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Abstract: The graph convolution network has received a lot of attention because it extends the
convolution to non-Euclidean domains. However, the graph pooling method is still less concerned,
which can learn coarse graph embedding to facilitate graph classification. Previous pooling methods
were based on assigning a score to each node and then pooling only the highest-scoring nodes, which
might throw away whole neighbourhoods of nodes and therefore information. Here, we proposed a
novel pooling method UGPool with a new point-of-view on selecting nodes. UGPool learns node
scores based on node features and uniformly pools neighboring nodes instead of top nodes in the
score-space, resulting in a uniformly coarsened graph. In multiple graph classification tasks, including
the protein graphs, the biological graphs and the brain connectivity graphs, we demonstrated that
UGPool outperforms other graph pooling methods while maintaining high efficiency. Moreover,
we also show that UGPool can be integrated with multiple graph convolution networks to effectively
improve performance compared to no pooling.

Keywords: graph convolution network; graph pooling; graph classification; non-euclidean
structured signal

1. Introduction

Convolution neural network (CNN) has achieved great success in processing data on Euclidean
domains (grid structure) [1,2], such as image, speech, and video [3–6]. Therefore, many recent studies
have devoted to the extension of convolution operations to the data on non-Euclidean domains
and proposed the graph convolution network (GCN) [7–9].Then GCN has been successfully used to
achieve improvements in several research fields, such as protein interface [10], action recognition [11],
and traffic data processing [12]. The GCN mainly includes the spectral-based and spatial-based
methods, which can leverage the topology information of the graph data to aggregate the local
node features, and then automatically learn the embeddings for graph nodes. In many of the
graph-related tasks, such as recommender systems [13,14], chemical research [15,16] and natural
language processing [17], the GCN exhibits outstanding performance.

The research on graph pooling methods is much less than that of the graph convolution models. In fact,
the graph pooling technique is very important for obtaining the scaled-down graphs and graph-level
embeddings. The most primitive graph pooling methods use graph topology information for node
partitioning and graph coarsening [8,18,19]. Recently, a differentiable graph pooling has been proposed to
obtain hierarchical graphs by learning end-to-end [20]. Moreover, there are more advanced graph pooling
methods that can automatically learn the scores of nodes or edges and then pool nodes with high scores or
merge nodes connected by edges with high scores to achieve the coarsening graph [21–24].
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However, how to pool nodes using node scores is not well understood and discussed, which may
affect effective graph coarsening. If pooling only the highest-scoring nodes as the existing papers might
throw away whole neighbourhoods of nodes and therefore information, because it can be intuitively
seen from the GCN formulation that similar nodes in feature-space or topological space are assigned
similar scores (we have proven it in the following section). The coarsening graph with pooling top
nodes is difficult to uniformly inherit the representative features of the original graph, which in turn
affects the representation capacity of the GCN.

Here, we proposed a new graph pooling method UGPool with a new point-of-view on selecting
pooled nodes, which assigns a score to each node, and uniformly pool the neighboring nodes in
score-space instead of pooling top nodes as in existing papers. Pooling only the highest-scoring nodes
might throw away whole neighbourhoods of nodes and therefore information, because of that the
neighboring nodes in feature-space are also adjacent in score-space, which can be intuitively seen
from the GCN formulation and has been proven in the following section. Specifically, we introduced
a fully connected layer, taking node features or topology information as input, and learning the
score of each graph node. Next, we sort the nodes according to their scores and perform normal
pooling for one-dimensional data. Finally, update the adjacency matrix of the nodes according to the
coarsening graphs. Our method can learn more comprehensive graph representations in an end-to-end
fashion, which may improve the classification performance of the GCN. In short, we transformed
the graph pooling problem into a popular one-dimensional data pooling problem by introducing a
node automatic sorting mechanism. The implementation principle of our method is simple, and the
performance or efficiency of our method is significantly better than the previous graph pooling on
several standard benchmark datasets.Specifically, in multiple graph classification tasks, the proposed
UGPool method achieves an average accuracy gain of 1.08% compared with other node-based pooling
methods and achieves performance comparable to edge-based EdgePool with an average reduction in
runtime of 64%. Moreover, UGPool method can be integrated with multiple GCN architectures and
effectively improve the classification accuracy by 1.63% on average on multiple benchmark datasets.

To sum up, the main contributions of this work are:

• We proposed a novel pooling method UGPool with a new point-of-view in pooling graph nodes
that uniformly pooling the neighboring nodes in score-space instead of pooling top nodes as
usual, which could uniformly coarsen the graph nodes.

• The proposed UGPool could learn hierarchical graph embeddings, which outperforms other
node-based graph pooling methods while maintaining high efficiency in multiple graph
classification tasks.

• The proposed UGPool method could be integrated with multiple GCN models to effectively
improve performance compared to no pooling.

The rest of this paper is organized as follows: Section 2 includes an overview of related work of
graph convolution and graph pooling. Section 3 describes the proposed UGPool methods. Section 4
evaluates the UGPool method and compares it to other graph pooling methods with extensive
experiments. Finally, Section 5 concludes our work.

2. Related Work

To facilitate background understanding, we make brief reviews on the related work of graph
convolution and graph pooling, respectively.

2.1. Graph Convolution

Graph convolution operation can aggregate local features of the data on a non-Euclidean domain
and has powerful representation ability on graph data [7,25]. In general, graph convolution includes
spectral-based and spatial-based models. For spectral-based models, the graph is transformed into a
Fourier spectral-domain through graph Laplacian, and then spectral filers are used to achieve graph
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convolution [8,26,27]. For example, [8] proposed a spectral graph convolution by applying Chebyshev
filters. For spatial-based models, features of locally adjacent nodes are directly aggregated and then
propagated to the next layer [7,25,28]. Different aggregation and propagation rules have spawned
different graph convolution models.

2.2. Graph Pooling

The pooling layer enables CNN to reduce trainable parameters to overcome the overfitting
problem while facilitating the network to learn multi-scale graph embeddings [1,29]. Finding the
proper pooling layer for GCN is also important but more challenging because the graph nodes are not
distributed in the regular grid domains. At present, graph pooling could be group into the following
three categories [23]: topology-based, global, and hierarchical pooling. Topology-based graph
pooling method directly clusters nodes to coarse graph using graph theory such as spectral clustering
algorithms [8,18,30]. However, these methods often introduce a lot of computation, especially when
the node size is large. The global pooling method applies summation and neural network to integrate
the node features of each layer into graph-level representations, which can be directly used for graph
classification tasks [31–33]. Hierarchical pooling can obtain assignments of coarse nodes and their
new topology information through neural networks, so that graph convolution can be performed on
hierarchical graphs, similar to CNN being executed on multi-scale images. Most neural network-based
pooling methods can be used for both global pooling and hierarchical pooling architectures, both of
which can improve graph classification.

Ying et al. [20] proposed a differentiable graph pooling method called DiffPool, which can learn
the node assignments in end-to-end fashion using specialized graph convolutional layers. The node
assignment matrix S(l)∈Rnl×nl+1 of lth layer is generated by input node features X(l) and adjacency
matrix A(l):

S(l) = softmax
(

GNNl

(
A(l), X(l)

))
(1)

Then the node assignments matrix is used to update the node features and adjacency matrix:

X(l+1) = S(l)T
Z(l) (2)

A(l+1) = S(l)T
A(l)S(l) (3)

where Z(l) denotes the output embeddings of lth graph convolution layer. Please note that DiffPool
learns a dense assignment matrix requiring a large storage complexity of O

(
k× |V|2

)
, where |V| and k

denote vertices and pooling ratio, respectively. DiffPool introduces more training parameters, making
it easier to overfitting.

Gao et al. [21] proposed a simple gPool method (also known as TopKPool) that uses a linear
layer to generate a node score with node feature as input, and then pools the top K nodes with the
highest score. Subsequently, gPool was applied for graph classification, and achieved performance
comparable to that of DiffPool but required lower storage complexity of O (|V|+ |E|), where |V|
and |E| denote vertices and edges, respectively [22]. The procedure in gPool can be described by the
following equation:

y = X(l)p(l)/‖p(l)‖, idx = top− rank(y, dkNe) (4)

A(l+1) = A(l)
idx,idx (5)

where y denotes the node score, p denotes the parameter of the linear layer, top− rank means selecting
the top dkNe nodes and idx is the index of the top nodes.

Lee et al. [23] introduced self-attention graph pooling (SAGPool), which uses a graph neural
network (GNN) to provide self-attention scores. SAGPool is a variant of TopKPool and it combines
node features and topology information when calculating node scores.
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Recently, Diehl et al. [24] proposed an EdgePool method based on the notion of edge contraction.
Compared to the previous method based on node scores, EdgePool selects the combination of two
connected node features as input, and calculates the edge score using the neural network. Then the
model chooses a highest-scoring edge to contract by merging its nodes. The procedure in EdgePool
can be described by the following equation:

r
(
eij
)
= W ·

(
ni‖nj

)
+ b, (6)

sij = 0.5 + softmaxr∗j
(
rij
)

(7)

n̂ij = sij
(
ni + nj

)
(8)

where ni denotes the node feature, W and b are learned parameters, rij is the raw edge score, sij is the
final edge score, and n̂ij is the new node feature.

2.3. Summary

To sum up, the above node-based graph pooling methods both pool top K nodes with the
highest score to achieve the coarsening graph, which has a limitation that the pooled graph cannot
uniformly inherit the node features of the previous layer, because pooling only the highest-scoring
nodes might throw away whole neighbourhoods of nodes and therefore information. Discarding
all the low-score nodes may miss the useful features for graph embeddings and graph classification.
Although EdgePool tries to uniformly extract graph features by contracting edges and merging the
connected nodes, its runtime scales linearly in the number of edges, which is generally more complex
than that of node-based pooling methods scaling linearly in the number of nodes. Therefore, it is
necessary to develop a pooling method that can uniformly coarsen graph data to improve graph
classification while maintaining high efficiency.

3. The Proposed Method

Compared with the study of the GCN model, the graph pooling method is still relatively few.
To further improve the graph pooling, we propose an UGPool method to uniformly extract node
features, which assigns a score to each node and uniformly pools the adjacent nodes in the score-space.
Our method outperforms other node-based pooling methods and achieves performance comparable
to edge-based EdgePool in a more efficient runtime.

3.1. Uniform Graph Pooling

Our UGPool method is to uniformly retain node features, just like pooling on grid-like domain
data. UGPool uses neural networks to learn node scores with node features or topological information
as input, and ranks nodes based on their scores. Subsequently, a normal one-dimensional pooling is
performed on the sorted nodes to achieve a coarse graph, and then the adjacency matrix is updated
based on the pooled node.

Graph to Vector. We introduce a layer of neural network that uses node features as input to
learning the node scores. If a simple linear layer is applied, the learned node score is equivalent to a
one-dimensional mapping of the node features. If the graph convolutional layer is applied, the learned
node score reflects both the feature and topology information of the node [23]. The node score is
generated by the following formula:

y = Â(l)X(l)p(l)/‖p(l)‖ (9)

where Â denotes the normalized adjacency matrix, X is the node features, and p is the learnable
weights of the neural network. Please note that if Â is set to the identity matrix, the linear layer is used,
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otherwise, the graph convolutional layer is used. Next, ranking the node based on the node score for
further pooling.

Uniform Node Pooling. We can prove that the nodes with similar features or topology information
will be assigned similar scores. This property allows us to perform a normal one-dimensional pooling
on the sorted node vector, such as max pooling or average pooling. That is, we can use the overall
statistical characteristics of the neighboring node features of a certain node as new features of the node,
while the adjacent nodes are discarded. Finally, we applied a gate operation to control the information
flow to avoid the gradients from the loss could not be backpropagated. The following equation roughly
describes the pooling procedure in UGPool:

sidx = rank(y) (10)

X(l)
s , ys = sort(X(l), sidx) (11)

X(l+1), pidx = 1DPool(X(l)
s � ys) (12)

where rank(·) is the operation of node ranking, sidx denotes the sorted index for node scores y,
X denotes the node features. Xs and ys denote the features and scores of the ranked nodes, respectively.
1DPool(·) is the normal pooling on one-dimensional data, pidx is the index for pooled nodes. UGPool
retains multiple types of nodes, rather than just high-scoring nodes, which allows the pooled graph to
uniformly inherit the representative features of the original graph.

Adjacency Matrix Updating. After the pooled graph is calculated, the adjacency matrix between
the pooled nodes also needs to be updated. Using the original adjacency information of the pooled
nodes is a solution, but this may cause the problem of sparse edges and isolated nodes. To overcome
this problem, we consider the second-order connection between nodes, as done in [23]. The update of
the adjacency matrix is as follows:

A(l+1) = A(l)
pidx,pidx + A(l)2

pidx,pidx (13)

where pidx denotes the index for pooled nodes. It is easy to know that A2 generates the second-order
connection between nodes.

Theorem 1. Let X1, X2 be any graph node features and y1, y2 be output of Equation (9), respectively, then ‖y1−
y2‖ → 0 as long as ‖X1 − X2‖ → 0 (i.e., as long as the node features are similar, the learned node scores
are similar).

Proof of Theorem 1. ∀δ → 0, if ‖X1 − X2‖ < δ, then ‖y1 − y2‖ = ‖Â(X1 − X2)
p
‖p‖‖ < ‖Â‖ · ‖X1 −

X2‖ → 0.

3.2. Model Architecture

To make fair comparisons and reduce the variables, we applied the same network architecture
as the previous studies [22,23,33], and compared our UGPool method to the baseline on the same
network architecture.

Graph convolution layer. Graph convolution is the basis of learning graph embedding.
While there are many types of graph convolution models, we applied the most widely used model
proposed by Kipf et al. [7], and its network layer function is as follows:

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2 H(l)W(l)) (14)

where H(l) ∈ RN×D(l)
is the node features of the lth layer, W(l) ∈ RD(l)×D(l+1)

is the trainable weight
matrix and Ã is the adjacency matrix with added self-connections. D̃ is a diagonal matrix to normalize
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the adjacency matrix with D̃ii = Σi Ãij. We adopt the widely Rectified Linear Unit (ReLU) as an
activation function σ(·).

Readout layer. The readout layer can embed the node features into the embedding of the
whole graph, and the readout layer should be able to handle graphs with different scales and have
permutation invariance. We used a readout method that calculates the sum and maximum of all node
features as the representation of the graph level [22].

s =
1
N

N

∑
i=1

xi‖
N

max
i=1

xi (15)

where N is the nodes number, xi is the feature of ith node, and ‖ denotes concatenation operation.
Global and hierarchical pooling. In the present study, we compared the global pooling and

hierarchical pooling architectures as done in [22,23]. The hierarchical pooling architecture includes
three graph convolution layers, each followed by a pooling layer (Figure 1). In contrast, the global
pooling architecture consists of three graph convolution layers, followed by a pooling layer after the
last graph convolution layer. The output of each pooling layer passes through a readout layer, and the
outputs of all readout layers are summed as the final output of the whole GCN. Finally, there are three
fully connected layers as prediction layers.

Figure 1. An illustration of the UGPool layer, and hierachical pooling and global pooling architectures.

4. Experiments

In this section, we applied the widely used GCNConv model with global pooling or hierarchical
pooling architecture for multiple graph classification tasks. Please note that we directly used
non-Euclidean structure data to evaluate our UGPool method, because GCN specializes in processing
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non-Euclidean structure data and has advantages in processing such data. We compared UGPool
with other advanced graph pooling methods based on the same GCNConv architecture and under
the same experimental conditions to demonstrate the effectiveness and efficiency of our model.
The graph pooling methods selected for comparison include DiffPool, gPool, SAGPool, and EdgePool.
Moreover, we integrated our UGPool with different GCNs, including GATConv [9], GCNConv [7],
SAGEConv [28], and SGCConv [34], to improve classification performance. Specifically, the core code
of UGPool was released at https://github.com/Qin-J/Uniform-graph-pooling.

4.1. Experimental Settings

For a fair comparison, we performed the same training strategy and hyperparameter optimization
strategy for each model. Specifically, we evaluated the generalization of the model by using 10-fold
cross-validation, and the final accuracy was the average of the 10 testing results. In the training session,
10 percent of the training data was randomly selected as validation data. The remaining 90% of the
graph data and graph labels were used for the supervised training of network parameters. We use
the same early stopping criterion as done in [35] to reduce over-fitting, i.e., when the loss of the
validation data is not improved within 50 epochs with a maximum of 100k epochs, the training is
stopped. We applied Adam as an optimization method and used a grid search as a hyperparameter
search strategy (see Table 1). To ensure the simplicity of the network and to minimize the modification,
the layers of batch normalization and dropout architecture were not used in our model.

4.2. Graph Classification on Benchmark Datasets

From benchmark datasets [36], we selected three protein structure datasets including D&D [37],
PROTEINS [38] and ENZYMES [39], and selected two biological datasets including NCI1 and
NCI109 [40]. D&D and PROTEINS contain large numbers of graph samples (>1 k) associated with two
categories, and ENZYMES contains 500 graphs divided into six categories. Both NCI1 and NCI109
maintain more than 4 k graph samples with two categories. See Table 2 for details of all the datasets.

Table 1. The grid search space for the hyperparameters.

Hyperparameter Range

Learning rate 1 × 10−2, 5 × 10−2, 1 × 10−3, 5 × 10−3, 1 × 10−4, 3 × 10−4

Hidden size 16, 32, 64, 128
L2 regularization 1 × 10−2, 1 × 10−3, 1 × 10−4, 1 × 10−5

Pooling ratio 1/2, 1/4

Table 2. Statistics information of datasets.

Dataset Graphs Classes Nodes per Graph Edges per Graph

D&D 1178 2 284.32 715.66
ENZYMES 600 6 32.63 62.14
PROTEINS 1113 2 39.06 72.82

NCI1 4110 2 29.87 32.3
NCI109 4127 2 29.68 32.13
ABIDE 2614 2 808 8080
HCP 4233 2 808 8080

In this experiment, we trained and tested the GCNConv with global pooling and hierarchical
pooling architectures on the selected five datasets. we compared our UGPool method to other pooling
methods based on the same GCNConv architecture. In addition, we counted the runtime for each
graph pooling method to run an epoch to evaluate its execution efficiency. Please note that the
runtime was measured on a V100 GPU. Moreover, because global pooling architecture achieved better
classification accuracy in the benchmark datasets than hierarchical architecture, we integrated global

https://github.com/Qin-J/Uniform-graph-pooling
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UGPool architecture with different GCN models to evaluate whether our pooling model can effectively
improve the existing GCN models.

Table 3 lists the classification accuracy of each dataset using GCNConv with different pooling
methods. Please note that based on the same GCNConv architecture, our UGPool method dramatically
outperforms other node-based graph pooling methods. While the performance of our method is worse
than the edge-based pooling method (EdgePool) in ENZYMES, NCI1, and NCI109, the efficiency of
our method is significantly superior to EdgePool, as shown in Figure 2. The runtime of EdgePool is
related to the number of edges, and the runtime of our UGPool is only related to the number of nodes.
Therefore, the efficiency advantage of our algorithm will be more prominent in the larger graphs
with larger edges. These results show that our UGPool that can uniformly pool node features is more
reasonable than other pooling methods that only retains high-scoring nodes. Table 4 lists classification
accuracy based on different GCN models with and without UGPool. The results show that our method
can be easily integrated into the general GCN models to improve classification performance.

Figure 2. The runtime of different models in a training epoch on different dataset, respectively.
Please note that in order to ensure the reliability of the evaluation we calculated the average runtime
over 50 epochs. gPoolh denotes the hierarchical pooling architecture, and gPoolg denotes the global
pooling architecture.

Table 3. Graph classification accuracy via GCNConv with different pooling methods.

Models D&D ENZYMES PROTEINS NCI1 NCI109

DiffPool 66.95 ± 2.41 20.3 ± 1.62 68.20 ± 2.02 62.32 ± 1.90 61.98 ± 1.98
gPoolh 75.94 ± 0.95 25.07 ± 1.86 62.46 ± 0.81 66.53 ± 1.73 66.66 ± 0.97

SAGPoolh 76.15 ± 1.03 23.65 ± 1.69 62.53 ± 0.83 66.07 ± 1.43 66.07 ± 1.45
EdgePoolh 76.11 ± 0.48 39.28 ± 2.96 74.8 ± 0.62 76.43 ± 0.41 75.33 ± 0.79

UGPoolh (ours) 76.16 ± 0.80 28.47 ± 2.85 74.22 ± 0.75 70.08 ± 0.56 69.56 ± 0.75

gPoolg 77.01 ± 0.88 32.50 ± 2.96 74.14 ± 0.82 75.89 ± 1.50 73.96 ± 1.29
SAGPoolg 76.75 ± 0.90 37.33 ± 2.11 73.33 ± 0.54 76.02 ± 1.44 74.32 ± 1.45
EdgePoolg 75.30 ± 1.03 38.67 ± 2.36 73.15 ± 0.72 78.13 ± 1.47 76.04 ± 1.05

UGPoolg (ours) 77.69 ± 0.90 35.17 ± 2.04 75.14 ± 0.83 77.01 ± 1.73 75.87 ± 0.96

gPoolh denotes hierarchical pooling architecture and gPoolg denotes global pooling architecture.
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Table 4. Classification accuracy on benchmark datasets with and without global UGPool architecture.

Dataset If Pooling GATConv GCNConv SAGEConv SGCConv

D&D No Pooling 76.15 ± 0.82 76.50 ± 0.85 74.70 ± 0.85 73.93 ± 1.00
UGPool 76.92 ± 0.84 77.69 ± 0.90 74.87 ± 0.93 75.38 ± 0.79

ENZYMES No Pooling 34.83 ± 1.85 33.00 ± 2.24 36.00 ± 1.87 28.00 ± 3.34
UGPool 37.17 ± 2.06 35.17 ± 2.04 33.50 ± 2.42 36.17 ± 1.81

PROTEINS No Pooling 75.41 ± 0.62 74.05 ± 0.62 74.05 ± 0.72 74.50 ± 0.79
UGPool 74.68 ± 0.67 75.14 ± 0.83 74.59 ± 0.61 74.86 ± 0.85

NCI1 No Pooling 76.25 ± 1.33 76.16 ± 1.45 75.33 ± 1.96 76.55 ± 1.77
UGPool 76.06 ± 1.88 77.01 ± 1.73 75.55 ± 1.67 76.01 ± 1.89

NCI109 No Pooling 75.22 ± 0.51 75.83 ± 0.76 74.00 ± 1.53 75.32 ± 1.19
UGPool 75.44 ± 0.91 75.87 ± 0.96 74.61 ± 1.11 73.88 ± 1.27

4.3. Graph Classification on Brain Connectivity

fMRI-based functional connectivity is an effective measure of brain function, which reflects the
correlation of brain signals between brain regions [41]. Functional connectivity are often used as
features for gender classification or diagnostic classification of brain disorders [42–45]. However,
in previous studies, the functional connectivity matrix was simply arranged as a vector ignoring the
spatial information between brain regions. In fact, the brain regions were selected on the irregular brain
cortex and the topological relationship between the brain regions is on non-Euclidean domains, which
can be described by a graph structure. Therefore, in this experiment, we will perform pattern analysis
on brain connectivity from a new perspective, i.e., GCN model with the global pooling architecture of
UGPool. We selected two widely used publicly available fMRI datasets including Human Connectome
Project (HCP) [46] and Autism Brain Imaging Data Exchange (ABIDE) [47] for gender classification
and autism classification, respectively. HCP data consists of resting-state fMRI brain images from
500 males (1944 images) and 596 females (2289 images). ABIDE data consist of resting-state fMRI brain
images from 1003 patients (1199 images) and 1166 healthy controls (1415 images). Please note that
some subjects have multiple scans images. To increase the samples as much as possible, we used all the
images for training and testing the models, and divided the training set and test set based on subjects
rather than images to prevent the problem of peeking at samples.

As shown in the illustration of the experiment in Figure 3, the steps for processing the fMRI
data include data preprocessing, selecting the brain region template, extracting the time series of
brain regions, calculating the functional connectivity graph, and classifying connectivity graphs
using GCN with global UGPool architecture. The data preprocessing pipeline was the same as we
did in our previous works [43,48]. We used 808 ROIs as the brain template which was generated
via spatially constrained spectral clustering [49]. Pearson’s correlation coefficients between pairs of
ROI-based time series were calculated, resulting in an 808× 808 symmetric connectivity matrix for
each subject. We used a k-nn graph G = (ν, ε) to describe the brain connectivity graph, where its
node vi ∈ ν represents a brain ROI, and functional connectivity of all the ROIs serve as node signals
csi : vi→RN , s = 1, . . . , N. and the graph edge ei ∈ ε represents the correlation distance between
corresponding node signals. We calculated the average functional connectivity of training data to
estimate the average adjacency matrix of the connectivity graph, which will be commonly applied
to the GCN model for each subject. Please note that using the functional metric to represent the
graph edges may capture more accurate brain functional architecture rather than using structural
or spatial metrics [50]. Based on the connectivity graphs, we performed a GCN model with global
UGPool architecture for gender classification and autism classification tasks, respectively. To make a
comparison, we also evaluated the classification via the GCN model without the pooling method.
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Figure 3. The sample image of fMRI and the illutstrations of our experiments of graph classification.

Table 5 lists the gender classification accuracy and autism classification accuracy via the GCN
models with and without global UGPool on the HCP and ABIDE datasets, respectively. Based on
different GCN models, our UGPool method can significantly improve the classification accuracy of the
connectivity graphs. The experimental results show that the GCN model is effective in representing
the brain connectivity graph. Moreover, our UGPool method can be integrated into general GCN
models to improve graph embedding and classification performance.

Table 5. Classification accuracy of brain connectivity with and without global UGPool architecture.

Dataset If Pool GATConv GCNConv SAGEConv SGCConv

ABIDE No Pooling 61.26 ± 1.45 60.90 ± 0.84 62.30 ± 0.88 61.48 ± 1.03
UGPool 64.58 ± 1.18 63.45 ± 1.42 64.77 ± 1.37 65.03 ± 1.52

HCP No Pooling 79.70 ± 1.26 79.65 ± 1.55 79.41 ± 1.54 80.60 ± 2.04
UGPool 84.11 ± 1.41 84.29 ± 1.25 85.14 ± 0.97 84.92 ± 1.11

4.4. Main Results

To sum up, we evaluated UGPool method with multiple benchmark datasets including protein
structure datasets, biological datasets, and brain imaging datasets. By applying GCNConv model
with different global pooling or hierarchical pooling methods for multiple graph classification tasks,
we demonstrated that our UGPool method outperforms other node-based pooling methods with an
average accuracy gain of 1.08% and achieves performance comparable to edge-based EdgePool with
an average reduction in runtime of 64%. Moreover, we showed that UGPool method can be easily
integrated with multiple GCN architectures and effectively improve the classification accuracy by
1.63% on average on multiple benchmark datasets.

4.5. Strengths and Possible Limits

The proposed UGPool could learn hierarchical graph embeddings, which outperforms other
node-based graph pooling methods while maintaining high efficiency in multiple graph classification
tasks. Moreover, UGPool could be integrated with multiple graph convolution networks to effectively
improve performance compared to no pooling. However, the proposed method also has possible
limitations, i.e., the feature of graph edges is not used when calculating node scores and pooling
nodes, which may not be conducive to processing graphs with rich edge information. Please note that
the proposed UGPool method could achieve almost comparable performance to the state-of-the-art
method (EdgePool) with a more efficient runtime. The principles of these two pooling methods are
quite different. The EdgePool is an edge-based pooling method that coarsens the graph by contracting
edges and merging connected nodes. In contrast, the UGPool is a node-based pooling method that
coarsens the graph by assigning a score to each node and uniformly pooling the adjacent nodes in
the score-space. The runtime of EdgePool is related to the number of edges, and the runtime of our
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UGPool is only related to the number of nodes. Therefore, the operating efficiency of our UGPool is
significantly higher than that of EdgePool, as graph data generally has much more edges than nodes.
This advantage will be more prominent in processing large-scale graphs with dense edges.

4.6. Threats to Validity

Please note that there are still several threats to the validity of the experiment. First, although we
have evaluated the proposed methods with multiple graph classification tasks, including the protein
graphs, the biological graphs, and the brain connectivity graphs, there is still no theory to ensure that
the classification performance of the proposed algorithm for other types of graph data, such as social
network graphs and citation graphs, will definitely be better. Second, we only evaluated the proposed
method on general-scale graph data, and the performance of the method on very large-scale graph
data still needs further verification.

5. Conclusions

We proposed a novel pooling method UGPool with a new point-of-view in selecting pooled nodes,
which assigns a score to each node, and uniformly pool the neighboring nodes in score-space instead
of pooling top nodes as in existing papers. UGPool method has permutation invariance to graph nodes
and uses a consistent number of parameters regardless of the input graph size. By uniformly preserving
the representative node features, our UGPool method outperforms other node-based pooling methods
with an average accuracy gain of 1.08% and achieves performance comparable to edge-based EdgePool
with an average reduction in runtime of 64%. The efficiency advantage of UGPool is more prominent
in processing large-scale graphs with dense edges. Moreover, UGPool can be integrated with multiple
GCN architectures and effectively improve the classification accuracy by 1.63% on average on multiple
benchmark datasets.

Our work provides a new perspective for the pooling method, which will promote uniformly
coarsening graph-structured data, learning hierarchical graph embedding, and classifying the whole
graph. For example, the proposed UGPool can be applied to coarsen and learn the hierarchical
structure of graph data such as protein graphs, social network graphs, citation graphs, and brain
network graphs. UGPool can also be applied to improve classification tasks of the above graph data
by being integrated with different graph convolution models. In the future, it will be interesting to
automatically generate the graph edges, instead of manually calculating it as currently done. Moreover,
the pooling of dynamic graphs will be also the future direction. In that case, the graph structure and
graph nodes are dynamically changing, which requires the pooling method to have dynamic scalability.
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