
applied
sciences

Article

SHFuzz: Selective Hybrid Fuzzing with Branch
Scheduling Based on Binary Instrumentation

Xianya Mi , Baosheng Wang *, Yong Tang, Pengfei Wang and Bo Yu

College of Computer, National University of Defense Technology, Changsha 410073, China;
mixianya09@nudt.edu.cn (X.M.); ytang@nudt.edu.cn (Y.T.); pfwang@nudt.edu.cn (P.W.);
yubo0615@nudt.edu.cn (B.Y.)
* Correspondence: bswang@nudt.edu.cn

Received: 13 July 2020; Accepted: 3 August 2020; Published: 6 August 2020
����������
�������

Abstract: Hybrid fuzzing is a popular software testing technique that combines random fuzzing
with concolic execution. It is widely used in the security domain known for its ability to find deeply
hidden vulnerabilities and reach high code coverage. Hybrid fuzzing is based on negating branches
in the execution path of a specific input to generate new test cases. However, due to numerous
inputs and related branches, it does not show the best of its effectiveness without input and branch
selection methods. In this paper, we systematically analyze the branch scheduling problem in the
internal attributes of hybrid fuzzing, focusing on the synchronization mechanism. To solve the
problems, we propose the Selective Hybrid Fuzzing (SHF) approach with branch scheduling based
on binary instrumentation. There are two major parts to the SHF approach: (1) we propose a critical
branch selection algorithm to select critical branches by three metrics: hit accuracy, solvability,
and complexity; (2) we propose a priority score calculation algorithm to select inputs by the number
of critical branches. With the SHF approach, we choose only the branches that can be negated to
generate new coverage, instead of repeatedly executing the same branches and generating duplicates
of inputs. We implement a hybrid fuzzer called SHFuzz with our SHF approach and compare it
with the state-of-the-art hybrid fuzzer QSYM. In the evaluation, SHFuzz outperforms QSYM in
20 real-world applications from the Google Fuzzer Test Suite and other program suites in a 12 h
test. On average, SHFuzz achieves 8.40% more code coverage and 100 more unique crashes in each
application. Our work also finds existing vulnerabilities 7.85× faster than QSYM. We also find new
bugs by SHFuzz, which QSYM fails to find. Our evaluation shows that the selective hybrid fuzzing
approach can reduce the number of branches executed in concolic execution, enhancing hybrid
fuzzing on code coverage and bug finding capabilities.

Keywords: concolic execution; coverage-based fuzzing; hybrid fuzzing; fuzzing; software testing

1. Introduction

Fuzzing [1] is a software testing method that randomly mutates the inputs, trying to reach
the target execution paths. It is widely used in the software security domain, especially in finding
vulnerabilities and increasing program coverage. Random testing lacks efficiency since the search
space of random mutation is too large to reach full coverage. If we try to fuzz a program with the
input length as long as 10 bytes, the search space will be 280 (10 bytes, each byte with eight bits).
The problem can be even worse when the length grows longer. Therefore, different fuzzing methods
based on various assumptions have come out to satisfy different goals. Despite the diverse methods
and techniques, the core ideas of these approaches are similar: reduce the size of the search space and
reach the target path as fast as possible.

Appl. Sci. 2020, 10, 5449; doi:10.3390/app10165449 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-2588-2049
http://dx.doi.org/10.3390/app10165449
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/16/5449?type=check_update&version=2

Appl. Sci. 2020, 10, 5449 2 of 20

Based on the method of mutating inputs, there are three different methods: mutation-based
fuzzing, grammar-based fuzzing, and hybrid fuzzing. Mutation-based fuzzing [2–5] uses different
heuristics based on program analysis to reduce the search space for efficiency. The disadvantage of this
method is that it is difficult to pass complicated format checks. Grammar-based fuzzing [6–8] solves this
problem to some extent by inferring the structure of the inputs to pass the input format checks.
However, this method needs extra work to build input file grammar before fuzzing. In recent years,
hybrid fuzzing [9–14] has been widely researched and discussed in the security domain, which utilizes
the effectiveness of concolic execution [15,16], as well as the efficiency of fuzzing. Concolic execution
is a mixed method of symbolic execution [17] and concrete execution, which builds logical constraints
of branches in the program and generates new test cases by negating and solving the branches with
the help of Satisfiability Modulo Theories (SMT) solvers [18]. The advantage of hybrid fuzzing is that
for complicated checks that are hard to find by mutation-based fuzzing, concolic execution can solve
those checks and make program execution deeper into the longer paths. Meanwhile, fuzzing can find
shallow paths with simple checks quickly and compensate for the larger resources spent by concolic
execution. Existing works [9,10,15,19] show that hybrid fuzzing can achieve more program execution
coverage and find more bugs compared with mutation-based fuzzing.

There are three implementation methods of applying hybrid fuzzing: demand launch,
optimal switch, and synchronization. Driller [9] and other works [15] used the demand launch strategy,
which only triggers the concolic execution engine when fuzzing gets stuck. The core idea of this method
seems reasonable since concolic execution is good at solving complicated checks, which fuzzing fails to
pass; however, it is hard to define what a “stuck” situation looks like. The previous work [11] showed
that for most evaluations using Driller, the concolic execution engine is never triggered in the limited
time because fuzzing never reaches a “stuck” state. MDPC [19] uses the optimal switch method,
which computes the costs of solving every branch by fuzzing and concolic execution, respectively,
and then chooses the more economic method for each branch. DigFuzz [11] extends this method by
a step forward to make optimal decisions more efficient. The demand launch method and optical switch
method share one important feature in common: the fuzzer and the concolic execution engine are
triggered sequentially instead of in parallel. It may seem practical with single-core CPUs, which have
limited computation capability; however, with modern multi-core CPUs and large memory space,
the power of parallel computation is not utilized enough. Thus, the third method by synchronization
comes out, which runs the concolic execution engine in parallel with the fuzzer and synchronizes
the newly generated test cases with the fuzzer from time to time. QSYM [10] is the state-of-the-art
hybrid fuzzing work, which has a highly tailored concolic execution engine designed for fuzzing
and a synchronization method with the AFL [2] fuzzer. It shows impressive efficiency in finding
vulnerabilities and increasing program execution coverage because running concolic execution in
parallel can generate much more new inputs than the other two methods.

Although hybrid fuzzing with the synchronization method seems like the most efficient way,
for now, there are still numerous unsolved problems related to its mechanism. Firstly, there are
too many candidate inputs for concolic execution. The fuzzing engine can generate numerous
candidate inputs in the queue, mostly as many as thousands of inputs in 12 h, while at the same
time, concolic execution can only analyze hundreds of inputs at most. For example, we test
libjpeg-turbo-07-2017 in the Google Fuzzer Test Suite [20] with QSYM for 12 h and find that there are
4420 test cases generated in the AFL slave queue, while QSYM, which selects the candidate input
to perform concolic execution from this queue, analyzes 483 files and generates 1444 new test cases.
In this case, only 10% of the candidate inputs are analyzed. If we choose the candidate inputs randomly,
the effectiveness of finding deeper paths cannot be optimized. The reason for this problem is that the
time of concolic execution for one input is normally counted by minutes or even hours, and as a result,
in a certain amount of time, not many inputs can be executed. Thus, we need a clever input selection
method for concolic execution.

Appl. Sci. 2020, 10, 5449 3 of 20

Secondly, there are many branches in one input. Since the theory of concolic execution is to
negate the branches of executing one input to generate new test cases, solving every branch in the
program will take too much time, especially when there are loops in the code. Besides, most candidate
inputs share same branches, causing the overlap of newly generated test cases. This means there
will be duplicates of inputs that guide execution to the same coverage, and the fuzzer will take extra
time to analyze and synchronize those duplicates and cause unnecessary overhead, i.e., time and
memory assumption.

Thirdly, different branches have different complexities, and some of them are not suitable for
concolic execution to solve. Different complexities of branches result in different times to solve by
concolic execution. Some of the branches are easy enough for the fuzzer to find, so the newly generated
test cases from these branches may not be synchronized by the fuzzer because they have already been
found by the fuzzer. In other words, concolic execution should focus more on the complicated branches
than the simple ones. In summary, the ideal way to perform hybrid fuzzing with synchronization is
that every new test case generated by concolic execution should guide the execution to new coverage,
which fuzzing can hardly reach. Our approach intends to get as close to this aim as possible.

In this paper, we propose a Selective Hybrid Fuzzing (SHF) approach to solve these problems
and enhance the performance of hybrid fuzzing, with two main algorithms. (1) The critical branch
selection algorithm: We use three metrics, hit accuracy, solvability, and complexity, to describe the
critical information provided by each branch. Specifically, we use dynamic binary instrumentation,
a technique to analyze binary programs with instrumentation when running the program, to get the
information of program execution, based on which we try to find out the branches that can guide
the execution to the unexplored path, solvable to get new test cases and hard to be found by the
fuzzer. (2) The priority score calculation algorithm: We choose the input with the most optimal
branches as the candidate input for concolic execution based on the branch scheduling results from the
previous method.

Our contributions:

• We systematically study the branch scheduling problem in hybrid fuzzing with the
synchronization mechanism. We analyze the three internal causes of the problem and try to
solve them by proposing a novel solution based on binary instrumentation without the demand
of source code.

• We propose the Selective Hybrid Fuzzing (SHF) approach with two algorithms: (1) the critical
branch selection algorithm to calculate the critical score of each branch by three metrics:
hit accuracy, solvability, and complexity; (2) the priority score calculation algorithm to select
the input with the most critical branches. This solution can schedule inputs and branches in
a sequence that will enhance the performance of hybrid fuzzing in the best way with acceptable
overhead. Our approach is based on dynamic analysis by instrumentation in run-time, which is
adaptive to different situations.

• We implement a hybrid fuzzer called SHFuzz, using our SHF approach, and compare it with the
state-of-the-art hybrid fuzzer as a baseline. The evaluation shows that our solution can reduce
the number of non-critical branches to solve and improve the performance of hybrid fuzzing on
20 real-world applications.

2. Background

In this section, we introduce the background of our work, which is divided into three major parts:
coverage accuracy, input scheduling, and hybrid fuzzing.

2.1. Coverage Accuracy

For the coverage-based fuzzing method, the coverage is the main metric to evaluate the
performance, though there are different ways to define how to compute coverage. The accuracy of

Appl. Sci. 2020, 10, 5449 4 of 20

different coverage computation methods is firstly discussed systematically by CollAFL [21], which also
proposes a new method to improve this metric based on AFL [2], i.e., a widely-used fuzzer baseline.
There are three different coverage computation methods: basic block coverage, edge or branch coverage,
and path coverage. We use a simple program execution figure to explain their differences, as shown
in Figure 1.

Figure 1. A simple program illustration with basic blocks and execution paths.

If we consider each basic block as a different coverage, then for the simple program shown in
Figure 1, the full coverage of the program can be represented as set {A, B, C, D, E, F}. This metric is the
least accurate one compared with the other two methods. For example, if we already have program
paths (A, B, E, F) and (A, B, D, F), the coverage set will be {A, B, D, E, F}. Then, if we discover a new
execution path (A, B, D, E, F), it will not be considered as a new path because all basic blocks in this
path have already been recorded as explored coverage, and as a result, we will lose context.

Edge coverage describes more information about the execution path from one basic block to
another, which considers the edge between two basic blocks as one unique coverage. If we use edge
coverage to describe the program, it will be represented as set {(A, B), (A, C), (B, D), (B, E), (C, E),
(C, D), (D, F), (D, E), (E, F)}. Though edge coverage is more accurate than basic block coverage, it is
still not perfect. For example, suppose that we have already found program paths (A, B, D, E, F) and
(A, C, D, F), then our coverage set P will be {(A, B), (B, D), (D, E), (E, F), (A, C), (C, D), (D, F)}. If we then
find another path (A, C, D, E, F), which is a new path that has never been executed, however, it will
not be considered under the edge coverage metric, because the edge coverage is set Q {(A, C), (C, D),
(D, E), (E, F)}, which is the subset of the previously calculated set P. As a result, we will lose program
coverage context.

This simple example shows clearly that path coverage is the most accurate way of computing
coverage, edge coverage is less accurate, and basic block coverage is the least accurate. However,
path coverage is hard to apply to real-world scenarios because of the huge overhead for computation.
We need heavy instrumentation analysis on the program to get precise path coverage information.
Therefore, edge coverage is a good trade-off in terms of both accuracy and scalability.

When we try to selectively execute branches in concolic execution, the problem of coverage
accuracy still influences the results. Specifically, it is important to decide whether a branch is executed
or not. If we only consider each branch as unique, then we will lose the context of edge coverage,
similar to the problem we have shown in the previous paragraphs. To solve this problem, we propose
a critical branch selection algorithm with a new way to calculate the branch coverage and decide
whether a branch should be executed or not.

2.2. Input Scheduling

Input scheduling is an important part of fuzzing engines, no matter which kind of fuzzing strategy
they use. Besides hybrid fuzzing, works are focusing on seed selection in both coverage-based fuzzing
and directed fuzzing. In 2014, Alexandre Rebert et al. [22] firstly proposed a systematic analysis for

Appl. Sci. 2020, 10, 5449 5 of 20

the seed selection scheduling problem. They tested six different seed selection strategies on Peach
Fuzzer [23], for example, by minimizing the seed input set according to different features like input size
and execution time. The conclusion is that the seed selection algorithm can influence the performance
of the fuzzer engine, and a well-designed strategy is better than random seed selection. Most fuzzing
engines have their input scheduling strategies instead of random selection.

Early coverage-based fuzzing works [2,24,25] focused more on the inputs, which can introduce
new coverage to the execution, however lacking knowledge on where these new inputs will lead.
Thus, new works came out and considers the information on unique paths to define the quality of
different inputs, such as [3,26]. In general, the intuition of choosing inputs is obvious: we should
choose the inputs that can be mutated to reach unexplored branch paths.

CollAFL [21] introduces three different strategies to solve the input scheduling problem in
a more fundamental way: (a) the memory-access guided strategy, which prefers inputs with more
memory-access operations; (b) the untouched-neighbor-branch guided policy, which is based on
static analysis to find unexplored paths; (c) the untouched-neighbor-descendant guided policy.
These strategies do not apply to our goals. Firstly, our approach aims at increasing coverage, so that
the memory-read directed strategy is of no use to our target. Secondly, in hybrid fuzzing, each branch
will be negated to a certain unexplored path, so that it is not necessary to trace the information of
neighbor branches. In hybrid fuzzing, a more important problem is branch selection, which we will
explain later in the next subsection.

2.3. Hybrid Fuzzing

Hybrid fuzzing was firstly introduced in 2007 [15] and then brought to the public as a hot topic
by Driller [9] in 2016. Both works used the demand launch strategy, which starts the fuzzing in the
beginning, then when the fuzzing process gets stuck, concolic execution is triggered to analyze the
selected inputs and negate branches to get new test cases, which can introduce new coverage. There are
two disadvantages in this demand launch strategy, as described in DigFuzz [11]. Firstly, it is hard to
define the state of “stuck”. In the experiments of DigFuzz, for most of the testing programs, concolic
execution is never triggered in the predefined test time because the fuzzer never becomes “stuck”.
Secondly, because of the bad efficiency of concolic execution, it takes too long to analyze even only one
input, which makes the overall performance worse than pure fuzzing in some cases.

MDPC [19] proposes a new strategy called optimal switch, which uses the optimal decision on
which branches to solve by concolic execution. More specifically, the MDPC algorithm calculates
the complexity for every branch in terms of solving, then decides which branches will be solved
by concolic execution and which branches will be solved by fuzzing. The problem of this work is
that the optimal decision costs too much overhead since the analysis is performed on every branch.
However, this work is still important because it firstly introduced the concept of branch scheduling to
hybrid fuzzing.

DigFuzz [11] uses the same strategy as MDPC, which also calculates branch complexity,
but with a smarter algorithm called MCP3. By considering fuzzing as a process of random sampling,
this algorithm builds an execution tree with probabilities between different branches. For each
branch on the execution tree, there is a probability to get the result of this branch by fuzzing. Thus,
the probability of one path will be the product of all branches along this path. DigFuzz uses coverage
statistics from AFL to build this execution tree for the whole program execution paths and schedule
branches for fuzzing and concolic execution based on the probabilities calculated from the tree.
For concolic execution, it will find the inputs that contain target branches and perform concolic
execution on those inputs. There are a few problems that DigFuzz fails to solve. Firstly, it is still
an optimized version of the demand launch strategy, which means concolic execution is not triggered as
much as possible, at least not enough compared with the synchronization method. Secondly, it chooses
the hardest-to-solve branches without considering unexplored coverage. Even though the selected
branches are solved by concolic execution, there is a big chance that they may not contribute to the

Appl. Sci. 2020, 10, 5449 6 of 20

coverage or finding vulnerabilities. Thirdly, it fails to consider the solvability of the target branch,
i.e., it fails to know if each branch has a solvable valid descendant path.

Our work is based on a more scalable and efficient synchronization strategy, which utilizes
the power of multi-core CPUs. QSYM [10] is the state-of-the-art hybrid fuzzing work that provides
an efficient concolic execution engine. Benefiting from the fast concolic execution engine, QSYM uses
synchronization mode to collaborate with the AFL fuzzer by generating new test cases all the time
in parallel with fuzzing. Even though this strategy can analyze much more inputs and branches
than demand launch and optimal switch, input and branch scheduling is still very important. As we
explained in the previous section, only a small amount of the candidate inputs will be analyzed in
a 12 h hybrid fuzzing process. QSYM uses a naive approach to select inputs, by four metrics: (a) smaller
inputs are favored; (b) the newer generated inputs are favored; (c) the inputs with new coverage are
favored; (d) the original inputs are important. There is no coverage guidance on this input selection
strategy, nor any branch selection method. In our experiment, we find that when analyzing a 218 byte
png file on program libpng-1.2.56, QSYM needs more than 2 h to execute all the branches. However,
if we focus only on the branches in the main binary, it needs only 2 min and 16 s, though the coverage
decreases from 1005 source code lines to 827 lines. This shows that if we can choose the branches
wisely, the efficiency of hybrid fuzzing will be enhanced greatly. Other hybrid fuzzing works also
lack the analysis and design of input and branch scheduling. In our work, we try to analyze this
problem systematically for the first time. To our best knowledge, our work is the first one to use
a well-designed input and branch selection method in hybrid fuzzing with the synchronization strategy.
In the next section, we will introduce our selective hybrid fuzzing approach, which is based on the
synchronization mechanism.

3. Design

3.1. Overview

In this section, we propose the Selective Hybrid Fuzzing (SHF) approach, a new input and branch
scheduling method based on the synchronization mechanism with the AFL fuzzer. As shown in
Figure 2, we use the same synchronization framework as QSYM [10], the state-of-the-art work for
hybrid fuzzing. For the fuzzer end, we create two instances, named master and slave, respectively.
The QSYM concolic execution engine picks candidates from the test case queue of the slave fuzzer
and then performs concolic execution. The newly generated test cases will be organized by the
AFL naming standard and put into the QSYM directory, with the master and slave under the same
category. The AFL fuzzer will then treat the qsym directory as another fuzzing instance and try to
synchronize the newly generated inputs into the other two instances, i.e., master and slave. We add
a new layer between the concolic execution engine and the fuzzers: a scheduler. The scheduler has
three components: coverage calculation, branch selection, and input selection. The coverage calculation
component uses binary instrumentation to calculate edge coverage based on basic blocks. The branch
selection component then uses the coverage information and other information from dynamic binary
analysis to determine the set of unexplored branches. The input selection component then chooses the
inputs according to the selected branches and feeds them to the concolic execution engine in a specific
sequence. With these three components as the middle-ware, we can make sure that every branch
from a specific input can be useful to increase coverage instead of repeatedly re-exploring already
discovered paths of the program.

Appl. Sci. 2020, 10, 5449 7 of 20

Figure 2. Overview of the Selective Hybrid Fuzzing (SHF) framework based on the AFL synchronization method.

The whole method of the SHF approach can be organized into three steps, as described below.

3.1.1. Step 1: Select Inputs from the Slave Fuzzer Queue for Further Analysis

In general, the SHF approach first chooses the critical branches and then selects the inputs with
those branches to be analyzed by concolic execution. To calculate the critical scores of different branches,
we need the information from running each input and analyzing each branch. Thus, the order of
choosing inputs is important, because, for the branches chosen by an earlier analyzed input, they will
not appear in the later analyzed ones. We take advantage of the input selection method used by QSYM,
which is not mentioned in the paper, but in the source code [27]. The difference is that QSYM directly
uses this method to select inputs for concolic execution, but we choose inputs in this order just to
analyze the critical scores of different branches. We will then give a new execution order of inputs and
related target branches by the information we get from further analysis.

In the first step, we choose inputs from the slave fuzzer queue in the order considering the
following four facts:

• Inputs with new coverage are favored. If there is a “+cov” label in the inputs, it means that this
input can introduce new coverage to the fuzzing process. We prioritize these inputs so that we
can get more unexplored branches to analyze.

• The bigger inputs are favored. Normally, a bigger input means a longer execution path,
therefore more new branches to explore. This is different from QSYM because it chooses inputs
from the smallest size, for the reason that concolic execution on big inputs takes a very long time.
We tested on one input and found out that the execution time increases dramatically as the input
gets bigger, which is because there are too many branches to solve. Our approach only analyzes
the critical branches instead of all of them, which mitigates this problem greatly. Thus, we can
choose the largest sized inputs instead of the smaller sized ones to increase the length of the
execution path.

• The newer generated inputs are favored. This fact is easy to understand because the newly
generated inputs may have more information about the unexplored branches and code. In the
AFL fuzzer queue, the newer generated inputs have bigger id numbers, which is easy to track.

• The original seed inputs are important. The seed inputs contain the most important information
such as the file format. If we only apply the above three methods, then we will miss those original
inputs. Thus, we prioritize the inputs with the “orig” label in the slave fuzzer queue.

At the end of this step, we will have an input list for further analysis, which is denoted as input_list
in Algorithm 1.

Appl. Sci. 2020, 10, 5449 8 of 20

3.1.2. Step 2: Calculate the Priority Score of Each Input and Related Target Branches by the Two
Main Algorithms

In this step, we analyze each input in the order described in Step 1, calculate the critical score
of each branch in one input by the Critical Branch Selection (CBS) algorithm, and select the target
branches according to the score of each branch. Then, we give each input a priority score based on the
target branches by the Priority Score Calculation (PSC) algorithm and output an input list that has
order. The CBS and PSC algorithms are shown in Algorithm 1.

This algorithm takes the input list that was calculated in the first step as the input and gives
an ordering input list as the output. There are two essential parts of this algorithm, which need further
explanation. Firstly, we use three metrics to evaluate how critical a branch is: hit(H), solvability(S),
and complexity(C). H means if one branch is explored or hit. S means the solvability, i.e., whether this
branch can be solved or not. C means the complexity, i.e., how hard it is to solve this branch. We will
explain this part in detail later. Secondly, it matters how the priority score is calculated for each input
and how we will select inputs from the ordering input list. We will explain this part at the end of
this section.

Algorithm 1 Selective hybrid fuzzing approach (CBS and PSC algorithms).
Input: input_list

Output: ordering_input_list

1: for each input in input_list do

2: branches = get_branches(input)
3: for each branch in branches do

4: H = if_already_hit(branch)
5: S = get_solvability(branch)
6: if H == 0 and S == 1 then

7: target_branch_list.append(branch)
8: end if
9: end for

10: for branch in target_branch_list do

11: C[branch] = get_complexity(branch)
12: end for
13: sort C by inverted order
14: final_branch_list = {select top 50% branches from C with most complexity}
15: input_score = get_input_score(final_branch_list)
16: priority_score_dict[input] = input_score
17: end for
18: ordering_input_list = sort priority_score_dict by score
19: return ordering_input_list

3.1.3. Step 3: Select the Inputs and Related Branches for Concolic Execution

After the previous steps, we will have an ordering input list, from which we can select inputs
by the order of the highest priority score. Besides, we also have the selected branches related to each
input. Thus, we can pick up one input from the list by the pre-defined order and perform concolic
execution on this input, then analyze the related selected branches. In theory, these branches with
the inputs will have the best efficiency by only executing and analyzing necessary branches instead
of all of them. In the evaluation section, we will show how our method performs in 20 different
real-world applications.

Appl. Sci. 2020, 10, 5449 9 of 20

3.2. Critical Branch Selection

Algorithm 1 shows that for one input, we calculate three values for each branch: H (hit),
S (solvability), and C (complexity). Based on these three pieces of information, we calculate the
priority score for each input. In this section, we will explain in detail what these three values mean and
how they are calculated. The intuition of selecting critical branches is obvious: firstly, the branch should
not be analyzed before; otherwise, it will waste time on the same coverage; secondly, the branch should
be able to be solved; thirdly, we should give the concolic execution the most complex constraints and let
the fuzzer solve less complicated constraints. Our CBS algorithm is based on these three assumptions.

3.2.1. Hit Accuracy

The first assumption shows that we should always focus on the “unexplored” branches, which are
destined to introduce new coverage by generating new test cases. In theory, we should choose branches
that have never been analyzed before, instead of repeatedly executing the already solved branches
from time to time, which will not introduce any new coverage. However, in practice, it is hard to
distinguish the “unexplored” branches from the already solved ones.

The problem originates from the coverage analysis, which we have explained in the previous
section. For each branch with a particular address, we can not easily decide if this branch is already
explored or not. We can see the problem clearly shown in Figure 3. Let us say if we have already solved
Branch 3 once, by Input 1 guiding the execution path: (A, B, D, E), then we will have a new execution
coverage: (A, B, D, F). Then, there is another Input 2 that can guide execution path: (A, C, D, E).
This input can introduce new coverage because a new basic block C is executed. Now, the problem
happens: should we analyze Branch 3 in Input 2? If we believe that Branch 3 has already been solved
once and do not analyze this branch any more, then we will lose the execution path (A, C, D, F),
which can be introduced by solving Branch 3 in Input 2. However, if we consider that Branch 3 under
this situation is not explored, how can we distinguish it from the previously solved one in Input 1?

Figure 3. The problem of defining whether a branch is explored or not.

In the Background section, we introduce different ways of calculating coverage. If we want
to utilize a more precise calculation of coverage, then we should consider Branch 3 in different
execution paths as differently-explored branches. To solve this problem, we propose the “hit” metric to
measure if one branch is explored or not, which uses a new block-edge coverage tracing algorithm by
dynamic binary instrumentation. We define the tuple (previous branch, target branch) as a unique branch.
For example, in Figure 3, Branch 3 in Input 1 will be denoted as (Branch 1, Branch 3), while Branch 3 in
Input 2 will be denoted as (Branch 2, Branch 3). Thus, the two different Branch 3s will be distinguished

Appl. Sci. 2020, 10, 5449 10 of 20

well and both be analyzed by concolic execution. In this way, we can mitigate the imprecise problem
of block coverage, which is caused by only considering the branch address as unique.

We use a dynamic instrumentation tool to run each input and record the execution trace of all
branches. When analyzing branches in concolic execution, we define the previous branch as the hash
value of the current branch and record the previous branch value in a hash dictionary with the current
branch as key and a previous branch value list as the hash value. In the if_already_hit() function shown
in Algorithm 1, when analyzing one branch, we will look up in the hash dictionary to see if this branch
has a hash value in it. If not, then this branch is “not hit”, and we will set the H value of this branch to
zero. Otherwise, we will consider this branch as “hit” and set the H value to one.

3.2.2. Solvability

Not every branch has two successor targets that can be negated to get another execution path.
If a branch cannot be solved by negating, we should not try to solve it from the beginning. We use
static analysis to find out if one branch has two different successor basic blocks. Intel Pin [28]
provides an analysis interface for this kind of static analysis, by which we can get the taken and
non-taken basic blocks’ information related to a particular branch. When running each input with our
pintool, we record the taken and non-taken paths of each branch. In the get_solvability() function shown
in Algorithm 1, for each branch, if it does not have a non-taken path, i.e., the value is zero, then we will
consider this branch as “not solvable” and set the S value of solvability to zero. Otherwise, we will
consider the branch as “solvable” and set the S value of solvability to one.

3.2.3. Complexity

Fuzzer runs very fast to generate inputs getting a shallow path coverage, while concolic execution
is better at solving complicated branch constraints to reach deeper code in the program. In theory,
we would like to make the fuzzer focus on the easy-to-mutate inputs that can get less complicated
branches, while concolic execution focuses on solving the complicated branches. The question is how
to define complexity.

We took the idea from the way fuzzers function. Normally, fuzzers mutate the selected input by
different heuristics to get more coverage. The more input offsets a fuzzer needs to mutate to get to
a certain point, the bigger the search space is; therefore, the harder this branch is to solve. For example,
if a particular branch is related to five different offsets in the input, then the search space will be 240

(five bytes, each byte with eight bits). The intuition is obvious: the more offsets are related to a branch,
the harder the branch is to solve. If we can get the information on how many offsets will influence
each branch, then we will get an approximate estimation of how hard the mutation is for each branch.
That is to say, we should choose branches with the most related bytes in the inputs.

We use dynamic taint analysis to trace which offsets of the input can influence a branch.
By running the taint analysis, we taint the input and then trace all compare instructions to see
which offsets in the input will influence each compare instruction. After running the taint analysis tool,
we can get results as shown in Figure 4. The first three columns show information about the operands
of compare instructions. The fourth column shows the address of each compare instruction. The fifth
to twentieth columns show which offsets of the input will influence each byte of operand. Therefore,
the union set of these offsets will influence the result of this compare instruction.

Figure 4. Example of the results by dynamic taint analysis.

Appl. Sci. 2020, 10, 5449 11 of 20

Our method is to get all tainted bytes that will influence each compare instruction and calculate
how many offsets there are related to each compare instruction. We consider the number of tainted
offsets as the complexity value of each branch. In the get_complexity() function, we do taint analysis
on the input and get the number of tainted offsets related to each branch, then assign this number
as complexity value C for each branch. The output of this function is a dictionary of branches and
related complexity values. We then sort this C dictionary by the inverted order, choose the top 50% of
the branches, and return a final branch list. Therefore, we will have a branch list related to one input,
containing the hardest to solve branches from this input.

3.3. Priority Score Calculation

The intuition of input scheduling is to choose the inputs that can generate the most new coverage
by concolic execution. Therefore, we need more valid different target branches as possible. It would be
best if all of these branches will guide to unexplored code. The priority score calculation algorithm is
based on the input priority score, which is decided by the number of critical branches.

We use four steps to calculate the priority score related to each input, with the information
generated by the branch scheduling part.

• Choose the branches with the H value as zero. Firstly, we consider the H value, which denotes if
a branch is explored or not. We will choose these branches with the H value as zero for each input,
which means they are not explored.

• Choose the branches with the S value as one. Secondly, we consider the S value, which denotes if
a branch can be solved or not. We will choose these branches with the S value as one for each
input, which means they can be solved.

• Calculate the complexity of the chosen branches. Thirdly, we consider the C value, which denotes
the complexity to solve a branch. We choose the top 50% of branches with the biggest C values.

• Calculate the priority score for each input. Lastly, we calculate the priority score for each input by
the number of critical branches chosen in the previous three steps, as Algorithm 1 shows.

With the priority score, we can have an ordering input list and choose inputs sequentially from
this list, then run concolic execution on each input with related target branches. There is another thing
worth mentioning, regarding the sequence that we follow to consider each value. We believe that it is
more important to explore untouched paths than solve simple constraints. Therefore, we consider the
hit and solvability value before the complexity value. Furthermore, the percentage of critical branches
can always be changed for concrete situations. If there are not many branches in one run, we can
choose more than half of the branches. We can also define the exact number of branches to choose.

4. Implementation

In this section, we introduce how we implement the selective hybrid fuzzing approach on a hybrid
fuzzer named SHFuzz.

4.1. Scheduler Implementation

Hit and solvability calculation: We implement a pintool by Pin [29] binary instrumentation to
record all executed basic blocks and calculate block-edge coverage related to each target branch,
then we can get the value of H. We also implement the solvability calculation part by static analysis
using the pintool interface to trace the taken and non-taken target of each branch so that we can get
the value of S.

Complexity calculation: We use an existing taint analysis tool libdft64 provided by the VUzzer
64 bit version [30]. Libdft [31] is a dynamic taint analysis tool, which has only a 32 bit implementation
as the original version and later is modified to apply to 64 bit systems. By this tool, we can get the
tainted offsets in the input related to each branch, so that we can calculate the value of C based on
this information.

Appl. Sci. 2020, 10, 5449 12 of 20

Overall scheduler: We implement the scheduler by a Python script to analyze each input in
a specified order and then use the above two calculation tools to get the essential information and
calculate the final ordering input list. We observe that for each input, the calculation time is less than
2 s, then we can deal with 21,600 input files in 12 h, which is much better than the original input
selection method in QSYM, which can only execute 480 inputs theoretically in 12 h. This scheduler
will be running in parallel with AFL fuzzers and the QSYM concolic execution engine.

4.2. SHFuzz Modification

For the fuzzer end, we use AFL [2] and create two instances with the names of master and slave.
For the concolic execution end, we use QSYM [10] as our evaluation baseline. In theory, the fuzzer
and the concolic execution engine can be replaced by any existing tool, as long as some key functions
can be implemented in the source code. For example, to add the scheduler to the entire framework,
we need to modify the original QSYM source code to support input selection and branch selection,
which means we have to make QSYM analyze only a specified list of branches.

Another thing worth mentioning is that our approach only focuses on binary applications and
file-reading inputs. However, the principles of our method can be utilized on any application and
hybrid fuzzing framework.

In general, we write 44 lines of C++ code to modify libdft64 to generate the information for further
analysis. We write 416 lines of Python code to implement the main algorithm of input and branch
scheduling to generate the target ordering input list. We write 139 lines of C++ code to modify QSYM
to support branch selection. We write 73 lines of Python code for the integration of the whole hybrid
fuzzing framework with our scheduler middle-ware.

5. Evaluation

In this section, we test our approach on 20 applications with various functions and program logic.
We use the QSYM original implementation as a baseline and compare it with SHFuzz. The results
show that after applying our SHF approach, hybrid fuzzing can generate more coverage and unique
crashes to find more bugs in less time. We run each program for 12 h and record the numbers of
coverage and unique crashes.

Environmental setup: We run all experiments on two identical machines with the Ubuntu 16.04
LTS operating system, Intel Xeon CPU E5-2630 (2.40GHz, 32 cores), and 128GB RAM.

5.1. Dataset

We evaluate 20 real-world applications with different functions and various program logic.
Eighteen of them are from the Google Fuzzer Test Suite [20], which have known existing
vulnerabilities and make evaluation more practical to compare the capability of finding bugs. The other
two applications are the common utilities with the latest version. All 20 applications represent
different aspects of functions and program logic, such as image file processing, server program,
database processing, string processing, audio file processing, etc. The various functionalities can
represent different kinds of constraints and branches that hybrid fuzzing will deal with, which is
a good example set for evaluation. The types of different applications and other information are shown
in Table 1.

Appl. Sci. 2020, 10, 5449 13 of 20

Table 1. Types and other information of the 20 evaluated real-world programs.

Name Version Src Size (KB) Type

boringssl 2016-01-12

GFTS [20]

2244 server program
c-ares CVE-2016-5180 14 asynchronous DNS resolves
guetzli 2017-3-30 3505 image processing
harfbuzz 1.3.2 3357 text type processing
json 2017-02-12 254 json file processing
libarchive 2017-01-04 1435 compression library
libjpeg-turbo 07-2017 663 image processing
libpng 1.2.56 429 image processing
libxml2 v2.9.2 4771 XML C parser
llvm-libcxxabi 2017-01-27 513 C++ compile tool
openssl 1.0.1f 2014 server program
openssl 1.0.2d 291 server program
pcre2 10.00 808 regular expression
proj4 2017-08-14 3395 cartographic projections library
re2 2014-12-09 4551 regular expression
sqlite 2016-11-14 895 database
vorbis 2017-12-11 320 audio file processing
woff2 2016-05-06 1725 font format

nm 2.34 binutils-2.34 4248 executable file information
readelf 2.34 1946 executable file information

5.2. Coverage Improvement

We run each application with QSYM and SHFuzz respectively under the same experimental setup
for 12 h. Except for the input and branch scheduling part, the other experimental setups are the same.
We set the time-out for each concolic execution process for one input as 90 s, the same as the default
configuration of QSYM. Therefore, our evaluation can show fairly how our selective approach will
improve the performance of hybrid fuzzing. The overall results of coverage and the number of crashes
are shown in Table 2.

Table 2. Coverage, crash results, and bug found time of running QSYM and SHFuzz for 12 h on 20 applications.

Method Coverage Crash Bug Found Time

c-ares-CVE-2016-5180 QSYM 42 7 0:29:12
SHFuzz 42 11 0:01:27

guetzli-2017-3-30 QSYM 3741 1 7:15:46
SHFuzz 4300 18 3:16:16

json-2017-02-12 QSYM 3186 17 0:05:30
SHFuzz 3149 24 0:01:42

llvm-libcxxabi-2017-01-27 QSYM 10,559 182 0:15:40
SHFuzz 11,458 243 0:11:29

openssl-1.0.2d QSYM 3276 35 0:54:50
SHFuzz 3226 84 0:28:10

pcre2-10.00 QSYM 23,121 23 0:47:59
SHFuzz 25,633 570 0:18:01

nm-2.34 QSYM 6969 22 8:39:31
SHFuzz 6845 39 0:22:11

libxml2-v2.9.2 QSYM 5513 0 -
SHFuzz 5833 6 0:18:31

Appl. Sci. 2020, 10, 5449 14 of 20

Table 2. Cont.

Method Coverage Crash Bug Found Time

vorbis-2017-12-11 QSYM 3028 0 -
SHFuzz 3360 194 2:16:45

boringssl-2016-01-12 QSYM 1529 0 -
SHFuzz 1613 0 -

harfbuzz-1.3.2 QSYM 11,995 0 -
SHFuzz 12,093 0 -

libarchive-2017-01-04 QSYM 5273 0 -
SHFuzz 5836 0 -

libjpeg-turbo-07-2017 QSYM 4135 0 -
SHFuzz 4265 0 -

proj4-2017-08-15 QSYM 1286 0 -
SHFuzz 1336 0 -

re2-2014-12-09 QSYM 5305 0 -
SHFuzz 5456 0 -

sqlite-2016-11-14 QSYM 7313 0 -
SHFuzz 10,835 0 -

woff2-2016-05-06 QSYM 1208 0 -
SHFuzz 1547 0 -

openssl-1.0.1f QSYM 557 0 -
SHFuzz 623 0 -

libpng-1.2.56 QSYM 1273 0 -
SHFuzz 1365 0 -

readelf-2.34 QSYM 14,266 0 -
SHFuzz 14,718 0 -

From Table 3, we can see the increasing number and percentage of the results by SHFuzz compared
with the QSYM original configuration. As for the coverage part, we can see clearly that 16 out of
20 applications show an obvious increase in the number of coverage. Though the other four show
negative results on coverage, they still can find more bugs compared with QSYM. From the positive
results, we can see that sqlite-2016-11-14, pcre2-10.00, llvm-libcxxabi-2017-01-27, and guetzli-2017-3-30
show the best improvement by SHFuzz, each increasing the coverage by 3522 (48.16%), 2512 (10.86%),
899 (8.51%), and 559 (14.94%). We also calculate the average improvement on coverage, which is
497 (8.40%) more lines of coverage. These data also include negative results, so we believe they show
that for most applications, our SHF approach can help greatly with increasing coverage compared
with the original configuration in hybrid fuzzing.

We show the fuzzing process figures of four applications with the best improvement on coverage
in Figure 5, which shows why SHFuzz works. In each sub-figure, the X-axis shows the time range,
while the Y-axis shows the coverage hybrid fuzzing has reached at each hour. We can see that for the
QSYM method, it is hard to increase the coverage after some time, where the curve tends to be flat.
On the contrary, SHFuzz still shows potential increase trends. This is because at the same time-out,
since QSYM is trying to calculate all branches without any selection, it will always be stuck in the same
shallow branches and cannot go deeper into the program paths. However, SHFuzz can always try to
solve the most critical branches, which can guide the execution to deeper paths.

Appl. Sci. 2020, 10, 5449 15 of 20

Table 3. Increased number of coverage, crashes, and bugs found time by SHFuzz compared with QSYM.

Coverage Percentage Crash Bug Found Time

c-ares-CVE-2016-5180 +0 +0% +4 20.13×

guetzli-2017-3-30 +559 +14.94% +17 2.22×

json-2017-02-12 −37 −1.16% +7 3.23×

llvm-libcxxabi-2017-01-27 +899 +8.51% +61 1.36×

openssl-1.0.2d -50 −1.57% +49 1.96×

pcre2-10.00 +2512 +10.86% +547 2.66×

nm-2.34 -124 −1.78% +17 23.42×

libxml2-v2.9.2 +320 +5.80% +6 new

vorbis-2017-12-11 +332 +10.96% +194 new

boringssl-2016-01-12 84 +5.49% 0 -

harfbuzz-1.3.2 +98 +0.82% 0 -

libarchive-2017-01-04 +563 +10.67% 0 -

libjpeg-turbo-07-2017 +130 +3.14% 0 -

proj4-2017-08-15 +50 +3.88% 0 -

re2-2014-12-09 +151 +2.84% 0 -

sqlite-2016-11-14 +3522 +48.16% 0 -

woff2-2016-05-06 +339 +28.06% 0 -

openssl-1.0.1f +66 +11.85% 0 -

libpng-1.2.56 +92 +7.22% 0 -

readelf-2.34 +452 +3.17% 0 -

average +497 +8.40% +100 7.85×

For the negative results in nm-2.34, openssl-1.0.2d, and json-2017-02-12, each decreases coverage
by 124, 50, and 37, which are rather small numbers. We can see that SHFuzz still generates more unique
crashes and can find the existing bugs faster than QSYM in these three applications, showing the
strength of SHFuzz in finding deeply-hidden bugs. We will explain this in detail in the next subsection.

(a) guetzli-2017-3-30 results by QSYM and SHFuzz. (b) llvm-libcxxabi-2017-01-27 results by QSYM and SHFuzz.

Figure 5. Cont.

Appl. Sci. 2020, 10, 5449 16 of 20

(c) pcre2-10.00 results by QSYM and SHFuzz. (d) sqlite-2016-11-14 results by QSYM and SHFuzz.

Figure 5. Coverage improvement by SHFuzz compared with QSYM shown by four applications.

5.3. Find More Bugs

The ultimate goal of fuzzing is to find more bugs. Our evaluation results show that with the
help of our SHF approach, hybrid fuzzing can find more unique crashes compared with the original
configuration, as shown in Table 3. On average, SHFuzz can find 100 more new crashes than the QSYM
original configuration in each of the 20 applications, which improves the original implementation. It is
worth mentioning that for the three applications with negative results on coverage, all of them can
find more bugs compared with QSYM. More specifically, nm-2.34, openssl-1.0.2d, and json-2017-02-12
can generate 17, 49, and 7 more unique crashes, respectively.

For the 20 applications, eighteen of them are from Google Fuzzer Test Suite, which have existing
known bugs in the program. We analyze the crashes generated by QSYM and SHFuzz, respectively,
and calculate the earliest found time of existing bugs in the program, as shown in Table 2. It shows
clearly that for all seven applications where QSYM and SHFuzz can both find crashes, SHFuzz can find
the existing bugs much earlier than QSYM. Besides, SHFuzz can find bugs in two applications where
QSYM fails to find them. The two applications with negative results on coverage, i.e., openssl-1.0.2d
and json-2017-02-12, also show effectiveness on finding existing vulnerabilities in a shorter time by
SHFuzz compared with QSYM. On guetzli-2017-3-30 and nm-2.34, SHFuzz can reduce the found time
of crashes as much as hours, while on libxml2-v2.9.2 and vorbis-2017-12-11, SHFuzz can find the
vulnerability that QSYM fails to find. On average, SHFuzz can find the existing bugs 7.85× faster than
QSYM. These results show that our SHF approach can help find more bugs in less time compared with
existing state-of-the-art hybrid fuzzing work.

For another application, nm-2.34, which comes from the latest version of binutils, we still find
39 new crashes by SHFuzz, 17 more than QSYM. We analyzed the crashes and they turned out to be
an already-solved issue [32], which was found by other groups recently. This result shows that our
selective hybrid fuzzing approach works at finding new bugs more efficiently than existing works.

5.4. Discussion

In the evaluation, we show that our selective hybrid fuzzing approach can reduce the number
of non-critical branches for concolic execution to solve and improve coverage performance and the
bug finding ability in hybrid fuzzing. However, there are still some unsolved problems related to
this topic. Firstly, we analyzed the solvability by static analysis, which may have a false-positive
problem, because of implicit data flow. A possible solution is to analyze the solvability by dynamic
analysis, which may introduce extra overhead. Secondly, we use taint analysis to get the complexity
information, which could be hindered by the over-tainting and under-tainting problems. This is the
limitation of the taint analysis tool. A possible solution is to implement it with another taint analysis

Appl. Sci. 2020, 10, 5449 17 of 20

tool that has better precision; however, this will also introduce more overhead. Thirdly, our block-edge
coverage calculation method is more precise than basic block coverage; however, it is still a coarse way
to calculate coverage. The best solution would be to use path coverage or add more edges to calculate
the coverage. In general, we trade accuracy for efficiency. Despite the unsolved problems, our work
is the first attempt to solve the branch selection problem in synchronization-based hybrid fuzzing.
We will leave these problems to further study.

Another thing to mention is the overhead of the SHFuzz algorithm. The main extra overhead is
caused by running dynamic taint analysis. In our observation, for all 20 applications, the average time
cost for one input is less than 2 s. Since we only execute taint analysis for each input once, the overall
time overhead cost by the SHFuzz algorithm will approximately be 30 min (considering analyzing
1000 inputs for each application), which is acceptable for the evaluation time of 12 h.

6. Related Works

6.1. Code Coverage Accuracy

The definition of coverage accuracy will influence the efficiency of different fuzzers and also the
way they try to mutate the inputs. VUzzer [3], libFuzzer [24], and honggfuzz [25] use basic block
coverage. VUzzer uses Pin [29] to instrument binaries and get essential basic block information for
mutation. LibFuzzer and honggfuzz use SanitizerCoverage [33] to compute basic block coverage.
AFL [2] uses edge coverage, which is more accurate than the previously mentioned work; however,
it has very bad hash functions, which cause collision problems. CollAFL [21] proposes a new hash
function to compute edge coverage and mitigate the collision problem successfully.

In our paper, we learned the lessons from the failure of AFL and other previous works. We propose
the critical branch selection algorithm partially based on the hit accuracy of each branch, to get the
information of whether a branch has been executed or not. To define the hit accuracy, we consider the
tuple of (previous branch, target branch) as a unique branch. In other words, for a target branch, if it
is already solved with the same previous branch, then we will consider this branch as “already hit”.
Since the number with different branches is far less than the number of unique edges, it is acceptable
to record the branch tuple without applying any hash algorithms. Thus, we avoid the problem of hash
collision, as well as maintain a low overhead of recording useful information.

6.2. Input Scheduling

Coverage-based fuzzing: Honggfuzz [25] sequentially chooses the input to mutate from the
candidate list, using the first-in, first-out strategy. LibFuzzer [24] prefers the inputs that can hit more
new basic blocks, using SanitizerCoverage [33] to trace the information of basic block coverage. AFL [2]
uses edge coverage information to choose the seed input, based on which seeds can find new edge
coverage. Besides, it also prefers cases with a smaller size and is executed faster, to execute as many
files as possible in a fixed time. AFLFast [26] observes that in the fuzzing process, most resources are
wasted on repeatedly executing the same high-frequency paths, while low-frequency paths are rarely
executed. To solve this problem, they used the Markov chain to discover low-frequency paths and
prioritize the inputs that include those low-frequency paths. This work is based on AFL [2], using the
same edge coverage hash algorithm as AFL to trace the frequency of paths. VUzzer [3] has a similar
strategy, which is based on basic block coverage. This work defines the “hard-to-reach” paths by
calculating the weights of different basic blocks in terms of executing probabilities. The error-handling
basic blocks are excluded from the weight so that the inputs with these basic blocks will be considered
as non-essential. If a basic block is executed too many times, then the weight of this basic block will
also decrease. In summary, VUzzer chooses inputs with deeper paths to be executed and mutated
by the fuzzer. Angora [5] uses this method by source code instrumentation to get the information
of unexplored branches. In our work, we use a similar strategy, however on binary instrumentation,
which is more challenging to achieve.

Appl. Sci. 2020, 10, 5449 18 of 20

Directed fuzzing: Normally, directed fuzzing is based on target locations that are discovered by
static analysis or other information about the vulnerabilities. For input scheduling, most works choose
to find inputs that are more likely to reach the target locations. AFLGo [34] selects seed inputs that are
closer to the target location. QTEP [35] selects inputs that can discover more faulty code by statically
analyzing the program, to increase the probability of finding new vulnerabilities. Both works rely
on static analysis, which has a high false-positive problem. SAVIOR [36] is a bug-driven approach
that prioritizes the concolic execution of the seeds that are likely to uncover more vulnerabilities by
modeling faulty situations using SMT constraints. In our paper, we only use binary analysis to analyze
the priority of different inputs. Furthermore, we focus on the coverage more than specific target
locations. Therefore, our approach to input scheduling is closer to most coverage-based fuzzing works,
which treat unexplored branches as their most important concerns.

6.3. Hybrid Fuzzing and Branch Scheduling

Many hybrid fuzzing works focus more on increasing the scalability of concolic execution instead
of scheduling inputs and branches, such as QSYM [10], Driller [9], and SynFuzz [37]. MDPC [19]
and DigFuzz [11] use different strategies to calculate the importance of each branch and execute the
branches in sequence. However, they are based on demand launch and optimal switch, respectively,
which do not utilize the benefits of synchronization. QSYM [10] is the state-of-the-art hybrid fuzzing
work that provides an efficient concolic execution engine, benefiting from the synchronization method.
It uses four metrics to select inputs, but without any branch selection method. To our best knowledge,
our work is the first one to use a well-designed input and branch selection method in hybrid fuzzing
with the synchronization strategy.

Other existing works analyze the difficulty of a branch and the related new path; however,
nearly all of them rely on very heavy analysis. Xie et al. [38] proposed value analysis to calculate
the complexity of a path. Deepfuzz [39] uses probabilistic symbolic execution to find deeply hidden
vulnerabilities. Those two works have high overhead on analysis, i.e., cost computational resources to
analyze the program. If we need to put these many resources toward estimating the complexity of
each branch, we could just perform concolic execution and solve the branches directly. In our work,
we propose a lightweight method to estimate the importance of the branches in different inputs by
considering coverage (hit accuracy), complexity, and solvability, which does not cost much overhead
compared with the original configuration.

7. Conclusions

In this paper, we propose the selective hybrid fuzzing approach with two main algorithms:
critical branch selection and priority score calculation. The CBS algorithm calculates the critical
score of each branch by three metrics, hit accuracy, solvability, and complexity, and then selects the
critical branches according to the scores. The PSC algorithm selects inputs with the most critical
branches. In the evaluation, we show that our SHF approach can achieve 8.40% more coverage and
100 more unique crashes in 20 applications on average and can find the existing bugs 7.85× faster than
the state-of-the-art work. Our implementation is based on binary instrumentation, which does not
need source code. To our best knowledge, our work is the first to systematically analyze the branch
scheduling problem in hybrid fuzzing with the synchronization mechanism. We also discuss the
limitations of our work and leave those unsolved problems to further study.

Author Contributions: X.M. contributed to the conceptualization, methodology, software, and writing the
original draft of this paper. B.W. contributed to project administration. Y.T. contributed to funding acquisition. B.Y.
contributed to the resources of the project. P.W. contributed to writing, including review and editing. All authors
read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Key Research and Development Program of China
(No. 2018YFB0204301), the Natural Science Foundation of Hunan Province in China (2019JJ50729), the Natural
Science Foundation of China (61902412, 61902416), and the National University of Defense Technology Research
Project (ZK20-17).

Appl. Sci. 2020, 10, 5449 19 of 20

Acknowledgments: The authors would like to sincerely thank all the reviewers for their time and expertise for
this paper. Your insightful comments helped us improve this work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Klees, G.; Ruef, A.; Cooper, B.; Wei, S.; Hicks, M. Evaluating Fuzz Testing. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018;
pp. 2123–2138.

2. Michal, Z. American Fuzzy Lop (AFL). Available online: http://lcamtuf.coredump.cx/afl/ (accessed on
20 May 2020).

3. Rawat, S.; Jain, V.; Kumar, A.; Cojocar, L.; Giuffrida, C.; Bos, H. VUzzer: Application-Aware Evolutionary
Fuzzing. In Proceedings of the NDSS Symposium 2017, San Diego, CA, USA, 26 February–1 March 2017.

4. Aschermann, C.; Schumilo, S.; Blazytko, T,; Gawlik, R.; Holz, T. REDQUEEN: Fuzzing with Input-to-State
Correspondence. In Proceedings of the 26th Annual Network and Distributed System Security Symposium,
San Francisco, CA, USA, 24–27 February 2019.

5. Chen, P.; Chen, H. Angora: Efficient fuzzing by principled search. In Proceedings of the IEEE Symposium
on Security and Privacy(SP), San Francisco, CA, USA, 20–24 May 2018.

6. Godefroid, P.; Kiezun, A.; Levin, M.Y. Grammar-based whitebox fuzzing. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation, Tucson, AZ, USA,
7–13 June 2008; pp. 206–215.

7. Blazytko, T.; Bishop, M.; Aschermann, C.; Cappos, J.; Schlogel, M.; Korshun, N.; Abbasi, A.;
Schweighauser, M.; Schinzel, S.; Schumilo, S. GRIMOIRE: Synthesizing Structure while Fuzzing.
In Proceedings of the USENIX Security, Santa Clara, CA, USA, 14–16 August 2019; pp. 1985–2002.

8. Gopinath, R.; Mathis, B.; Hoschele, M.; Kampmann, A.; Zeller, A. Sample-Free Learning of Input Grammars
for Comprehensive Software Fuzzing. arXiv 2018, arXiv:1810.08289.

9. Stephens, N.; Grosen, J.; Salls, C.; Dutcher, A.; Wang, R.; Corbetta, J.; Shoshitaishvili, Y.; Kruegel, C.; Vigna, G.
Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In Proceedings of the NDSS, San Diego,
CA, USA, 21–24 February 2016.

10. Yun, I.; Lee, S.; Xu, M.; Jang, Y.; Kim, T. QSYM: A Practical Concolic Execution Engine Tailored for Hybrid
Fuzzing. In Proceedings of the USENIX Security, Baltimore, MD, USA, 15–17 August 2018; pp. 745–761

11. Zhao, L.; Duan, Y.; Yin, H.; Xuan, J. Send Hardest Problems My Way: Probabilistic Path Prioritization for
Hybrid Fuzzing. In Proceedings of the NDSS, San Diego, CA, USA; 24–27 February 2019.

12. Chipounov, V.; Kuznetsov, V.; Candea, G. The S2E Platform: Design, Implementation, and Applications.
Acm Trans. Comput. Syst. 2012, 30, 1–49. [CrossRef]

13. Saudel, F.; Salwan, J. Triton: A Dynamic Symbolic Execution Framework. In Proceedings of the
Symposium sur la sécurité des Technologies de l’Information et Des Communications, SSTIC, Rennes,
France, 3–5 June 2015; pp. 31–54.

14. Shoshitaishvili, Y.; Wang, R.; Salls, C.; Stephens, N.; Polino, M.; Dutcher, A.; John, G.; Feng, S.; Hauser, C.;
Kruegel, C.; et al. SoK: (State of) The Art of War: Offensive Techniques in Binary Analysis. In Proceedings of
the IEEE Symposium on Security and Privacy(SP), San Jose, CA, USA, 22–26 May 2016.

15. Majumdar, R.; Sen, K. Hybrid Concolic Testing. In Proceedings of the 29th International Conference on
Software Engineering, Minneapolis, MN, USA, 20–26 May 2007; pp. 416–426.

16. Sen, K. Concolic testing. In Proceedings of the twenty-second IEEE/ACM International Conference on
Automated Software Engineering, Atlanta, GA, USA, 5–9 November 2007; pp. 571–572.

17. Baldoni, R.; Coppa, E.; D’elia, D.C.; Demetrescu, C.; Finocchi, I. A Survey of Symbolic Execution Techniques.
Acm Comput. Surv. 2016, 51, 1–39. [CrossRef]

18. De Moura, L.; Bjorner, N. Z3: An efficient SMT solver. In Proceedings of the International conference on Tools
and Algorithms for the Construction and Analysis of Systems, Budapest, Hungary, 29 March–6 April 2008;
pp. 337–340.

19. Wang, X.; Sun, J.; Chen, Z.; Zhang, P.; Wang, J.; Lin, Y. Towards optimal concolic testing. In Proceedings of
the 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE), Gothenburg, Sweden,
27 May–3 June 2018; pp. 291–302.

http://lcamtuf.coredump.cx/afl/
http://dx.doi.org/10.1145/2110356.2110358
http://dx.doi.org/10.1145/3182657

Appl. Sci. 2020, 10, 5449 20 of 20

20. Google Fuzzer Test Suite. Available online: https://github.com/google/fuzzer-test-suite/ (accessed on
20 May 2020).

21. Gan, S.; Zhang, C.; Qin, X.; Tu, X.; Li, K.; Pei, Z.; Chen, Z. CollAFL: Path Sensitive Fuzzing. In Proceedings of
the IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20–24 May 2018; pp. 679–696.

22. Rebert, A.; Cha, S.K.; Avgerinos, T.; Foote, J.; Warren, D.; Grieco, G.; Brumley, D. Optimizing seed selection for
fuzzing. In Proceedings of the 23rd USENIX Security, San Diego, CA, USA, 20–22 August 2014; pp. 861–875.

23. Eddington, M. Peach Fuzzer. 2008. Available online: http://www.peachfuzzer.com/ (accessed on
20 May 2020).

24. Serebryany, K. Continuous fuzzing with libfuzzer and addresssanitizer. In Proceedings of the IEEE
Cybersecurity Development (SecDev), Boston, MA, USA, 3–4 November 2016; p. 157.

25. Swiecki, R. Honggfuzz. 2016. Available online: http://code.google.com/p/honggfuzz (accessed on
20 May 2020).

26. Bohme, M.; Pham, V.; Roychoudhury, A. Coverage-Based Greybox Fuzzing as Markov Chain. IEEE Trans.
Softw. Eng. 2017, 45, 489–506. [CrossRef]

27. QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. Available online: https://github.
com/sslab-gatech/qsym (accessed on 20 May 2020).

28. Pin: A Dynamic Binary Instrumentation Tool. Available online: https://software.intel.com/en-us/articles/
pin-a-dynamic-binary-instrumentation-tool (accessed on 20 May 2020).

29. Luk, C.-K.; Cohn, R.; Muth, R.; Patil, H.; Klauser, A.; Lowney, G.; Wallace, S.; Reddi, V.J.; Kim, H.
Pin: Building Customized Program Analysis Tools with Dynamic Instrumentation. Acm Sigplan Not. 2005,
40, 190–200. [CrossRef]

30. VUzzer(64) Version 1.0. Available online: https://github.com/vusec/vuzzer64 (accessed on 20 May 2020).
31. Kemerlis, V.P.; Portokalidis, G.; Jee, K.; Keromytis, A.D. Libdft: Practical Dynamic Data Flow Tracking for

Commodity Systems. In Proceedings of the ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, London, UK, 3–4 March 2012; pp. 121–132.

32. Bug 25447—Objcopy: Free() Invalid Pointer in _bfd_coff_free_symbols. Available online: https://sourceware.
org/bugzilla/show_bug.cgi?id=25447 (accessed on 20 May 2020)

33. Sanitizercoverage: Clang documentation. Available online: https://clang.llvm.org/docs/SanitizerCoverage.
html (accessed on 20 May 2020).

34. Bohme, M.; Pham, V.; Nguyen, M.; Roychoudhury, A. Directed Greybox Fuzzing. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, TX, USA,
30 October–3 November 2017; pp. 2329–2344.

35. Wang, S.; Nam, J.; Tan, L. QTEP: Quality-aware test case prioritization. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, Paderborn, Germany, 4–8 September 2017; pp. 523–534.

36. Chen, Y.; Li, P.; Xu, J.; Guo, S.; Zhou, R.; Zhang, Y.; Wei, T.; Lu, L. SAVIOR: Towards Bug-Driven Hybrid
Testing. In Proceedings of the 41st IEEE Symposium on Security and Privacy, San Francisco, CA, USA,
18–21 May 2020.

37. Han, W.; Rahman, M.L.; Chen, Y.; Song, C.; Lee, B.; Shin, I. SynFuzz: Efficient Concolic Execution via Branch
Condition Synthesis. arXiv 2019, arXiv:1905.09532.

38. Xie, T.; Tillmann, N.; De Halleux, J.; Schulte, W. Fitness-guided path exploration in dynamic symbolic
execution. In Proceedings of the IEEE/IFIP International Conference on Dependable Systems & Networks,
Lisbon, Portugal, 29 June–2 July 2009; pp. 359–368.

39. Bottinger, K.; Eckert, C. DeepFuzz: Triggering Vulnerabilities Deeply Hidden in Binaries. In Proceedings
of the International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment,
San Sebastián, Spain, 7–8 July 2016; pp. 25–34.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://github.com/google/fuzzer-test-suite/
http://www.peachfuzzer.com/
http://code.google.com/p/honggfuzz
http://dx.doi.org/10.1109/TSE.2017.2785841
https://github.com/sslab-gatech/qsym
https://github.com/sslab-gatech/qsym
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
http://dx.doi.org/10.1145/1064978.1065034
https://github.com/vusec/vuzzer64
https://sourceware.org/bugzilla/show_bug.cgi?id=25447
https://sourceware.org/bugzilla/show_bug.cgi?id=25447
https://clang.llvm.org/docs/SanitizerCoverage.html
https://clang.llvm.org/docs/SanitizerCoverage.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Coverage Accuracy
	Input Scheduling
	Hybrid Fuzzing

	Design
	Overview
	Step 1: Select Inputs from the Slave Fuzzer Queue for Further Analysis
	Step 2: Calculate the Priority Score of Each Input and Related Target Branches by the Two Main Algorithms
	Step 3: Select the Inputs and Related Branches for Concolic Execution

	Critical Branch Selection
	Hit Accuracy
	Solvability
	Complexity

	Priority Score Calculation

	Implementation
	Scheduler Implementation
	SHFuzz Modification

	Evaluation
	Dataset
	Coverage Improvement
	Find More Bugs
	Discussion

	Related Works
	Code Coverage Accuracy
	Input Scheduling
	Hybrid Fuzzing and Branch Scheduling

	Conclusions
	References

