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Abstract: An exciting prospect for the sensing community is the potential of midinfrared fiber sensors.
Taking advantage of the design flexibility of photonic crystal fiber and the high excitation loss of gold
layers, a high-performance midinfrared D-shaped sensor based on the surface-plasmon-resonance
effect was designed and numerically investigated by a mature finite-element tool. Numerical results
showed that the designed fiber is especially suitable for sensing. In an operating wavelength
ranging from 2.9 to 3.6 µm, maximal wavelength sensitivity of 11,500 nm/refractive index unit
(RIU) and a maximal refractive index (RI) resolution of 8.7 × 10−6 RIU were obtained by the
wavelength-interrogation method when analyte RI varied from 1.36 to 1.37. Maximal amplitude
sensitivity of 230 RIU−1 was obtained by the amplitude-interrogation method with a high linearity
of 0.99519 and an adequate figure of merit of 142. Additionally, the sensor had good fabrication
tolerance. Our sensor is a promising candidate for environmental monitoring.
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1. Introduction

Sensors based on the surface-plasmon-resonance (SPR) effect can be applied in many detection
fields because they possess high sensitivity, simple operation, and online detection [1–5]. Different
from traditional Kretschmann prism-type SPR sensors, fiber-based sensors are widely acclaimed due
to the excellent virtues of micro–nano dimensions, low cost, anti-interference, and ease of remote
real-time monitoring [6–8]. Generally, there are two main methods to implement fiber SPR sensors.
First, in order to produce a sensor with specific performance, we need to process the carrier fiber,
and common processing techniques such as bending, taper, engraved grating, and side polishing.
Second, in order to stimulate surface plasmons (SPs) for sensors, excitation-metal wire filling, inner and
outer coating, and fiber end coating can be selected. Unfortunately, conventional glass-based fibers are
not only less flexible in design, which results in limited sensing performance, but also very fragile,
which makes conventional fibers unable to be excessively processed [9]. Therefore, it is necessary to
find a flexible and easily fabricated scheme.

In view of the lack of design flexibility in conventional fibers, photonic crystal fiber [10–12] (PCF),
which is known as the catalyst for the fiber industry, is a promising candidate and may become
a satisfactory sensing platform. For a PCF-based sensor, more superior sensing characteristics are
produced by combining the SPR phenomenon because of its small dimension and flexible design
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advantages. Depending on the PCF structural parameters used to control light transmission, many
optical properties in PCFs, such as nonlinearity, dispersion, effective mode field area, and mode
birefringence, can easily be tailored. Accordingly, sensing characteristics can also become rich. In our
scheme, side polishing was selected for fiber processing because it greatly simplified the fabrication of
the sensor.

In recent years, an increasing number of D-shaped PCF sensors were designed and investigated
thanks to the SPR effect. For instance, in 2012, Tian et al. reported a D-shaped SPR sensor based
on an all-solid PCF, showing at least 7300 nm/refractive index unit (RIU) for spectral sensitivity,
and 216 for figure of merit (FOM) in the visible band [13]. In 2014, Tan et al. designed a side-polished
fiber sensor with a gold layer and liquid filling operating from 500 to 750 nm, and sensitivity over
6430 nm/RIU [14]. In 2015, Santos et al. proposed a D-shaped fiber sensor with a coated gold layer
operating from 500 to 900 nm that obtained sensitivity of 10× 103 nm/RIU with a resolution of 9.8× 10−6

RIU [15]. In 2016, Dash et al. analyzed a highly sensitive D-shaped sensor. The sensor showed
wavelength sensitivity of 5200 nm/RIU and resolution of 1.92 × 10−5 RIU in the wavelength range of
1600–2100 nm [16]. In 2017, a novel D-shaped sensor based on endless single-mode PCFs and SPR
was experimentally demonstrated by Chen et al. that obtained sensitivity of 6.53 × 10−5 RIU in the
visible band [17]. Gangwar et al. proposed a D-shaped PCF–SPR sensor with average sensitivity of
7700 nm/RIU and resolution of 1.30×10−5 RIU for analyte refractive index (RI) varying between 1.43
and 1.46 [18]. Wu et al. theoretically and experimentally analyzed a D-shaped sensor with maximal
sensitivity of 21,700 nm/RIU in the visible band [19]. In 2018, Wu et al. numerically investigated a
novel D-shaped sensor. Sensitivity of 31,000 nm/RIU was obtained in the near-infrared band [20].
Chen et al. demonstrated a novel D-shaped PCF–SPR sensor for low RI detection; maximal spectral
sensitivity of 11,055 nm/RIU and RI resolution of 9.05 × 10−6 RIU were obtained in the range from 2.35
to 2.65 µm [21].

Two common characteristics can be found from the designs described above. For sensing
performance, modern sensors are moving toward high sensitivity and high resolution. For fabrication,
the processing technology of side polishing is easier to operate during the sensor-manufacturing
process while achieving excellent performance. Therefore, proposed sensors with both the virtues of
high sensitivity and easy manufacturing are very popular. However, we also found that most sensors
operate in the visible or near-infrared bands, and sensors working in the midinfrared band are not
very common. Usually, molecules can interact with midinfrared light by absorbing or emitting light
that allows for the qualitative and quantitative detection of chemicals in environment engineering [22].
Facing increasingly serious environmental problems, the demand for midinfrared sensors for accurate
and real-time environmental monitoring is gradually increasing and cost is high, so sensors operating
in the midinfrared band show great research value. Focusing on the midinfrared band, we designed a
simple D-shaped PCF–SPR sensor and numerically investigated it. Considering the chemical stability
and resonance output energy of excitation materials, we selected gold (Au) as the sensing-layer
medium. We numerically analyzed the effect of the structural parameters on sensing performance by
the finite-element method (FEM) [23], and explored sensing sensitivity to analyte RI changes, linearity,
and FOM. Finally, fabrication-tolerance analysis was considered.

2. Model and Theory

The midinfrared D-shaped PCF–SPR sensor’s structure was obtained by side-polishing a three-layer
hexagonal-lattice PCF to form a plane that was coated with a gold layer by the sputter-deposition
method (SDM) [24]. When the sensor was operating, the gold layer was directly in contact with the
analyte to be detected. Figure 1a displays the cross-section illustration of our sensor. The lattice
pitch was Λ1 = 6.0µm, the cladding holes’ diameters and two central holes are represented by d1 and
d2, respectively, and we first set d1 = 2.8 µm. Other structural parameters, namely, channel length,
gold-layer thickness, and analyte RI are characterized by Λ2, TAu, and na, respectively.
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Figure 1. (a) Schematic illustration of designed sensor and (b) finite-element-method (FEM)
discretized mesh.

The background material of the PCF was Si. Resonance wavelength between Si and the excitation
gold layer was located exactly in the midinfrared band. The RI of Si can be characterized by a Sellmeier
equation [25] that is described as

nSi(λ) =

√√
ε+

A
λ2 +

Bλ2
1

λ2 − λ2
1

(1)

where λ represents a free space wavelength, and detailed parameters were ε = 11.6858, λ1 = 1.1071 µm,
A = 0.939816 µm2, and B = 8.10461×10−3, respectively.

The dielectric constant of the gold sensing layer in the wavelength region from 0.248 to 6.2 µm
can be characterized by the Drude–Lorentz (DL) model [26–28]:

ε(ω) = ε1 + iε2 = ε∞ −
ω2

p

ω(ω+ iωc)
(2)

where ω = 2π/λ, and detailed parameters were ε∞ = 9.75, ωp = 1.36 × 1016, and ωc = 1.45×
1014, respectively.

In the sensor’s performance analysis, we adopted confinement loss (CL) [29,30] to characterize
the detection signal. Usually, CL can be expressed by

α = 8.686×
2π
λ
× Im

(
ne f f

)
× 104(dB/cm) (3)

where λ represents the incident-light wavelength and Im
(
ne f f

)
represents the effective RI imaginary

part for the core fundamental mode (FM). In order to facilitate understanding the following formulas,
α in dB/cm here represents CL.

In our works, sensor performance was examined on the basis of wavelength sensitivity
(WS) [31], amplitude sensitivity (AS) [32], RI resolution [33], linearity [34], and FOM [35]. Common
wavelength-interrogation method (WIM) and amplitude-interrogation method (AIM) [36] were
employed for analyzing these performance parameters.
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Usually, WS, AS, and RI resolution are the three most common parameters for measuring sensor
performance. WS is described by

S(λ) = ∆λpeak/∆na (nm/RIU) (4)

where ∆λpeak represents the shift of the resonance wavelength and ∆na represents RI variations; here,
∆na is 0.01.

AS is described by

SA(λ) =
1

α(λ, na)

∂α(λ, na)

∂na

(
RIU−1

)
, (5)

where α(λ, na) represents CL when the detected RI was na, and ∂α(λ, na) represents the CL difference
when RI variation was ∂na.

RI resolution is described by

R = ∆na·
∆λmin
∆λpeak

(RIU), (6)

where ∆λmin is wavelength resolution assuming that ∆λmin is 0.1 nm for the purposes of
calculation [37,38].

The FOM was adopted for evaluating accuracy of detection in sensors. It is a key factor combining
full width at half maximum (FWHM) and signal-to-noise ratio (SNR), which is described by

FOM =
m

FWHM
(7)

where m denotes the slope of two adjacent resonance points, and FWHM denotes the full width at half
the maximum peak of each detected signal [39].

For performance analysis, commercial COMSOL 5.2 software integrating an FEM solver was
utilized to study transmission and coupling properties in PCFs, combining a perfect match layer
(PML) [40]. Here, PML thickness was 5µm. The electromagnetic-mode patterns of the sensor fiber
could be achieved quickly and precisely. The cross-section was discretized as depicted in Figure 1b,
and divided into 106,026 mesh elements in total for computing. A mobile workstation with an Intel
Core i7 CPU and 8 G random access memory (RAM) was also utilized to support software operation.

3. Numerical Results and Discussion

3.1. Mode-Coupling Properties

In the proposed sensor, (a) x-polarization core FM, (b) y-polarization core FM, and (c)
surface-plasmon-polariton (SPP) mode in the sensing layer were analyzed as shown in Figure 2.
The way in which plasmonic mode interacted with the FM through the middle channel (direction of
white arrow) was adopted. In the light–matter interaction on the gold–dielectric interface, although x-
and y-polarization FMs existed simultaneously in the core, only y-polarization FM could be utilized
to excite SPs. According to the dispersion relations of the y-polarization FM and plasmonic mode in
Figure 3, there was a detectable loss signal at the intersection of the two RI curves. The inset indicates
the resonance state of y-polarization FM and plasmonic mode. As stated in coupled-mode theory
(CMT) [41,42], when FM and SPP mode satisfy mode-resonance conditions, the energy carried by
the two modes can produce a sufficient exchange. The evanescent field in the fiber could be greatly
strengthened, and a sharp loss signal appears. Fortunately, thanks to its uniqueness, only y-polarization
FM could resonate with SPP mode in the investigated band. There was only one loss signal at the
intersection of the two curves that is very suitable to apply in the sensing field. According to the
uniqueness of resonance peak in the sensor, the precise detection of the analyte RI could be achieved.
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reduced and widened because diameter d2 was too large, and the area of the core was reduced, which 
made it difficult to maintain good single-mode transmission of the PCF, so y-polarization FM could 
not generate a strong mode-coupling effect with the SPP mode. Thus, we should avoid the value of 
d2, which was too large in the sensor design. Under conditions of d2 = 6 and 7 μm, the energy produced 
by the latter was also slightly larger than that of the former in calculation; if more loss energy could 
be generated, the signal would be easier to detect, so the case of d2 = 7 μm was selected for the next 
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Obviously, the role of excitation-gold-layer thickness in sensing is very important. So, the 
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Figure 3. Dispersion relations of y-polarization core FM and SPP mode in this sensor. Illustration
of resonance mode displayed when d1 = 2.8 µm, d2 = d3 = 7.0 µm, Λ1 = Λ2 = 6.0 µm, TAu = 50 nm,
and na = 1.36.

3.2. Structural-Parameter Determination

It is well known that the influence of PCF structural parameters is sensitive on sensing
characterization. In this section, diameter of central two holes d2, thickness of gold layer TAu,
channel length Λ2, and hole diameter d3 were considered for numerical investigation.

Figure 4a depicts loss spectra for different diameters of central holes d2 with d1 = 2.8 µm,
d3 = 7.0 µm, Λ1 = Λ2 = 6.0 µm, TAu = 50 nm, and na = 1.36, making d2 6.0, 7.0, and 8.0 µm, respectively.
The position of resonance wavelength occurred as a redshift with the increase of d2. Simultaneously,
the corresponding resonance signal was also changed; especially in the case of d2 = 8 µm, the signal
was reduced and widened because diameter d2 was too large, and the area of the core was reduced,
which made it difficult to maintain good single-mode transmission of the PCF, so y-polarization FM
could not generate a strong mode-coupling effect with the SPP mode. Thus, we should avoid the value
of d2, which was too large in the sensor design. Under conditions of d2 = 6 and 7 µm, the energy
produced by the latter was also slightly larger than that of the former in calculation; if more loss energy
could be generated, the signal would be easier to detect, so the case of d2 = 7 µm was selected for the
next analysis.
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Figure 4. Loss spectra for (a) different diameters of central holes d2 with d1 = 2.8 µm, d3 = 7.0 µm,
Λ1 = Λ2 = 6.0 µm, TAu = 50 nm, and na = 1.36; (b) thickness of gold layer TAu with d1 = 2.8 µm,
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d2 = d3 = 7.0 µm, Λ1 = 6.0 µm, TAu = 40 nm, and na = 1.36; (d) different d3 with d1 = 2.8 µm, d2 = 7.0 µm,
Λ1 = 6, Λ2 = 6.2 µm, TAu =40 nm, and na = 1.36.

Obviously, the role of excitation-gold-layer thickness in sensing is very important. So, the influence
of different gold-layer thicknesses TAu on the sensor was considered, as shown in Figure 4b. We observed
that, when TAu increased, the CL peak was blue-shifted, and the loss peak was reduced. The reason for
this phenomenon was the thinner thickness of the gold layer; the more obvious the effect of light–matter
interaction, the more that free oscillation was enhanced. This process also enhanced the evanescent
field near the dielectric interface, which distinctly led to strong energy generation that would be
weaker. However, in the course of use, the gold layer would certainly be consumed and it could not be
designed to be very thin in a one-sided pursuit of high-loss signals. So, TAu = 40 nm was selected as a
compromise between gold-layer thickness and signal strength.

Figure 4c displays loss spectra for different channel lengths Λ2 with d1 = 2.8 µm, d2 = d3 = 7.0 µm,
Λ1 = 6.0 µm, TAu = 40 nm, and na = 1.36. The Λ2 variation also induced the changes of resonance
wavelength and loss peak. It was obvious that, with the increase of Λ2, the loss peak shifted towards
the shorter wavelength direction, and signal peak increased. The cause of this phenomenon was that,
as Λ2 is increased, light in the core region penetrated more into the cladding, and the evanescent field
increased, so the CL increased.

Figure 4d displays loss spectra for different d3 with d1 = 2.8 µm, d2 = 7.0 µm, Λ1 = 6, Λ2 = 6.2 µm,
TAu = 40 nm, and na = 1.36. When d3 was 2.8 µm, the surrounding medium of the d3 hole had a binding
effect on the light, and the light travelling in the PCF core dissipated to a certain extent. Therefore,
it was necessary to design d3 to be 7.0 µm. On the one hand, when d3 = 7.0 µm, the energy was
significantly improved to facilitate signal detection. On the other hand, the same size as d2 reduced
fabrication complexity.
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On the basis of the above phenomenon, in the investigated band ranging from 2.9 to 3.6 µm,
we selected the parameters of d1 = 2.8 µm, d2 = d3 = 7.0 µm, Λ1 = 6.0 µm, Λ2 = 6.2 µm, and TAu = 40 nm
for the next performance discussion.

3.3. Sensor-Performance Investigations

It was clearly found that the proposed D-shaped sensor’s performance relied on the resonance
wavelength moving, induced by changing the detected analyte RI, which might have been caused by
environment variations surrounding the sensing layer. According to Section 3.1, due to the uniform
distribution of the loss spectra and the single peak in the investigated band, it was very suitable for
sensing applications.

Figure 5a describes loss spectra for different analyte RIs between 1.33 and 1.39 with d1 = 2.8 µm,
d2 = d3 = 7.0 µm, Λ1 = 6.0 µm, Λ2 = 6.2 µm, and TAu = 40 nm. By the WIM, when the RI varied from 1.33
to 1.39, the corresponding resonance wavelength could be tuned from 2.9 to 3.6 µm. Results showed
that the average ∆λpeak was about 88.5 nm; hence, average WS was 8850 nm/RIU and RI resolution was
1.13 × 10−5 RIU in this sensor. Maximal WS emerged when the analyte RI varied from 1.36 to 1.37.
The maximal value could reach 11,500 nm/RIU, and the corresponding RI resolution was 8.7 × 10−6

RIU. Figure 5b describes amplitude sensitivity with different analyte RIs by the AIM. We found that the
AS peak decreased as RI changed from 1.33 to 1.39, and maximal AS was 230 RIU−1 when na was 1.33.
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Next, the linearity of the sensor was analyzed. Figure 5c shows that resonance points were
distributed on both sides of the red solid line. This indicated an approximately linear relationship
between analyte RIs and resonance wavelengths. By calculation, the fitting equation for this sensor
was expressed as follows:

λo = 8.67143na − 8.57857, (1.33 ≤ na ≤ 1.39) (8)

where na and λo denote analyte RI and operating wavelength, respectively. The adjusted R2 was a
powerful tool to help us judge linearity [43]. According to these resonance points, an adjusted R2 of
0.99519 was obtained that verified a highly linear correlation degree between na and λo.

Figure 5d shows the FOM of our sensor versus different analyte RIs. As the analyte RI varied
between 1.33 and 1.39, FOM first increased and then decreased; it was obvious that, when na = 1.37,
an adequate FOM of 142 could be achieved.

For comparison, Table 1 displays the major performance parameters of our sensor and some
existing D-shaped sensors. We found that the maximal WS, RI resolution, linearity, and FOM of our
D-shaped sensor could then reach the highest order of magnitude, but sensors simultaneously with
these characteristics are uncommon. Among existing midinfrared sensors, for example, Liu et al.
proposed a dual open-ring structured sensor with average WS of 5500 nm/RIU, AS of 333.8 RIU−1,
and maximal resolution of 7.69 × 10−6 RIU [44]. Chen et al. obtained a D-shaped sensor with maximal
WS of 11055 nm/RIU and RI resolution of 9.05 × 10−6 [21], but they did not consider linearity and FOM.
In comparison, our sensor combined four excellent performance advantages and possesses broad
prospects for various midinfrared applications.

Table 1. Comparison results between our sensor and peer D-shaped sensors.

Ref. Max. Wav.
Sens. (nm/RIU)

Max. Resolution
(RIU)

Max. Amp.
Sens. (RIU−1)

Linearity FOM

[13] 7300 1.37 × 10−5 N/A N/A 216

[15] 10,000 9.8 × 10−6 N/A N/A N/A

[17] 2336.2 6.53 × 10−5 N/A N/A N/A

[18] 7700 1.30 × 10−5 N/A N/A N/A

[19] 21,700 4.61 × 10−6 N/A N/A N/A

[20] 31,000 3.23 × 10−6 N/A N/A N/A

[21] 11,055 9.05 × 10−6 N/A N/A N/A

[39] 12,400 9.39 × 10−6 252 0.99692 332

[45] 14,660 6.82 × 10−6 1222 N/A 260

[46] 7000 1.43 × 10−5 N/A N/A N/A

[47] 3340 5.98 × 10−6 69.3 N/A N/A

This paper 11,500 8.7 × 10−6 230 0.99519 142

4. Structural-Tolerance Discussion

It is actually difficult to ensure the accurate control of structural parameters in PCFs because the
difference in temperature control causes air holes to produce different degrees of shrinkage and slight
changes in the lattice pitch in cladding during the fabrication process. Hence, although the proposed
sensor could be completely manufactured by stack-and-draw technology [48,49], side polishing [50],
and SDM, PCF fabrication tolerance still needs to be discussed.

Usually, about ±1% variation in PCF structure parameters is inevitable. We investigated the
effect on the variation of d1 of ±3% and that of Λ1 of ±3% to briefly consider the possibility of PCF
fabrication. The case of d1 = 2.8 µm, d2 = d3 = 7.0 µm, Λ1 = 6.0µm, Λ2 = 6.2 µm, and TAu = 40 nm was
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considered. Figure 6a shows that ±3% variation brought about a small shift in resonance wavelength
and a slight floating of energy. The effect was almost negligible. Figure 6b shows the loss spectra
for Λ1 variation of ±3 %, where we found the effect of Λ1 on resonance-wavelength shift and energy
change was more pronounced than that of d1, but the overall effect was limited. The accelerated
development of this technology could tailor these changes to be negligible. In this sensor, for slight
variations in the PCF structure, the loss-signal change of the sensor was still small, which indicated
high fabrication tolerance.
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5. Conclusions

In summary, this paper numerically analyzed the sensing characteristics of a high-performance
midinfrared D-shaped PCF–SPR RI sensor. An FEM tool was employed to investigate sensing
performance. The influence of the structural parameters, and the relationship between resonance
wavelengths and analyte RI (1.33–1.39) were discussed for the sensor. Simulation results showed that
the effect of central-hole diameter d2, gold-layer thickness TAu, channel length Λ2, and hole diameter d3

was sensitive on the sensor. Using the WIM, average WS of 8850 nm/RIU and an average RI resolution
of 1.13 × 10−5 RIU were achieved; maximal WS and maximal RI resolution were 11,500 nm/RIU and
8.7 × 10−6 RIU, respectively, when the analyte RI changed between 1.36 and 1.37. Using the AIM,
maximal AS of 230 could be achieved. The sensor simultaneously had high linearity with the adjusted
R2 of 0.99519 and an adequate FOM of 142. In addition, the sensor had good fabrication tolerance. So,
we have no reason to doubt that our sensor could be applied as a photonic integrated component for
real-time environmental monitoring.

In future work, we intend to build an experiment setup to verify the simulated results.
For simplicity, a basic midinfrared system comprises a supercontinuous light source covering
wavelengths from 2.9 to 3.6 µm, RI selection device, and midinfrared optical-spectrum analyzer
(OSA). First, we aim to fuse a single-mode fiber at both ends of the sensor. Second, we will connect the
light source, fiber, and OSA in sequence. Third, we will place the sensing section in the RI selection
device, and then turn on the light source. Lastly, the corresponding spectrum could be obtained in the
OSA by changing the RI.
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