sarmiento, J.R.; Galindo, C.; Gonzalez-Jimenez, J. Exploiting semantic knowledge for robot object
recognition. Knowl.-Based Syst. 2015, 86, 131–142. [CrossRef]

7. Galindo, C.; Fernández-Madrigal, J.A.; González, J.; Saffiotti, A. Using semantic information for improving
efficiency of robot task planning. In Proceedings of the ICRA Workshop: Semantic Information in Robotics,
Rome, Italy, 10 April 2007.

8. Abdi, L.; Meddeb, A. Semantic recognition: Unified framework for joint object detection and semantic
segmentation. In Proceedings of the Symposium on Applied Computing, Marrakech, Morocco,
3–7 April 2017; pp. 83–88.

9. Horikawa, T.; Kamitani, Y. Generic decoding of seen and imagined objects using hierarchical visual features.
Nat. Commun. 2017, 8, 1–15. [CrossRef]

10. Fox, M.; Long, D. PDDL2. 1: An extension to PDDL for expressing temporal planning domains. J. Artif.
Intell. Res. 2003, 20, 61–124. [CrossRef]

11. Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder, B.; Carrera, A.; Palomeras, N.; Hurtos, N.;
Carreras, M. Rosplan: Planning in the robot operating system. In Proceedings of the Twenty-Fifth
International Conference on Automated Planning and Scheduling, Jerusalem, Israel, 7–11 June 2015.

12. Lim, G.H.; Suh, I.H.; Suh, H. Ontology-based unified robot knowledge for service robots in indoor
environments. IEEE Trans. Syst. Man Cybern. Part Syst. Hum. 2010, 41, 492–509. [CrossRef]

13. Weibel, M.; Beetz, M.; DAndrea, R.; Janssen, R.; Tenorth, M.; Civera, J.; Elfring, J.; Gávez-Lopez, D.;
Häussermann, K.; Montiel, J.; et al. RoboEarth-A world wide web for robots. Robot. Autom. Mag. 2011,
18, 69–82.

14. Joo, S.H.; Manzoor, S.; Rocha, Y.G.; Lee, H.U.; Kuc, T.Y. A realtime autonomous robot navigation framework
for human like high-level interaction and task planning in global dynamic environment. arXiv 2019,
arXiv:1905.12942.

15. Schlenoff, C.; Prestes, E.; Madhavan, R.; Goncalves, P.; Li, H.; Balakirsky, S.; Kramer, T.; Miguelanez, E.
An IEEE standard ontology for robotics and automation. In Proceedings of the 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 7–12 October 2012; pp. 1337–1342.

http://dx.doi.org/10.1109/TRO.2015.2496823
http://dx.doi.org/10.1609/aimag.v37i2.2651
http://dx.doi.org/10.3390/machines5010006
http://dx.doi.org/10.1016/j.robot.2008.08.001
http://dx.doi.org/10.1016/j.knosys.2015.05.032
http://dx.doi.org/10.1038/ncomms15037
http://dx.doi.org/10.1613/jair.1129
http://dx.doi.org/10.1109/TSMCA.2010.2076404

Appl. Sci. 2020, 10, 3219 27 of 30

16. Suh, I.H.; Lim, G.H.; Hwang, W.; Suh, H.; Choi, J.H.; Park, Y.T. Ontology-based multi-layered robot
knowledge framework (OMRKF) for robot intelligence. In Proceedings of the 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November 2007;
pp. 429–436.

17. Bratko, I. Prolog Programming for Artificial Intelligence; Pearson Education: Toronto, ON, Canada, 2011.
18. Tenorth, M.; Perzylo, A.C.; Lafrenz, R.; Beetz, M. Representation and exchange of knowledge about actions,

objects, and environments in the roboearth framework. IEEE Trans. Autom. Sci. Eng. 2013, 10, 643–651.
[CrossRef]

19. Tenorth, M.; Beetz, M. KnowRob: A knowledge processing infrastructure for cognition-enabled robots. Int. J.
Robot. Res. 2013, 32, 566–590. [CrossRef]

20. Thrun, S.; Montemerlo, M. The graph SLAM algorithm with applications to large-scale mapping of urban
structures. Int. J. Robot. Res. 2006, 25, 403–429. [CrossRef]

21. Grisetti, G.; Stachniss, C.; Burgard, W. Improved techniques for grid mapping with rao-blackwellized
particle filters. IEEE Trans. Robot. 2007, 23, 34–46. [CrossRef]

22. Murphy, K.; Russell, S. Rao-Blackwellised particle filtering for dynamic Bayesian networks. In Sequential
Monte Carlo Methods in Practice; Springer: New York, NY, USA, 2001; pp. 499–515.

23. Zhang, J.; Singh, S. LOAM: Lidar Odometry and Mapping in Real-time. In Proceedings of the Robotics:
Science and Systems Conference, Berkeley, CA, USA, 12–16 July 2014.

24. Klein, G.; Murray, D. Parallel tracking and mapping for small AR workspaces. In Proceedings of
the 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, Nara, Japan,
13–16 November 2007; pp. 225–234.

25. Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A versatile and accurate monocular SLAM system.
IEEE Trans. Robot. 2015, 31, 1147–1163. [CrossRef]

26. Pronobis, A.; Jensfelt, P. Large-scale semantic mapping and reasoning with heterogeneous modalities.
In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN,
USA, 14–18 May 2012; pp. 3515–3522.

27. Kostavelis, I.; Gasteratos, A. Semantic mapping for mobile robotics tasks: A survey. Robot. Auton. Syst. 2015,
66, 86–103. [CrossRef]

28. McCormac, J.; Handa, A.; Davison, A.; Leutenegger, S. Semanticfusion: Dense 3d semantic mapping with
convolutional neural networks. In Proceedings of the 2017 IEEE International Conference on Robotics and
automation (ICRA), Singapore, Singapore, 29 May–3 June 2017; pp. 4628–4635.

29. Yang, S.; Huang, Y.; Scherer, S. Semantic 3D occupancy mapping through efficient high order CRFs.
In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vancouver, BC, Canada, 24–28 September 2017; pp. 590–597.

30. Nakajima, Y.; Tateno, K.; Tombari, F.; Saito, H. Fast and accurate semantic mapping through geometric-based
incremental segmentation. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 385–392.

31. Xiao, L.; Wang, J.; Qiu, X.; Rong, Z.; Zou, X. Dynamic-SLAM: Semantic monocular visual localization and
mapping based on deep learning in dynamic environment. Robot. Auton. Syst. 2019, 117, 1–16. [CrossRef]

32. Riazuelo, L.; Tenorth, M.; Di Marco, D.; Salas, M.; Gálvez-López, D.; Mösenlechner, L.; Kunze, L.; Beetz, M.;
Tardós, J.D.; Montano, L.; et al. RoboEarth semantic mapping: A cloud enabled knowledge-based approach.
IEEE Trans. Autom. Sci. Eng. 2015, 12, 432–443. [CrossRef]

33. Tenorth, M.; Perzylo, A.C.; Lafrenz, R.; Beetz, M. The roboearth language: Representing and exchanging
knowledge about actions, objects, and environments. In Proceedings of the 2012 IEEE International
Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 1284–1289.

34. Johnston, B.; Yang, F.; Mendoza, R.; Chen, X.; Williams, M.A. Ontology based object categorization for
robots. In International Conference on Practical Aspects of Knowledge Management; Springer: Berlin/Heidelberg,
Germany, 2008; pp. 219–231.

35. Tenorth, M.; Kunze, L.; Jain, D.; Beetz, M. Knowrob-map-knowledge-linked semantic object maps.
In Proceedings of the 2010 10th IEEE-RAS International Conference on Humanoid Robots, Nashville,
TN, USA, 6–8 December 2010; pp. 430–435.

36. Crespo, J.; Barber, R.; Mozos, O. Relational model for robotic semantic navigation in indoor environments.
J. Intell. Robot. Syst. 2017, 86, 617–639. [CrossRef]

http://dx.doi.org/10.1109/TASE.2013.2244883
http://dx.doi.org/10.1177/0278364913481635
http://dx.doi.org/10.1177/0278364906065387
http://dx.doi.org/10.1109/TRO.2006.889486
http://dx.doi.org/10.1109/TRO.2015.2463671
http://dx.doi.org/10.1016/j.robot.2014.12.006
http://dx.doi.org/10.1016/j.robot.2019.03.012
http://dx.doi.org/10.1109/TASE.2014.2377791
http://dx.doi.org/10.1007/s10846-017-0469-x

Appl. Sci. 2020, 10, 3219 28 of 30

37. Jiao, L.; Zhang, F.; Liu, F.; Yang, S.; Li, L.; Feng, Z.; Qu, R. A Survey of Deep Learning-Based Object Detection.
IEEE Access 2019, 7, 128837–128868. [CrossRef]

38. Zou, Z.; Shi, Z.; Guo, Y.; Ye, J. Object detection in 20 years: A survey. arXiv 2019, arXiv:1905.05055.
39. Roldan, S.M. Object recognition in mental representations: Directions for exploring diagnostic features

through visual mental imagery. Front. Psychol. 2017, 8, 833. [CrossRef] [PubMed]
40. Luo, Y.; Gao, Y.; Liu, L.; Huang, X. A novel object recognition system for cognitive robot. In Proceedings of

the 2012 IEEE International Conference on Information and Automation, Shenyang, China, 6–8 June 2012;
pp. 680–685.

41. Cichy, R.M.; Kaiser, D. Deep neural networks as scientific models. Trends Cogn. Sci. 2019, 23, 305–317.
[CrossRef]

42. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
43. Weiss, I. A Dual-hierarchy Semantic Graph for Robust Object Recognition. arXiv 2019, arXiv:1909.06867.
44. Zhang, H.; Xu, T.; Elhoseiny, M.; Huang, X.; Zhang, S.; Elgammal, A.; Metaxas, D. Spda-cnn: Unifying

semantic part detection and abstraction for fine-grained recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1143–1152.

45. Wang, J.; Xie, C.; Zhang, Z.; Zhu, J.; Xie, L.; Yuille, A. Detecting semantic parts on partially occluded objects.
arXiv 2017, arXiv:1707.07819.

46. Choi, J.H.; Park, Y.T.; Lim, G.H.; Lee, S. Ontology-Based Semantic Context Modeling for Object Recognition
of Intelligent Mobile Robots. In Recent Progress in Robotics: Viable Robotic Service to Human; Springer:
Berlin/Heidelberg, Germany, 2007; pp. 399–408.

47. Maillot, N.E.; Thonnat, M. Ontology based complex object recognition. Image Vis. Comput. 2008, 26, 102–113.
[CrossRef]

48. Allani, O.; Zghal, H.B.; Mellouli, N.; Akdag, H. A knowledge-based image retrieval system integrating
semantic and visual features. Procedia Comput. Sci. 2016, 96, 1428–1436. [CrossRef]

49. Lee, S.; Naguib, A.M.; Islam, N.U. 3D deep object recognition and semantic understanding for
visually-guided robotic service. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 903–910.

50. Chen, Y.; Gan, W.; Zhang, L.; Liu, C.; Wang, X. A Survey on Visual Place Recognition for Mobile Robots
Localization. In Proceedings of the 2017 14th Web Information Systems and Applications Conference (WISA),
Liuzhou, China, 11–12 November 2017; pp. 187–192.

51. Schönberger, J.L.; Pollefeys, M.; Geiger, A.; Sattler, T. Semantic visual localization. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 6896–6906.

52. Garg, S.; Suenderhauf, N.; Milford, M. Lost? appearance-invariant place recognition for opposite viewpoints
using visual semantics. arXiv 2018, arXiv:1804.05526.

53. Chen, Z.; Jacobson, A.; Sünderhauf, N.; Upcroft, B.; Liu, L.; Shen, C.; Reid, I.; Milford, M. Deep learning
features at scale for visual place recognition. In Proceedings of the 2017 IEEE International Conference on
Robotics and Automation (ICRA), Singapore, Singapore, 29 May–3 June 2017; pp. 3223–3230.

54. Gomez-Ojeda, R.; Lopez-Antequera, M.; Petkov, N.; Gonzalez-Jimenez, J. Training a convolutional neural
network for appearance-invariant place recognition. arXiv 2015, arXiv:1505.07428.

55. Mitsuhashi, M.; Kuroda, Y. Mobile robot localization using place recognition in outdoor environments with
similar scenes. In Proceedings of the 2011 IEEE/ASME International Conference on Advanced Intelligent
Mechatronics (AIM)E, Budapest, Hungary, 3–7 July 2011; pp. 930–935.

56. McManus, C.; Upcroft, B.; Newman, P. Learning place-dependant features for long-term vision-based
localisation. Auton. Robot. 2015, 39, 363–387. [CrossRef]

57. Zhu, J.; Li, Q.; Cao, R.; Sun, K.; Liu, T.; Garibaldi, J.M.; Li, Q.; Liu, B.; Qiu, G. Indoor topological localization
using a visual landmark sequence. Remote. Sens. 2019, 11, 73. [CrossRef]

58. Zhong, X.; Zhou, Y.; Liu, H. Design and recognition of artificial landmarks for reliable indoor self-localization
of mobile robots. Int. J. Adv. Robot. Syst. 2017, 14, 1729881417693489. [CrossRef]

59. Simmons, R.; Goodwin, R.; Haigh, K.Z.; Koenig, S.; O’Sullivan, J. A layered architecture for office delivery
robots. In Proceedings of the first international conference on Autonomous Agents, Marina del Rey, CA,
USA, 5–8 February 1997; pp. 245–252.

http://dx.doi.org/10.1109/ACCESS.2019.2939201
http://dx.doi.org/10.3389/fpsyg.2017.00833
http://www.ncbi.nlm.nih.gov/pubmed/28588538
http://dx.doi.org/10.1016/j.tics.2019.01.009
http://dx.doi.org/10.1016/j.imavis.2005.07.027
http://dx.doi.org/10.1016/j.procs.2016.08.188
http://dx.doi.org/10.1007/s10514-015-9463-y
http://dx.doi.org/10.3390/rs11010073
http://dx.doi.org/10.1177/1729881417693489

Appl. Sci. 2020, 10, 3219 29 of 30

60. Choset, H.M.; Hutchinson, S.; Lynch, K.M.; Kantor, G.; Burgard, W.; Kavraki, L.E.; Thrun, S. Principles of
Robot Motion: Theory, Algorithms, and Implementation; MIT Press: Boston, MA, USA, 2005.

61. Buehler, M.; Iagnemma, K.; Singh, S. The DARPA Urban Challenge: Autonomous Vehicles in City Traffic; Springer:
New York, NY, USA, 2009; Volume 56.

62. Mac, T.T.; Copot, C.; Tran, D.T.; De Keyser, R. Heuristic approaches in robot path planning: A survey. Robot.
Auton. Syst. 2016, 86, 13–28. [CrossRef]

63. Muñoz, P.; R-Moreno, M.D.; Barrero, D.F. Unified framework for path-planning and task-planning for
autonomous robots. Robot. Auton. Syst. 2016, 82, 1–14. [CrossRef]

64. Fikes, R.E.; Nilsson, N.J. STRIPS: A new approach to the application of theorem proving to problem solving.
Artif. Intell. 1971, 2, 189–208. [CrossRef]

65. Nilsson, N.J. Shakey the Robot; Technical Report; SRI International: Menlo Park, CA, USA, 1984.
66. Estivill-Castro, V.; Ferrer-Mestres, J. Path-finding in dynamic environments with PDDL-planners.

In Proceedings of the 2013 16th International Conference on Advanced Robotics, ICAR 2013, Montevideo,
Uruguay, 25–29 November 2013; pp. 1–7. [CrossRef]

67. Dvorak, F.; Bit-Monnot, A.; Ingrand, F.; Ghallab, M. A Flexible ANML Actor and Planner in Robotics;
In Proceedings of the Planning and Robotics (PlanRob) Workshop (ICAPS), Portsmouth, NH, USA,
21–26 June 2014.

68. Smith, D.E.; Frank, J.; Cushing, W. The ANML language. In Proceedings of the ICAPS-08 Workshop on
Knowledge Engineering for Planning and Scheduling (KEPS), Sydney, Australia, 14–18 September 2008.

69. Boutilier, C.; Dearden, R. Using abstractions for decision-theoretic planning with time constraints.
In Proceedings of the AAAI, Seattle, WA, USA, 31 July–4 August 1994; pp. 1016–1022.

70. Dean, T.L.; Kaelbling, L.P.; Kirman, J.; Nicholson, A.E. Planning With Deadlines in Stochastic Domains.
In Proceedings of the AAAI, Washington, DC, USA, 11–15 July 1993; Volume 93; pp. 574–579.

71. Galindo, C.; Fernández-Madrigal, J.A.; González, J.; Saffiotti, A. Robot task planning using semantic maps.
Robot. Auton. Syst. 2008, 56, 955–966. [CrossRef]

72. Beetz, M.; Beßler, D.; Haidu, A.; Pomarlan, M.; Bozcuoğlu, A.K.; Bartels, G. Know rob 2.0—A 2nd
generation knowledge processing framework for cognition-enabled robotic agents. In Proceedings of the 2018
IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018;
pp. 512–519.

73. Beßler, D.; Pomarlan, M.; Beetz, M. Owl-enabled assembly planning for robotic agents. In Proceedings of
the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, Stockholm,
Sweden, 10–15 July 2018; Volume 3, pp. 1684–1692.

74. Lau, M.; Kuffner, J.J. Behavior planning for character animation. In Proceedings of the 2005 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, Los Angeles, CA, USA, 29–31 July 2005;
pp. 271–280.

75. Koo, T.; Hoffmann, F.; Shim, H.; Sinopoli, B.; Sastry, S. Hybrid control of an autonomous helicopter.
In Proceedings of the IFAC Workshop on Motion Control, Grenoble, France, 21–23 September 1998;
pp. 285–290.

76. Shi, X.; Wang, F.Y.; Lever, P. Experimental results of robotic excavation using fuzzy behavior control.
Control. Eng. Pract. 1996, 4, 145–152. [CrossRef]

77. Wei, J.; Snider, J.M.; Gu, T.; Dolan, J.M.; Litkouhi, B. A behavioral planning framework for autonomous
driving. In Proceedings of the 2014 IEEE Intelligent Vehicles Symposium Proceedings, Dearborn, MI, USA,
8–11 June 2014; pp. 458–464.

78. Arney, T. An efficient solution to autonomous path planning by approximate cell decomposition.
In Proceedings of the 2007 Third International Conference on Information and Automation for Sustainability,
Melbourne, Australia, 4–6 December 2007; pp. 88–93.

79. Lingelbach, F. Path planning using probabilistic cell decomposition. In Proceedings of the IEEE
International Conference on Robotics and Automation, 2004. Proceedings, ICRA’04, New Orleans, LA,
USA, 26 April–1 May 2004; Volume 1, pp. 467–472.

80. Šeda, M. Roadmap methods vs. cell decomposition in robot motion planning. In Proceedings of the 6th
WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece,
16–19 February 2007; pp. 127–132.

http://dx.doi.org/10.1016/j.robot.2016.08.001
http://dx.doi.org/10.1016/j.robot.2016.04.010
http://dx.doi.org/10.1016/0004-3702(71)90010-5
http://dx.doi.org/10.1109/ICAR.2013.6766456
http://dx.doi.org/10.1016/j.robot.2008.08.007
http://dx.doi.org/10.1016/0967-0661(95)00220-0

Appl. Sci. 2020, 10, 3219 30 of 30

81. Pradhan, S.K.; Parhi, D.R.; Panda, A.K.; Behera, R.K. Potential field method to navigate several mobile
robots. Appl. Intell. 2006, 25, 321–333. [CrossRef]

82. Kang, Y.H.; Lee, M.C.; Kim, C.Y.; Yoon, S.M.; Noh, C.B. A study of cluster robots line formatted navigation
using potential field method. In Proceedings of the 2011 IEEE International Conference on Mechatronics
and Automation, Beijing, China, 7–10 August 2011; pp. 1723–1728.

83. Lee, J.; Kwon, O.; Zhang, L.; Yoon, S.E. A selective retraction-based RRT planner for various environments.
IEEE Trans. Robot. 2014, 30, 1002–1011. [CrossRef]

84. Kavraki, L.; Latombe, J.C. Randomized preprocessing of configuration for fast path planning. In Proceedings
of the 1994 IEEE International Conference on Robotics and Automation, San Diego, CA, USA, 8–13 May 1994;
pp. 2138–2145.

85. LaValle, S.M. Rapidly-Exploring Random trees: A New Tool for Path Planning; Research Report 98-11; Department
of Computer Science, Iowa State University: Ames, IA, USA, 1998.

86. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011,
30, 846–894. [CrossRef]

87. Elbanhawi, M.; Simic, M. Sampling-based robot motion planning: A review. IEEE Access 2014, 2, 56–77.
[CrossRef]

88. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.;
Fidjeland, A.K.; Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015,
518, 529–533. [CrossRef]

89. Shah, P.; Fiser, M.; Faust, A.; Kew, J.C.; Hakkani-Tur, D. Follownet: Robot navigation by following natural
language directions with deep reinforcement learning. arXiv 2018, arXiv:1805.06150.

90. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control
with deep reinforcement learning. arXiv 2015, arXiv:1509.02971.

91. Tai, L.; Paolo, G.; Liu, M. Virtual-to-real deep reinforcement learning: Continuous control of mobile robots
for mapless navigation. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 31–36.

92. Faust, A.; Oslund, K.; Ramirez, O.; Francis, A.; Tapia, L.; Fiser, M.; Davidson, J. PRM-RL: Long-range robotic
navigation tasks by combining reinforcement learning and sampling-based planning. In Proceedings
of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia,
21–25 May 2018; pp. 5113–5120.

93. Gabrieli, J.D. Cognitive neuroscience of human memory. Annu. Rev. Psychol. 1998, 49, 87–115. [CrossRef]
94. Bechhofer, S.; Van Harmelen, F.; Hendler, J.; Horrocks, I.; McGuinness, D.L.; Patel-Schneider, P.F.; Stein, L.A.

OWL web ontology language reference. W3C Recomm. 2004, 10.02.
95. Rocha, Y.G.; Joo, S.H.; Kim, E.J.; Kuc, T.Y. Automatic Generation of a Simulated Robot from

an Ontology-Based Semantic Description. In Proceedings of the 2019 19th International Conference on
Control, Automation and Systems (ICCAS), Jeju, Korea, 15–18 October 2019; pp. 1340–1343. [CrossRef]

96. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the
IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

97. Coles, A.J.; Coles, A.I.; Fox, M.; Long, D. Forward-chaining partial-order planning. In Proceedings of
the Twentieth International Conference on Automated Planning and Scheduling, Toronto, ON, Canada,
12–16 May 2010.

98. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
99. Kahneman, D.; Tversky, A. The Simulation Heuristic; Technical Report; Department of Psychology,

Stanford University: Stanford, CA, USA, 1981.
100. Rocha, Y.G.; Kuc, T.Y. Mental simulation for autonomous learning and planning based on triplet ontological

semantic model. CEUR Workshop Proc. 2019, 2487, 65–73.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10489-006-0110-3
http://dx.doi.org/10.1109/TRO.2014.2309836
http://dx.doi.org/10.1177/0278364911406761
http://dx.doi.org/10.1109/ACCESS.2014.2302442
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1146/annurev.psych.49.1.87
http://dx.doi.org/10.23919/iccas47443.2019.8971767
http://dx.doi.org/10.1007/BF01386390
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Knowledge-Based Navigation Frameworks
	Environment Modeling for Robots
	Map Representation
	Ontology-Based Knowledge Model

	Recognition
	Object Recognition
	Place Recognition
	Localization

	Planning
	Mission Planning
	Behavior Planning
	Motion Planning
	Deep Reinforcement Learning

	TOSM-Based Autonomous Navigation Framework
	Semantic Modeling Framework
	TOSM-Based Environment Modeling
	On-Demand Database

	Semantic Information Processing
	Semantic Autonomous Navigation
	Task Planner
	Behavior Planner
	Action Planner
	Mental Simulation
	Reinforcement Learning

	Experiments
	Experimental Environments
	Experimental Sequences
	Experimental Results
	Behavior Planner
	Action Planner

	Conclusions
	References

