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Abstract: The precise mathematical model for the tooth surface and transition surface of spiral bevel
gears is derived. Taking a pair of spiral bevel gears of a heavy vehicle as an example of calculation
and analysis, a finite element model of spiral bevel gears transmission system is established. Through
the finite element tooth contact analysis under quasi-static loading and high loading condition, the
influences of torque on the root stress distribution, contact stress, and transmission error are discussed,
and the results are compared with the empirical formula results. Finally, a contact performance
test bench of spiral bevel gear pair is developed, then the root bending stress, contact pattern, and
transmission error tests are carried out. These experiment results are compared with analyzed ones,
which showed a good agreement.

Keywords: spiral bevel gear; quasi-static loading; high loading; contact characteristic; finite
element analysis

1. Introduction

Tooth contact analysis (TCA) technology is widely applied for assessing meshing quality duet to
the increasing demand for vibration, strength, and mechanical efficiency of gear in various industrial
fields such as aviation, automotive, and civil engineering [1,2]. There are some main evaluation items
to reflect the tooth contact performances. For instance, the transmission error has a significant impact
on gear vibration and noise, and the qualified contact pattern can avoid edge contact and premature
failure [3–5]. Using a meshing simulation, the transmission errors and contact pattern of the gear pair
can be determined.

Currently, the new optimization method based on the loaded tooth contact analysis (LTCA) for
improving strength and contact performance of bevel gears has been a great concern to scholars
worldwide. Simon analyzed the influences of machine settings and misalignments on tooth contact
pressure and loaded transmission error, and then presented a method to improve gear meshing
performance by reducing the loaded transmission error and the maximum tooth contact pressure of
hypoid gears [6–10]. Antoni et al. studied the ease-off optimizing method for loaded transmission
error and contact surface of bevel gears, which reduced the risk of vibration and noise [11–13].
Kolivand et al. [14,15] developed a novel formulation for LTCA using the ease-off topography. The
study defined the surface of action and roll angle surface to simplify the task of locating the instantaneous
contact curves. Yanming et al. proposed an ease-off flank modification method to solve the problem of
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the design and fabrication of high contact ratio spiral bevel gears with a seventh-order transmission
error [16]. Nie et al. studied a new method of tooth surface topography modification for improving
the meshing performance and correct contact area of spiral bevel gears [17].

Furthermore, a lot of research efforts have already gone into the analysis and optimization of
individual gear pairs by experimental testing. De Vaujany et al. discussed the theoretical analysis and
experimental research on load transmission error and actual coincidence of spiral bevel gears [18].
Kazumasa et al. investigated the tooth contact pattern and transmission errors of large-sized spiral
bevel gears, and these analyzed results were compared with experimental ones [19]. Zhuo et al.
investigated the contact characteristics of hypoid gears under quasi-static condition, and proposed a
method for the global optimization of the tooth contact pattern and transmission error of spiral bevel
and hypoid gears [20,21]. Cao et al. discussed a new method for gear tooth contact analysis, which
concentrates on solving two considerable disadvantages of the generalized algorithm, which were
verified with the gear-rolling test [22]. Liang et al. studied the influence of different grinding parameters
on the surface topography and compared the simulation results with experiment results [23].

It can be seen that the research of loaded contact analysis and experimental testing of spiral
bevel gear has not been sufficient so far. There are few comprehensive studies on its high loading
comprehensive contact performance. In this work, an accurate finite element model of spiral bevel gear
transmission system was established, which was based on the generating principle of spiral bevel gear
and meshing theory. This model considered the influence of gear and shaft deformation, installation
position, and bearing load, and the contact characteristics under quasi-static loading and high loading
condition were analyzed through this model. In addition, a contact performance test bench of spiral
bevel gear pair was developed in this paper, and the bending stress, contact pattern and transmission
error test results were obtained for validating FEM results and the reliability of proposed model.

2. Theoretical Tooth Surface Modeling

2.1. Tooth Surface Modeling of the Gear

The method described in this paper is the generating method, in which both sides of the gear
teeth are processed simultaneously with a double-sided cutter disc containing an inner cutter and an
outer cutter. When machining large wheels, the cutter head rotates around its own axis while revolving
around the axis of the production wheel. The position relationship between the large wheel blank and
the cutter head is shown in Figure 1.

β2 is the coordinate system of the gear machine tool; P2 is the unit vector of the axis direction of
the gear; α02 is the pressure angle of the gear cutter head; β02 is the coordinate system of the gear cutter
head; S2 is the radial cutter position; q2 is the angular cutter position; E02 is the vertical wheel position;
X02 is the axial wheel position; XB2 is the bed position; δM2 is the root angle of machine tool; r0 is the
nominal radius of cutter head; W2 is the angular cutter head radius; re2 is cutter tip arc radius; Oe is
the tool tip arc center; M0 is the apex of the tool tip; θ2 is the angle between the section of cutter disk
axis passing O0M0 and i2; r02 is the radius of the tool tip.

Let
∣∣∣MM0

∣∣∣=s2; then, in β02, the radius vector rC2 and normal vector nC2 of M points on the cutting
surface can be represented as follows:

rc2(s2,θ2) =


(r02 − s2sinα02)cosθ2

(r02 − s2sinα02)sinθ2

−s2cosα02

 (1)

nc2(θ2) =


cosα02cosθ2

cosα02sinθ2

−sinα02

 (2)
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θ02 is the angle between OeM and the axis of the cutter head, and the radius vectors re2 and normal
vectors ne2 of M on the cutter tip arc can be represented as

re2(θ02,θ2) =


(rOe2 ∓ re2sinθ02)cosθ2

(rOe2 ∓ re2sinθ02)sinθ2

re2(cosθ02 − 1)

 (3)

ne2(θ02,θ2) =


sinθ02cosθ2

sinθ02sinθ2

∓cosθ02

 (4)

The cutter head rotates ∆q2 around k, and the relationship between β02 and β2 can be obtained:

Mβ02(∆q2) =


1 0 0 S2 cos(q2 + ∆q2)

0 1 0 S2sin(q2 + ∆q2)

0 0 1 0
0 0 0 1

 (5)

Gear coordinate system βg moves E02 along j:

ME02 =


1 0 0 1
0 1 0 E02

0 0 1 0
0 0 0 1

 (6)

Move XB2 along k:

MXB2 =


1 0 0 0
0 1 0 0
0 0 1 XB2

0 0 0 1

 (7)

Then, rotate (90◦-δM2) around j,

MδM2 =


sinδM2 0

0 1
cosδM2 0

0 0
−cosδM2 0

0 0
sinδM2 0

0 1

 (8)

Move X2 along P2:

MX2 =


1 0
0 1

0 0
0 0

0 0
0 0

1 X2

0 1

 (9)

The cutter head rotates ∆q2 around k and the gear rotates ψ2 = i02∆q2 around P2:

Mψ2(∆q2) =


cos(ψ2)

sin(ψ2)

0
0

−sin(ψ2)

cos(ψ2)

0
0

0
0
1
0

0
0
0
1

 (10)
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In summary, the homogeneous transformation matrix of the gear coordinate system βg and the
machine tool coordinate system β2 obtain:

Mβg = ME02 MXB2MδM2MX2Mψ2 (11)

The homogeneous transformation matrix of the cutter head coordinate system β02 and the gear
coordinate system βg can be calculated as:

M02(∆q2) =
(
Mβg

)−1
Mβ02 (12)

In the gear coordinate system βg, the radius vector r2 of the conjugate tooth surface of the gear
can be represented as:

r2(s2,θ2, ∆q2) = M02rc2 (13)

The unit normal vector n2 of the conjugate tooth surface of the gear can be represented as:

n2(θ2, ∆q2) = M02nc2 (14)

The relative velocity at any point of the conjugate tooth surface of the gear can be calculated as:

vg(s2,θ2, ∆q2) =
∂r2

∂ψ2
(15)

The expressions of vg and n2 are substituted for the meshing equation, and the following can be
obtained:

vg·n2 = 0 (16)

From Equation (16), it can be concluded that s2 is a function with θ2 and ∆q2 as parameters.
Plugging s2 = f (θ2, ∆q2) into Equation (13), the equation r2(θ2, ∆q2) of the gear surface and transition
surface is obtained. When ∆q2 changes, a series of contact lines can be calculated, and constituting the
tooth surface of the gear, as shown in Figure 2.
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2.2. Tooth Surface Modeling of the Pinion

The pinion is machined by tool tilting mechanism and one-sided method, and modeling of the
pinion is more complicated than that of the gear. The forming process of the pinion is shown in
Figure 3.
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β1 is the coordinate system of the pinion machine tool; P1 is the unit vector of the axis direction
of the gear; α01 is the pressure angle of the pinion cutter head; β01 is the coordinate system of the
gear cutter head; b is the projection of k01 on plane i1 − j1; S1 is the radial cutter position; q1 is the
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angular cutter position; E01 is the vertical wheel position; X01 is the axial wheel position; XB1 is the bed
position; δM1 is the root angle of machine tool; j is the turning angle of the cutter; i is the inclination
angle of the cutter; r01 is the radius of the tool tip; re1 is the cutter tip arc radius; θ1 is the angle between
the section of cutter disk axis passing O0M0 and i1. Let

∣∣∣MM0
∣∣∣=s1; then, in σ01, the radius vector rC1

and normal vector nC1 of M points on the cutting surface can be represented as follows:

rc1(s1,θ1) =


(r01 − s1sinα01)cosθ1
(r01 − s1sinα01)sinθ1

−s1cosα01

 (17)

nc1(θ1) =


cosα01cosθ1

cosα01sinθ1

−sinα01

 (18)

θ01 is the angle between OeM and the axis of the cutter head, and the radius vectors re1 and normal
vectors ne1 of M on the cutter tip arc can be represented as:

re1(θ01,θ1) =


(rOe1 ∓ re1sinθ01)cosθ1
(rOe1 ∓ re1sinθ01)sinθ1

re1(1− cosθ01)

 (19)

ne1(θ01,θ1) =


sinθ01cosθ1

sinθ01sinθ1

∓cosθ01

 (20)

The cutter head rotates ∆q1 around k:

M∆q1(∆q1) =


1 0 0 S2 cos(q2 + ∆q2)

0 1 0 S2sin(q2 + ∆q2)

0 0 1 0
0 0 0 1

 (21)

β01 rotates (q1 − j) around k01:

M j =


cos(q1 − j)
sin(q1 − j)

0
0

−sin(q1 − j)
cos(q1 − j)

0
0

0
0
1
0

0
0
0
1

 (22)

Then, i rotates around i01:

Mi =


1 0 0 0
0 cosi sini 0
0 −sini −cosi 0
0 0 0 1

 (23)

In conclusion, the relationship between β01 and β1 can be represented as:

Mβ01(∆q1) = M∆q1M jMi (24)

βP moves E01 along j:

ME01 =


1 0 0 0
0 1 0 E01

0 0 1 0
0 0 0 1

 (25)
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Then, −XB1 moves along k:

MXB1 =


1 0 0 0
0 1 0 0
0 0 1 −XB1

0 0 0 1

 (26)

Rotating (90◦-δM1) around j:

MδM1 =


sinδM1 0

0 1
−cosδM1 0

0 0
cosδM1 0

0 0
sinδM1 0

0 1

 (27)

Moving −X1 along P1:

MX1 =


1 0 0 0
0 1 0 0
0 0 1 −X1

0 0 0 1

 (28)

The cutter head rotates ∆q1 around k and the pinion rotates ψ1 = i01∆q1 around P1:

Mψ1(∆q1) =


cos(ψ1)

sin(ψ1)

0
0

−sin(ψ1)

cos(ψ1)

0
0

0
0
1
0

0
0
0
1

 (29)

The homogeneous transformation matrix of the pinion coordinate system βP and the machine
tool coordinate system β1 is obtained:

Mβp = ME01 MXB1MδM1MX1Mψ1 (30)

The homogeneous transformation matrix of the cutter head coordinate system β01 and the pinion
coordinate system βP can be calculated as:

M01(∆q1) =
(
Mβp

)−1
Mβ01 (31)

In the pinion coordinate system βP, the radius vector r1 of the conjugate tooth surface can be
represented as:

r1(s1,θ1, ∆q1) = M01rc1 (32)

The unit normal vector n1 of the conjugate tooth surface of the pinion can be represented as:

n1(θ1, ∆q1) = M01nc1 (33)

The relative velocity at any point of the conjugate tooth surface of the pinion can be calculated:

vp(s1,θ1, ∆q1) =
∂r1

∂ψ1
(34)

The expressions of vp and n1 are substituted for the meshing equation, and the following can
be obtained:

vp·n1 = 0 (35)
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From Equation (35), it can be concluded that s1 is a function with θ1 and ∆q1 as parameters.
Plugging s1 = f (θ1, ∆q1) into Equation (32), the equation r1(θ1, ∆q1) of the pinion surface and
transition surface is obtained. When ∆q1 changes, a series of contact lines can be calculated, and
constitute the tooth surface of the pinion, as shown in Figure 4.
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2.3. Meshing Contact Modeling

The mathematic models of the gear and the pinion are established in the gear coordinate system βg

and the pinion coordinate system βp, respectively. In order to make the position relationship of spiral
bevel gear pair consistent with the theoretical design, transforming the pinion coordinate system βp is
into the gear coordinate system βg. The gear rotates around p2 axis and the pinion rotates around p1
axis, when r2, n2 rotatesϕ2 around p2, and r1, n1 rotatesϕ1 around p1, the conjugate contact between
M point on the gear tooth surface and M point on the pinion tooth surface is established. The equation
R2 and the normal vector N2 of tooth surface of the gear at the contact point can be represented as:

R2 =
(
r2·p2

)
p2 + sinϕ2

(
p2 × r2

)
+ cosϕ2

(
p2 × r2

)
× p2 (36)

N2 =
(
n2·p2

)
p2 + sinϕ2

(
p2 × n2

)
+ cosϕ2

(
p2 × n2

)
× p2 (37)

The equation R1 and the normal vector N1 of the gear at the contact point can be represented as:

R1 =
(
r1·p1

)
p1 + sinϕ1

(
p1 × r1

)
+ cosϕ1

(
p1 × r1

)
× p1 (38)

N1 =
(
n1·p1

)
p1 + sinϕ1

(
p1 × n1

)
+ cosϕ1

(
p1 × n1

)
× p1 (39)

According to the meshing principle of gears, R2, R1, N2, and N1 should satisfy the equations as
follows: {

R2 = R1 −O1O2

N2 = N1
(40)

There are six unknowns θ1, θ2, ∆q1, ∆q2, ϕ1, and ϕ2 in the above equations; however, there are
only five independent equations. When the pinion rotation angle ϕ1 is given as input according to the
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step size, the equations can be solved. The pinion rotation angle at each moment corresponds to a
meshing point, and all meshing points from entry to exit form a contact trace. The following Figure 5
shows the contact point position of the two teeth surfaces (after the gear rotating angle ϕ2 and the
pinion rotating ϕ1).
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3. Solid Modeling and Finite Element Model

3.1. Examples of Calculation

In order to verify the correctness of the previous mathematical model of the gear pair and to
analyze the loaded contact characteristics of the tooth surface, a pair of Grison spiral bevel gears which
is used in the axle of a domestic heavy-duty vehicle was selected as the test specimen. The parameters
are listed in Table 1.

Table 1. Basic tooth geometric parameters.

Geometrical Parameter
Description

Pinion Gear

Number of teeth 15 46
Hand of spiral Left Right

Modification coefficient 0.35 −0.35
Pitch diameter (mm) 90 276
Tip diameter (mm) 117.48 423.28

Module (mm) 6
Shaft angle (◦) 90

Pressure angle(◦) 20
Tooth width(mm) 44

Spiral angle (◦) 35
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3.2. Constructing Solid Geometry Model

Based on the mathematical model established above, the calculated lattice data of tooth surface,
transition surface, and root cone surface are imported into the software Pro/Engineer, and the discrete
points are fitted with spline curve, which are shown in Figure 6 below.
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3.3. Transmission System Model

The assembly model of spiral bevel gear was imported into ANSYS software for finite element
analysis. Under actual conditions, the gear pair will not be an isolated system. The whole transmission
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system includes supporting shafts, bearings, Gearbox, and so on. However, if all parts of the
transmission system are imported into software, the solving time will be greatly increased, and the
results may not converge. Therefore, it is necessary to simplify the model properly.

As shown in Figure 8, other structural components are omitted, such as bearings and gearboxes,
which have little influence on the analysis results, and key parts are retained, such as gear teeth and
rotating shafts. In order to simplify the analysis, the gear and its rotating shaft are consolidated together.
The gear adopts two-end span support structure, while the pinion adopts the common cantilever
support structure. The bearing support position of the pinion spindle is not only installation and
positioning boundary, but also input end of torque T1, and the bearing support near the large wheel is
load T2 input end.
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3.4. Material Property and Mesh Generation

The material of the spiral bevel gear pair is 20CrMnTiA, which was heat treated by carburization,
quench, and low temperature tempering. The corresponding material properties are shown in Table 2.
Due to heavy load, the material of the rotating shaft adopts high strength carburized steel. In order to
get better contact analysis results, the whole model uses eight-node linear hexahedron element for
contact analysis. Meanwhile, in order to improve the calculation accuracy of tooth surface contact
analysis, the mesh refinement of contact surface of gear pair is carried out, listed in Figure 9. We
selected the Von Mises material model, which is suitable for metallic materials finite element analysis.

Table 2. Material properties of 20CrMnTiA.

Material E/(GPa) v ρ/(kg/m3) σHlim/(MPa) σFlim/(MPa) R0.2/(MPa)

20CrMnTiA 207 0.25 7800 1475 415 850
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4. Simulation Results

4.1. Tooth Surface Contact Pattern

Different torques (500 Nm, 1500 Nm and 4500 Nm) are set to simulate light, medium, and heavy
loads, respectively, the variation of contact pattern on the convex face of the gear is shown in Figure 10.
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T = 1500 Nm, and (c) Load T = 4500 Nm.

We can find in Figure 10 above that, when load T is 500 Nm, the instantaneous contact pattern is
relatively small. Compared Figure 10b,c with Figure 10a, the directional angle γ becomes smaller, the
contact line becomes longer, and the instantaneous contact pattern becomes larger with the load T
increasing. Therefore, we can confirm that the load is an important factor affecting the contact area and
the contact trace of the bevel gear tooth surface. In addition, the contact zone of tooth surface extends
to the large end with the increase of load T, but not to the small end. When the torque T increases to
4500 Nm, the edge contact occurs on the tooth surface of the gear which will induce vibration, shock,
and be harmful to transmission stability.

4.2. Tooth Surface Contact Stress

When load T = 1500 Nm, T = 4500 Nm, and T = 7500 Nm, the variation of contact stress on the
convex face of the gear is shown in Figure 11.



Appl. Sci. 2020, 10, 5109 13 of 23

Appl. Sci. 2019, 9, x 12 of 21 

We can find in Figure 10 above that, when load T is 500 Nm, the instantaneous contact pattern 
is relatively small. Compared Figure 10b,c with Figure 10a, the directional angle γ becomes smaller, 
the contact line becomes longer, and the instantaneous contact pattern becomes larger with the load 
T increasing. Therefore, we can confirm that the load is an important factor affecting the contact area 
and the contact trace of the bevel gear tooth surface. In addition, the contact zone of tooth surface 
extends to the large end with the increase of load T, but not to the small end. When the torque T 
increases to 4500 Nm, the edge contact occurs on the tooth surface of the gear which will induce 
vibration, shock, and be harmful to transmission stability. 

4.2. Tooth Surface Contact Stress 

When load T = 1500 Nm, T = 4500 Nm, and T = 7500 Nm, the variation of contact stress on the 
convex face of the gear is shown in Figure 11.  

 
(a) (b) (c) 

Figure 11. Comparison of loaded contact stress of the gear convex face: (a) Load T = 1500 Nm, (b) 
Load T = 4500 Nm, and (c) Load T = 7500 Nm. 

As shown in Figure 11, the above results indicates that, with the increase of load T, the 
maximum contact stress ߪு of the gear convex face becomes larger, and the worst contact zone 
appears in the small end teeth top of the gear. When load increases from 1500 Nm to 7500 Nm, 
the comparisons between the simulation results and the calculated results of empirical formula 
are listed in Table 3 below. The empirical formula is according to ISO 10300 and ISO 6336, which 
is shown in Equations (41) and (42) [24,25]. The calculation is based on the contact (Hertzian) 
stress, in which the load is distributed along the lines of contact. Calculations are to be carried 
out for pinion and wheel together, and some parameters for contact stress calculation were 
determined by engineering experience, processing technology, and actual operation conditions, 
such as gear geometry, manufacturing accuracy, rigidity of flange, bearing and bearing seat, and 
torque transmitted. We can find that, with the increase of loading torque, the change trend of 
FEM and calculated results are similar. In addition, the results of empirical formulas are about 
10–15% larger than analyzed ones. The authors believe that the FEM accuracy, constraint 
condition setting, and the parameters selection of theoretical formula cause the difference value: 

ு࣌  =  ுఈ  (41)ࡷுఉࡷࡷࡷுට࣌ 

ு࣌  = ට ೝ್࣋ࡲ   is the length of , is the nominal normal force of the virtual cylindrical gear at mean pointࡲ ,ு is the nominal value of the contact stress࣌  ,ுఈ is the transverse load factor for contact stressࡷ ,ுఉ is the face load factor for contact stressࡷ , is the dynamic factorࡷ ,  (42) ۹ is the application factorࢆாࢆௌࢆெିࢆ
contact line in the middle of the zone of action, ࣋ is the radius of relative curvature vertical to the 
contact line, ࢆெି is the mid-zone factor, ࢆௌ is the load sharing factor, ࢆா is the elasticity factor, 
and ࢆ is the bevel gear factor. 

Figure 11. Comparison of loaded contact stress of the gear convex face: (a) Load T = 1500 Nm, (b) Load
T = 4500 Nm, and (c) Load T = 7500 Nm.

As shown in Figure 11, the above results indicates that, with the increase of load T, the maximum
contact stress σH of the gear convex face becomes larger, and the worst contact zone appears in the small
end teeth top of the gear. When load increases from 1500 Nm to 7500 Nm, the comparisons between
the simulation results and the calculated results of empirical formula are listed in Table 3 below. The
empirical formula is according to ISO 10300 and ISO 6336, which is shown in Equations (41) and
(42) [24,25]. The calculation is based on the contact (Hertzian) stress, in which the load is distributed
along the lines of contact. Calculations are to be carried out for pinion and wheel together, and some
parameters for contact stress calculation were determined by engineering experience, processing
technology, and actual operation conditions, such as gear geometry, manufacturing accuracy, rigidity
of flange, bearing and bearing seat, and torque transmitted. We can find that, with the increase of
loading torque, the change trend of FEM and calculated results are similar. In addition, the results of
empirical formulas are about 10–15% larger than analyzed ones. The authors believe that the FEM
accuracy, constraint condition setting, and the parameters selection of theoretical formula cause the
difference value:

σH = σH0

√
KAKVKHβKHα (41)

σH0 =

√
Fn

lbmρrel
ZM−BZLSZEZK (42)

KA is the application factor, KV is the dynamic factor, KHβ is the face load factor for contact stress, KHα

is the transverse load factor for contact stress, σH0 is the nominal value of the contact stress, Fn is the
nominal normal force of the virtual cylindrical gear at mean point, lbm is the length of contact line in
the middle of the zone of action, ρrel is the radius of relative curvature vertical to the contact line, ZM−B

is the mid-zone factor, ZLS is the load sharing factor, ZE is the elasticity factor, and ZK is the bevel
gear factor.

Table 3. Results comparison of FEM and empirical formula of maximum contact stresses.

Load T/Nm Calculated Results σH/MPa Simulation Results σH/MPa Values of Differences ∆%

1500 632.79 573.83 9.32
3000 815.48 758.25 7.02
4500 1045.32 914.49 12.51
6000 1324.21 1138.1 14.05
7500 1569.74 1331 15.21
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4.3. Tooth Root Bending Stress

When load T = 500 Nm, T = 1500 Nm and T = 4500 Nm, the maximum root bending stress
variation of the gear and the pinion is shown in Figure 12.

As shown in Figure 12, the maximum root bending stress appears near the transition line between
tooth surface and tooth root. When the load T increases, the root bending stresses also increase, and
the maximum root bending stress σF2 of the gear is less than the maximum root bending stress σF1

of the pinion. When torque increases from 1500 Nm to 7500 Nm, the maximum root bending stress
σF comparisons between the FEM results and the calculated results of empirical formula are listed
in Table 4 below. The empirical formula is according to ISO 10300 and ISO 6336, which is shown in
Equations (43) and (44). The calculation is based on the maximum bending stress at the tooth root. It is
determined separately for pinion and wheel. Some parameters for root bending stress calculation were
determined by engineering experience and actual operation conditions, such as geometric similarity,
operation, and manufacturing of actual gears:

σF = σF0KAKVKFβKFα (43)

σF0 =

√
Fvmt

bvmmn
YFaYSaYεYBSYLS (44)

KFβ is the face load factor for bending stress, KFα is the transverse load factor for bending stress,
σF0 is the nominal tooth root stress, Fvmt is the nominal tangential force of the virtual cylindrical gear,
bv is the face width of virtual cylindrical gear, mmn is mean normal module, YFa is the tooth form factor,
YSa is the stress correction factor, Yε is the contact ration factor, YBS is the bevel spiral angle factor, and
YLS is the load sharing factor.

Table 4. Results comparison of FEM and empirical formula of bending stresses.

Load T/Nm

Gear Pinion

FEM
Results
σF2/MPa

Calculated
Results
σF2/MPa

Values of
Differencs

∆%

FEM
Results
σF1/MPa

Calculated
Results
σF1/MPa

Values of
Differences

∆%

1500 296 343 13.71 338 389 13.11
3000 456 529 13.79 567 643 11.82
4500 621 710 12.54 791 883 10.42
6000 805 890 9.55 925 1039 13.86
7500 912 1067 12.52 1183 1352 12.5

As shown in Table 4, the results show that the results of finite element analysis and empirical
formula are similar, and the empirical value is about 10–14% larger than that of finite element analysis.
The authors believe that one reason is that the load T increases the deformation of the bevel gears,
which increases the actual contact ratio of the bevel gears, but the empirical value does not take this
into account. Another reason is that the finite element model constraint condition setting and the
parameters selection of theoretical formula will affect the difference value.

In order to observe the distribution of the maximum tooth root bending stress in a meshing period,
the FEM analysis of the root bending stress is carried out by rotating the gear step by step. When load
increases from 1500 Nm to 7500 Nm, the variation of the maximum value of root bending stresses of
the pinion and the gear is shown in Figure 13.
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Figure 12. Comparison of maximum root bending stress of the gear and pinion: (a) the gear 𝑇ଶ= 1500 
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Figure 12. Comparison of maximum root bending stress of the gear and pinion: (a) the gear T2 = 1500 Nm, (b) the gear T2 = 4500 Nm, (c) the gear T2 = 7500 Nm,
(d) the pinion T1 = 1500 Nm, (e) the pinion T1 = 4500 Nm, and (f) the pinion T1 = 7500 Nm.
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As shown in Figure 13, the horizontal axis represents single tooth meshing period of the gear
and pinion due to instantaneous contact point from the small end to the large end, or vice versa.
Longitudinal axis is the maximum bending stress distribution along the root cone line. We can find
that, when the load T is small, the mean bending stresses of the small end teeth root of gear and pinion
are greater than that of the big end teeth root during the same meshing period because the modulus of
the small end are smaller, which causes the bending strength of the small end to be relatively weak.
When the load T increases gradually, the mean bending stresses of the small end teeth root of gear and
the pinion are still greater than that of the big end teeth root during the same meshing period; however,
the reasons are quite different. From previous research of the contact pattern, we can know that the
moving direction of the contact pattern on the gear teeth surface is from the small end teeth top to the
big end teeth root with the torque T increasing, making the contact pattern closer to the big end of the
gear. Thus, the bending stresses of the small end teeth root of the gear are slightly larger than that
of the big end teeth root. In contrast, the moving direction of the contact pattern on the pinion teeth
surface is from the big end teeth root to the small end teeth top with the torque T increasing, making
the contact pattern closer to the small end of the pinion. Thus, the bending stress of the small end
tooth root of the pinion is much larger than that of the big end tooth root. Meanwhile, because of the
distance of the tooth direction of the pinion is larger, the distribution of the root bending stress of the
pinion is more concentrated in the tooth direction.

4.4. Transmission Error

We simulated transmission error by KISSsoft software, which is widely used and reliable in the
gear field. A precise spiral bevel gear transmission system model was established before simulation
calculation, and KISSsoft can calculate the difference value between theoretical and actual rotation
angle during the meshing process, which considers the influence of bearings and the deformation of
shafts and gears. According to the actual load condition, different moments (500 Nm, 1500 Nm and
4500 Nm) are set to simulate light, medium, and heavy loads, respectively.

The transmission error curves of this gear drives under different moment are shown in Figure 14.
In addition, all transmission error curves are translated to zero position for better comparison. We can
know that the transmission error change period is synchronized with the pitch angle of the pinion.
Due to the increasing elastic deformation of the gear and the rotating shaft with the load T increases,
the absolute value and peak to peak of the transmission error curves become larger. The transmission
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error curve under the heavy load (4500 Nm) fluctuates much more severely because of the increase of
gear deformation and meshing impact.
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5. Verification Test

5.1. Construction of Test Bench

As shown in Figure 15 below, a contact performance test bench of spiral bevel gear pair was
developed. The test scheme adopts servomotor and high deceleration ratio gearbox combined drive
mode to realize quasi-static loading. Meanwhile, different loading torques are achieved through
hydraulic torque loading equipment.
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5.2. Tooth Contact Pattern Test

When the loading torque T = 500 Nm, 1500 Nm, and 4500 Nm is applied separately, the real
images of the contact pattern of the teeth surface are compared with the FEM simulation result as
shown in Figure 16.
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As shown in Figure 16 above, we can find that the test and simulation results are basically
consistent, and directional angle and contact trace change trends are similar, which preliminarily
verifies the reliability of previously generated finite element models. The theoretical contact ratio of
this spiral bevel gear pair is 2.26, which is calculated by Equation (45) according to gear design and
manufacture parameters [26]. The theoretical contact ratio is the maximum contact ratio of gear pair
can be achieved with the increase of load under the condition of no edge contact. Compared the real
images of Figure 16a with Figure 16b above, we can find that, when the load T increases from 500 Nm
to 1500 Nm, the contact pattern becomes larger but still within the tooth surface boundary, so the actual
contact ratio of condition (a) and (b) are smaller than theoretical contact ratio, and the value are 1.53
and 1.74, which are calculated by Equations (46) and (47) [27,28]. When load T is 4500 Nm, compare
with 500 Nm and 1500 Nm, the contact pattern extend to the large end of the boundary and occur edge
contact, so the actual contact ratio of condition (c) exceeds theoretical contact ratio, the result is 2.31.

εγ =
√
εα2 + εβ2 (45)

εγ is theoretical contact ratio, εα is transverse contact ratio, and εβ is overlap contact ratio.

εγ
′ =

εα′
2√

εα′2 − I1
2

(46)

I1 =
3

√
CPT1

CPDT1D

εαεβ

εγ
(47)
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εγ′ is actual contact ratio, εα′ is revised transverse contact ratio, CP is load distribution ratio, CPD is
load distribution ratio under full load, T1 is actual load and T1D is full load.

In summary, the actual contact ratio increases with the load T increases, which is beneficial to
increase the meshing stiffness and improve the smoothness of transmission. When actual contact ratio
is too large, the gear pair will occur severe edge contact, vibration, shock and noise. On the one hand,
we need design theoretical contact ratio properly according to gear parameters and actual operating
conditions, avoiding actual contact ratio greater than theoretical contact ratio. On the other hand,
when we need loading large load, the actual installation position should make the contact zone of the
tooth surface close to the small end when the light load is applied, so as to fully exert the loading
capacity of the tooth surface, and avoiding edge contact under heavy load as much as possible.

5.3. Tooth Root Bending Stress Test

As established in Figure 17, the numbers of root bending stress signal channels are limited, and
tooth pitch of pinion is too small to install the strain gauges. Eight strain gauges are installed on the
adjacent teeth of the gear before the test, and the positions are arranged from the small end to the big
end of the gear. Because of excessive torque (T ≥ 5000 Nm) may cause damage to strain gauges, load
T = 1500 Nm, T = 3000 Nm and T = 4500 Nm are applied to the gear respectively during the test.

The results comparison of test and FEM of root bending stresses is shown in Figure 18 below.
We can find that the test results and the FEM results showed a trend similar, which can verify the
effectiveness of the finite element model. The test bending stress of the small end teeth root are
slightly larger than that of the large end teeth root, and the maximum root bending stress spot moves
towards the large end with torque increases, which indicates the reliability of the previous discussion.
The difference between the test results and the FEM results is that the root bending stress solved by
simulation is the geometric average value of the stress in three directions, while the strain gauge
measures the strain in one direction of the tooth height. Due to the influences of installation position
error, measurement accuracy, and temperature factors, there is a deviation between the test results and
the FEM values.
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5.4. Transmission Error Test

As established in Figure 19 below, this test bench adopts high precision circular gratings for
measuring transmission error of gear pairs under quasi-static loading, and the circular gratings were
installed on the both ends of spiral bevel gear pair, which can measure the relative angular displacement.
We calculated transmission error according to Equation (48):

TE = ∆ε1 − iT∆ε2 (48)

where TE is transmission error, iT is theoretical transmission ratio between input and output gear, and
∆ε1, ∆ε2 is rotation angle of input and output gear measured by circular gratings during the same
period separately.Appl. Sci. 2019, 9, x 19 of 21 
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The test results of transmission errors after translation are shown in Figure 20 below. We can
know that the absolute value and peak to peak of test results are larger than that of FEM results, but
the variation trend and fluctuation period of the two are similar.
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We can further analyze the difference between test results with simulation results. We define the
rotation speed of gear as w1 = τ1, and the rotation speed of gear w2 = i(t)τ2. i(t) is instantaneous
transmission ratio. Relative speed of gear and pinion in meshing position can be represented as:

v12 = τ1 ×R2 − i(t)τ2 ×R1 (49)

For the meshing equation v12· N2 = 0, we can get i(t):

i(t) =
(τ2, R2, N2)

(τ1, R1, N1)
=

(τ2, r2, n2)

(τ1, r1, n1)
(50)

We can know from above Equation (50), instantaneous transmission ratio i(t) changes with contact
point changes, so it is not necessarily equal to theoretical transmission ratio iT. When load T is small,
the fluctuation amplitude of i(t) is not obvious, and i(t) fluctuates around the theoretical value. When
load T becomes larger, the fluctuation amplitude of i(t) increases with the deformation and the contact
ratio of gear pair increases. One reason for the difference is that the instantaneous transmission ratio
of spiral bevel gear pair is changing, while the test results used the unchanging transmission ratio
for calculation. Another reason is that the measurement accuracy and signal interference of circular
grating affect the correctness of test results.

6. Conclusions

This paper presents an accurate mathematical model of tooth surface, fillet surface, and root cone
surface of spiral bevel gear pair. Based on the calculated lattice data, an FEM model of spiral bevel
gears transmission system has been constructed which considers the deformation of gear and shaft,
bearing support, and solving time. For further study, we develop a test bench for contact performance
of spiral bevel gear pairs and compare the formula calculated results, FEM results, and experiment
results together. The formula calculated value of contact stress is about 10–15% larger than that of FEM
analysis value. The real images of contact pattern are basically with simulation results, and the actual
contact ratio of 500 Nm and 1500 Nm load are smaller than theoretical values, and are 1.53 and 1.74,
respectively. When the load is 4500 Nm, the test gear has edge contact and the actual contact ratio
exceeds the theoretical value, reaching 2.31. The formula calculated value of tooth root bending stress
is about 10–14% larger than that of the FEM analysis value, and the test results and the FEM results
show variation trends that are similar and have some differences too. The absolute value and peak
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to peak of transmission error test results are larger than that of FEM results, but the variation trend
and fluctuation period of the two are basically consistently similar. The reason for the difference is
that the instantaneous transmission ratio i(t) is changing, while the test results used the theoretical
transmission ratio iT for calculation.

In the future, the target will focus on FEM model accuracy by comparing with real parts using
3D scanning or cross-sections, optimize the measurement scheme, and finally reduce the difference
between FEM results with experiment results. In the meantime, we will thoroughly study the global
optimization design method of tooth contact characteristics and the correlation between quasi-static
and dynamic operation condition.
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