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Featured Application: The advantageous characteristics of flexibility and versatility of movement
in spine biotensegrity models can be further studied for potential application in deployable
structures and flexible arm in the robotic industry.

Abstract: This paper presents a study on form-finding of four-stage class one self-equilibrated spine
biotensegrity models. Advantageous features such as slenderness and natural curvature of the
human spine, as well as the stabilizing network that consists of the spinal column and muscles,
were modeled and incorporated in the mathematical formulation of the spine biotensegrity models.
Form-finding analysis, which involved determination of independent self-equilibrium stress modes
using generalized inverse and their linear combination, was carried out. Form-finding strategy for
searching the self-equilibrated models was studied through two approaches: application of various
combinations of (1) twist angles and (2) nodal coordinates. A total of three configurations of the
spine biotensegrity models with different sizes of triangular cell were successfully established for the
first time in this study. All members in the spine biotensegrity models satisfied the assumption of
linear elastic material behavior. With the established spine biotensegrity model, the advantageous
characteristics of flexibility and versatility of movement can be further studied for potential application
in deployable structures and flexible arm in the robotic industry.
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1. Introduction

The principle of biotensegrity was introduced by Levin [1] and Ingber, et al. [2] in the 1980s,
as an idea of applying the concept of tensegrity to represent the interaction of forces in all hierarchical
biological systems. Biotensegrity has been found to demonstrate inherent mechanistic properties
that are in good agreement with experimental data of in vivo [3,4]. It also possesses the following
four excellent characteristics: efficiency (i.e., geodesic form), self-stabilizing, multi-modularity and
multi-functional (i.e., mechanotransduction). To date, the overwhelming body of evidence clearly
indicates the applicability of the principle of biotensegrity in anatomy and physiology from macro- to
nano-scale biology systems [5,6]. Biotensegrity as a model emulated from the forms and functions of
sophisticated and sustainable biological systems has been suggested for several potential applications
especially in medical technology, health care practices [5] and even in the construction industry in the
form of a biotensegrity robot [7].

Appl. Sci. 2020, 10, 6344; doi:10.3390/app10186344 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-9474-8276
http://dx.doi.org/10.3390/app10186344
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/18/6344?type=check_update&version=2


Appl. Sci. 2020, 10, 6344 2 of 19

This study is aimed at form-finding of possible biotensegrity models inspired by the form of the
human spine. Advantageous features of a human spine such as slenderness and natural curvature
of the geometry, as well as the stabilizing network consisting of spinal column and muscles were
incorporated in the configuration of the spine biotensegrity model. This study was carried out as a first
step towards the next phase of study on the shape changeability of the spine biotensegrity models that
can be beneficial for applications such as automated robotic tools (i.e., for inspection and automation in
manufacturing) or deployable structures (Figure 1). Shape change of regular tensegrity models studied
by the authors can be found in [8]. The form-finding analysis employed Moore–Penrose generalized
inverse in the solution of rank-deficient system of equilibrium equations. An algorithm incorporating
iterative process to determine the self-equilibrated configuration of spine biotensegrity model through
the modification of nodal coordinates was proposed.

Figure 1. Motivation of the study.

The human spine is one of the unique models in the biological system with the ability to sustain
high loads and at the same time demonstrate a superior combination of multidirectional movements.
Despite being spongy, the tapered spinal vertebrae body efficiently maintains body weight and
withstands external impacts. In addition to the special architecture with sagittal curvature of spinal
column, the spine can avoid distress (i.e., exhaustion) by re-establishing new equilibrium positions.
The dexterity in avoidance of distress in the system is mainly due to the harmonization of the
passive (i.e., spinal column), active (i.e., surrounding muscles and tendons) and control (i.e., neural
centers) subsystems [9]. It is noted that the spine always maintains the stability of the system
even after disturbance by a self-structural reorganization. Based on the above descriptions, a spine
has a distinctive characteristic of flexibility and versatility in accommodating different movements.
Coupling the advantage of tensegrity (i.e., lightweight and flexibility) and the versatility of a human
spine, a novel biotensegrity model can be realized. In addition, the principle of biotensegrity is highly
suitable for explaining the mechanism of compressive passive subsystem (i.e, spinal column) and
tensional active subsystem (i.e., surrounding muscles and tendons) in the spine. According to Levin,
a spinal system re-structures to form many new postures in order to sustain the stability of the system
once the tensional forces in the network have been disturbed [10]. Levin also recommended a geodesic,
close packing and hierarchical spine model using tensegrity mast. More information about spinal
tensegrity mast models can be found in [11].

Configurations of biotensegrity have been proposed through form-finding process by solving
complex geometrical inputs and forces [12]. The first physical biotensegrity model that mimics
living cells, namely cellular tensegrity model, was built with the spherical central nucleus [13].
Thereafter, mathematical modeling with various cellular models using regular tensegrities were
studied [12]. Many have claimed excellent prediction of cellular mechanistic properties through
cellular tensegrity models [5,6,14]. However, the major limitation of these models lies in the use of
simple configurations to represent the complex structure in nature [11]. Despite the fact that the
basic mathematical formulation to express the mechanical models for biotensegrity has achieved a
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certain maturity, many of the investigations focused extensively on cellular tensegrity models [6,12].
In this study, a form-finding of biotensegrity models to specifically represent the complex living
organism at a higher hierarchy is addressed. There are many established form-finding strategies on
tensegrity structures, which have been classified as kinematical and statical methods [15]. A force
density-based analytical form-finding method was applied for regular tensegrity structures by group
elements [16]. Form-finding method combining symmetry-based qualitative analysis with particle
swarm optimization for symmetric tensegrities and prestressed cable-strut structures was proposed [17].
A method using strut finite element and unconstrained nonlinear programming for form-finding
of hyper-elastic tensegrity structures was studied [18]. A nonlinear programming approach for
form-finding of tensegrity structures by using fictitious materials properties was presented [19].
An optimization method to generate nodal coordinates of super-stable tensegrity structures with
known connectivity data and force densities was proposed [20]. Form-finding analysis of an asymmetric
large deployable antenna using a force density-based optimization algorithm was carried out [21].
A form-finding method whereby a fully automatic labeling of elements through a double-loop genetic
algorithm was used [22]. A modified dynamic relaxation algorithm for the form-finding of tensegrity
robots in task space was proposed [23]. Many of the investigations mentioned above were aimed at
finding new configurations of tensegrity subjected to different constraints or optimization criteria.
This paper presents form-finding strategies for spine biotensegrity models.

The remainder of the paper is organized as follows: Section 2 defines the geometry of the spine
biotensegrity models that are based on key parameters from human spine vertebrae and natural sagittal
curvature. Section 3 presents the search strategies for form-finding of self-equilibrated configuration of
the spine biotensegrity models adopted in this study. Section 4 discusses form-finding results of spine
biotensegrity models using the algorithm proposed. Lastly, the conclusions are presented in Section 5.

2. Geometrical Input of Spine

The geometrical input data for the generation of spine biotensegrity models were gathered from
the anatomical parameters of human spines by Busscher, et al. [24] where the human spine specimens
were collected from six male cadavers with age and body height at death ranging from 55–84 year-old
and 175–192 cm, respectively (mean of 72 year-old and 182cm, respectively).

2.1. Vertebrae Anatomical Parameters

Figure 2 shows typical vertebrae in superior and lateral views whereas Figure 3 shows a typical
human spine in sagittal and posterior views. Sagittal and posterior views are medical terms that refer
to the appearance of the spine when viewed from the side and behind, respectively. Figure 3 shows
a total of twenty-two vertebrae from the cervical (vertebrae C3,C7), thoracic (vertebrae T1T12) and
lumbar regions (vertebrae L1–L5) that were considered in this study. Anatomical parameters such as
the vertebral end-plate width denoted as EPW (mean value of upper and lower vertebral end-plate
width denoted as UEPW and LEPW, respectively), vertebral central body height denoted as VBHC and
intervertebral disc height denoted as IDH from the source by [24] were considered in the generation of
the spine biotensegrity models.

Figure 2. Typical vertebra parameters [24].
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2.2. Natural Sagittal Curvature

The human spine (Figure 3) has a natural curvature in sagittal view with: (i) lordosis (concave
curve) at cervical and lumbar regions and (ii) kyphosis (convex curve) at thoracic and sacral regions.
According to Busscher, et al. [24], cervical lordosis of 20.1◦, thoracic kyphosis of 34.5◦ and lumbar
lordosis of 29.2◦were measured as the angles between the upper end-plate of C3 and the lower end-plate
of C7, the upper end-plate of T1 and the lower end-plate of T12 and the upper end-plate of L1 and the
lower end-plate of L5, respectively. These angles are reasonably accepted and supported by others. For
instance, the fact that thoracic kyphosis lies between 20–45◦ has been suggested by Mejia, et al. [25].
Been and Kalichman [26] have reported a normal range of 30–80◦ for lumbar lordosis.

Figure 3. Human spine anatomy lateral (left) and posterior (right) view [27].

The apex of the curvature is defined as the farthest point of a vertebra from the C7 plump line.
The C7 plumb line is established by extending a vertical line from the center of C7 vertebral body to
the posterior corner (at the back) of sacrum S1 [28]. The normal weight of the human body generally
acts through the C7 plumb line. Nevertheless, there are insufficient anatomical data about sacrum S1
in the study by Busscher, et al. [24]. Hence, an assumption that the C7 plumb line rests on the right end
of the vertebrae L5 adjoining to S1 was made in this study.

Figure 4 shows the established natural sagittal line for the spine biotensegrity models. It is noted
that there is an apex each within cervical lordosis, thoracic kyphosis and lumbar lordosis in a human
spine. The decision on the location of these apexes is based on several pieces of literature. The apex of
lumbar lordosis, AP1, is assumed at the intervertebral disc between L3-L4 whereas the apex of thoracic
kyphosis, AP2, is assumed at vertebrae T7 [29]. The apex of cervical lordosis, AP3, is assumed at C5
according to Knox and Lonner [30], who suggested the lordotic climax in between C4–C6. One of the
most common methods, namely the Cobb method, has been adopted in establishing the curvature of
the spine biotensegrity model. A review on this method can be found in [31].
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Figure 4. Established curvature line mimicking the human spine.

3. Search Strategies for Spine Biotensegrity Models

This section presents the key steps in the search strategies for spine biotensegrity models: (1) the
generation of geometrical model, and (2) the formulation of mathematical equations.

3.1. Geometry of the Spine Biotensegrity Model

The geometry of the spine biotensegrity model was defined by their nodal information, which is
described in the basic cell such as the triangular cell and element connectivity.

3.1.1. Definition of Basic Cell

The triangular cell has been chosen to mimic the human spine, due to its simplicity of application.
Figure 5 shows the definition of a typical triangular cell and triangular surfaces of the spine biotensegrity
models. A total of three variations of spine biotensegrity models identified as SB1, SB2, and SB3,
with different sizes of triangular cells have been proposed in this study. The geometry of a triangular
cell is presented in the global Cartesian coordinate system Oo-XoYoZo. The position vector of nodal
coordinates is denoted as X. The origins of the local Cartesian system Oi – 1-Xi - 1Yi - 1Zi - 1 and Oi-XiYiZi
are positioned at the centroid of lower (X6i-5 X6i-4 X6i-3) and upper triangular surfaces (X6i-2 X6i-1 X6i)
of ith (i = 1, 2, . . . , n) triangular cell, respectively.

Figure 5. Definition for the typical triangular cell and triangular surfaces for spine biotensegrity models.

The nodal coordinates in plane XY of the spine biotensegrity models are determined based
on triangle altitude, d and half of the vertex angle, θ of the lower and upper triangular surfaces in
the local Cartesian system. The tapered section properties of a human spine are incorporated into
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the spine biotensegrity models (the width of vertebra gradually increases from cervical vertebrae to
lumbar vertebrae). Reference is made to the EPW of vertebrae to characterize the widths of the spine
biotensegrity models and these widths are adopted as the triangle altitudes for the triangular surfaces
in cells.

It is noted that all spine biotensegrity models have the same magnitude of triangle altitude (d)
(see Figure 5). SB1, SB2, and SB3 are different in terms of half of the triangle vertex angles (θ) with
values of 20◦, 30◦, and 40◦, respectively. While accumulation of both VBHC and IDH represents the
height of the spine biotensegrity model, accumulation of IDH represents the saddle height between
two independent cells.

3.1.2. Definition of Basic Cell

Tensegrity are classified into class one, two and k depending on the numbers of strut at a node [32].
In this study, class one tensegrity mast is chosen for the spine biotensegrity models to mimic the
stacking up of discontinuous compressive vertebral bodies of a human spine. Specifically, class one
tensegrity mast consists of struts (i.e., vertebrae) that are connected solely by cables (i.e., muscles,
intervertebral disc) and offers no contact in-between the struts, such as a human spine (i.e., vertebrae
are cushioned by intervertebral disc and surrounded by muscles).

Figure 6 shows the developed element connectivity chart inspired by Pugh’s illustration of
the diamond pattern. The N-stage class one spine biotensegrity models with N triangular cells are
assembled according to the chart. The element connectivity at the second and third stage may be
repeated in order to stack up to n triangular cells. The lower and upper triangular surfaces of ith (i = 1,
2, . . . , n) triangular cell are denoted as LiB and LiT, respectively. The triangular cell that is stacked up
on the current ith triangular cell is denoted as the (i + 1)th cell. All the elements are classified into
specific groups. The struts in every stage are represented by bold lines. The saddle cables (red color)
connecting the interface between two triangular cells are represented by irregular dash-dotted lines.
Horizontal cables in regular dashed lines join the nodes only at the base and the top of the structures.
There are three categories of diagonal cables; namely diagonal cables 1 (cyan color) connecting nodes
LiB and Li + 1B, diagonal cables 2 (pink color) connecting nodes LiT and Li + 1T, and diagonal cables 3
(blue color) connecting nodes LiB and LiT. On top of that, reinforcing cables in zig-zag lines at the first
stage are also included.

Figure 6. Element connectivity of N-stage class one three-strut spine biotensegrity model.
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3.1.3. Assemblage of Spine Biotensegrity Models

As mentioned earlier, a total of three variations of spine biotensegrity model, namely SB1, SB2
and SB3 are developed. These three four-stage spine biotensegrity models are proposed based on the
nature of three apexes in a human spine.

Figure 7 shows the assemblage process of a spine biotensegrity model with four triangular
cells. Firstly, major positions of the eight triangular surfaces for the four triangular cells are decided.
The triangular surfaces are placed as follows: one at the base, two at each of the apex and one at the top.
The altitudes of the triangular surfaces at each stage are based on the anatomical parameter EPW at the
respective height of the human spine specimens. The altitude of triangular surfaces decreases along
with the height until the top of the spine biotensegrity model to change accordingly.the taper-form
and slenderness of a human spine. These triangular surfaces are then aligned perpendicular to and
have their centroids coinciding with the established curvature line as shown in Figure 4. Note that,
nodes X6i-5 and X6i-2 of ith triangular cell (Figure 5) are positioned on global Y axis (x = 0), prior to the
twisting process (Figure 7a).

Figure 7. Assemblage of a spine biotensegrity model (a) fitting of triangular surfaces perpendicular to
the established curvature line, (b) twisting of cells shown in elevation and plan view, (c) incorporation
of struts and cables according to the element connectivity pattern.

Next, the triangular surfaces are rotated so that all the triangular cells have an initial twist angle in
the range of 10◦ to 50◦ in clockwise and counterclockwise for odd- and even-number of ith triangular
cell, respectively (Figure 7b). Furthermore, the rotational angle between the triangular surfaces forming
the interface of two triangular cells is set at 60◦ with the same rotational direction as the twisting
direction of the lower cell.

Lastly, the triangular surfaces are removed except for their nodes at the established positions.
The generation of the spine biotensegrity model is complete after the placement of all the struts and
cables according to the developed element connectivity pattern as shown in Figure 6 (Figure 7c).
Each spine biotensegrity model consists of sixty-nine elements (i.e., twelve struts and fifty-seven cables).
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The following section presents the formulation of the equations for the search of the self-equilibrated
state of a spine biotensegrity model.

3.2. Equilibrium Equations of Spine Biotensegrity Model

This study is aimed at establishing the feasible self-equilibrium configuration for four-stage class
one spine biotensegrity models by the means of form-finding analysis.

3.2.1. Basic Assumptions

Form-finding of four-stage class one spine biotensegrity models that are stabilized by prestresses at
the self-equilibrated state is carried out. The following assumptions are made for form-finding analysis:

• Self-weight of struts and cables are neglected due to the reason that the stress resulted from
self-weight is insignificantly small compared to the level of pre-stress [19].

• There is no external force acting on the models. It is necessary to ensure the self-equilibrium
position as shown under the topology of biotensegrity model (Figure 7) is rational. Against
any disturbance, the self-equilibrium and stability of the obtained topology should be retained.
Analysis to study the capability of the established spine biotensegrity to undergo change in shape
is not the scope of the study.

3.2.2. Equilibrium Equations: Formulation

As the spine biotensegrity model consists of struts and cables that are pin and connected, the set of
equilibrium equations adopted in this study is derived based on the basic formulations of pin-jointed
structures. Such formulation for tensegrity structures can also be found in [32,33].

The spine biotensegrity model in this study consists of m elements, no nodes, nc supports and
nu = 3(no-nc) unconstrained degree of freedoms. Consider an element k of the spine biotensegrity
model connecting node i and j (i < j) in a Cartesian coordinate system O-XYZ as shown in Figure 8.

The vectors of nodal coordinates of node i and j are denoted as
−
xi and

−
x j, respectively.

Figure 8. A three-dimensional pinned jointed spine biotensegrity model element with the nodal forces.

The length of element k is evaluated using the following expression:

LT =

√(
x j − xi

)T(
x j − xi

)
(1)

The vector of directional cosines λ of an element k is defined as follows:

λ =

(
x j − xi

)
LT

(2)
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Figure 8 also shows the axial force n of element k for the spine biotensegrity model, and the
components of the nodal force at i and j, f i and f j, respectively (where f i = - f j), which are in equilibrium
with n. Considering equilibriums at all nodes, the following equation can be obtained:

F = Bn (3)

where B is a nu × m matrix consisting of the vector of directional cosines λ of all elements in the spine
biotensegrity model with respect to x, y, z axes, F is a vector of nodal forces with size nu and n is a
vector of axial forces for all elements with size m.

By making use of the Moore–Penrose generalized inverse, the necessary and sufficient condition
for the existence of solution for Equation (3) can be expressed using the following equation:

F=BB+F (4)

which can be rewritten in the following form

[Inu−BB+]F=0 (5)

where Inu is an identity matrix of order nu and B+ is Moore–Penrose generalized inverse of matrix B.
Singular value decomposition method is used in this study to compute the Moore–Penrose generalized
inverse of the matrix B with rank deficiency (i.e., rank < nu).

For the case of self-equilibrated state without external forces, F = 0. Under such condition,
the solution for the vector of axial forces n for the spine biotensegrity model is given by the following
equation:

n=[Im−B+B]β (6)

where β is a vector of arbitrary coefficient of size m.
Denoting matrix [Im− B+B] in Equation (6) as matrix G of size m × m and applying eigenvector

basis decomposition method, the real symmetric matrix G can be expressed as follows:

G = ΦΛΦT (7)

where Λ is a diagonal matrix whose diagonal elements Λi (i = 1, 2, . . . , m) correspond to eigenvalues of
matrix G; Φ is an orthogonal matrix whose ith column Φ i (i = 1, 2, . . . , m) corresponds to eigenvector
associated with eigenvalue Λi. Since matrix G is an orthogonal projection matrix, the eigenvalues
Λi returns the value of either 0 or 1. The eigenvectors Φi correspond to vectors of independent
self-equilibrium stress modes for biotensegrity models considered in this study. It is noted that the
number of vectors of independent self-equilibrium stress modes is equal to the number of non-zero
eigenvalues of matrix G or rank [G].

Substituting Equation (7) into Equation (6) and then multiplying both sides of the resulting
equation with Φ i

−1 as follows:
Φ−1n=Φ−1ΦΛΦTβ (8)

the following expression for vector of axial forces n can be obtained:

n=ΦΛβ* (9)

where β * = ΦTβ.
Assuming that the spine biotensegrity model has q number of independent self-equilibrium stress

modes, Equation (9) can be further rewritten as

n =

q∑
i=1

βi
∗Φi (10)
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where βi* is ith component of vector β*, which corresponds to vector of coefficients for the linearly
independent self-equilibrium stress modes.

Equation (10) shows that the solution of vector of axial force n is dependent on the choice of the
combinations of coefficients βi*, which might be more than one. In this study, only one of the possible
combinations of coefficients βi* was used to determine the vector of axial forces n.

3.2.3. Equilibrium Equations: Solutions

In this study, the spine biotensegrity model is found to have three independent self-equilibrium
stress modes (q = 3). In order to find the possible linear combination of the three self-equilibrium stress
modes, an iterative procedure is adopted in this study. Two main steps are involved in the iterative steps.
The first one is the determination of trial set of coefficients βi* for an assumed configuration of spine
biotensegrity model. The other is the modification of the assumed configuration until one consistent
self-equilibrated configuration is found. For the determination of the trial set of βi*, an unconstrained
minimization problem as shown in Equation (11) is adopted where the conjugate gradient method is
used:

min f (x) = −β∗1 × β
∗

2 × β
∗

3 (11)

Equation (11) is an objective function to prevent excessive axial forces. The set of βi* (i = 1,2,3)
determined by solving Equation (11) is used as the trial values to determine the possible solution for n
(see Equation (10)), which satisfies the inequality constraints given in Equations (12) and (13) using an
iterative process:

0 ≤ nc ≤ σcAc (12)

−
π2EsIs

ls2 ≤ ns ≤ 0 (13)

where nc, Ec and Ac are axial forces, yield stress and cross sectional area for cable elements, respectively;
ns, Es, Is, Ls, σs and As are axial forces, Young modulus, moment inertia of section, length, yield stress
and cross sectional area for strut elements, respectively. In this study, Ac = 3.14 mm2, As = 50.30 mm2,
Es = 200 GPa, and Is = 201 mm4.

As shown in Equations (12) and (13), in addition to checking against yielding of cable elements,
compressive forces of strut elements are checked against Euler’s buckling load. The applied inequality
constraints ensure that the axial forces for all the cable and strut elements are within their upper bound
axial force limits and satisfy the elastic condition of the material properties.

3.3. Algorithm for Form-Finding of Spine Biotensegrity Model

The flowchart in Figure 9 summarizes the strategies to search for a possible self-equilibrated
state of the spine biotensegrity model. Algorithm 1 begins with the preparation of geometrical input
of the spine biotensegrity model in the form of four-stage class one tensegrity mast with triangular
cells. A spine biotensegrity model is generated with the application of initial twist angles to each
triangular cell. The angles may be considered as the anatomical parameters. Vector of axial forces n
satisfying self-equilibrium condition, as shown in Equation (10), is established. The eigenvector basis
decomposition method is adopted to determine the independent self-equilibrium stress modes.

Algorithm 2 is the subset of Algorithm 1 and provides an initial estimate for coefficients βi* through
the minimization problem as shown in Equation (11). It is noted that the combination of coefficients
βi* is searched through an iterative form-finding process to satisfy the Equations (12) and (13).
After obtaining the combination of the coefficients βi*, the substitution of the coefficients βi* into
Equation (10), gives the axial forces n in the self-equilibrium state.

The form-finding strategy for searching the self-equilibrated models is studied through two
approaches. Under approach one (Figure 10a), different combinations of twist angles are applied
to a group of basic cells of a trial spine biotensegrity model. Under approach two (Figure 10b),
unconstrained nodal coordinates of a trial spine biotensegrity model are modified through a relatively
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small magnitude (2% of the height of spine biotensegrity model in this study). Design valuables
are coefficients βi* and nodal coordinates. As the objective function and the constraint conditions
cannot be explicitly expressed by design variables, the procedure of form-finding implies an iteration.
Both approaches involve only minor modification of nodal coordinates due to the priority of searching
for models with close resemblance to the geometry of the human spine.

Figure 9. Algorithm for form-finding of spine biotensegrity model.

Figure 10. Methods used to generate trial configurations of spine biotensegrity model: (a) approach
one and (b) approach two.
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4. Search Results for Spine Biotensegrity Models

The process of finding the possible self-equilibrated state of spine biotensegrity models using
the iterative approach (Figure 9) is presented. Specifically, the results of the processes through
approaches one and two whereby number of slackened cables in compression (slackened cables) are
continuously reduced and eventually eliminated in order to achieve self-equilibrated configuration of
spine biotensegrity model are presented. Due to the similar process, only spine biotensegrity model
SB1 was chosen to demonstrate the form-finding approaches.

4.1. Analysis Results Using Approach One

Under approach one, a random choice of each stage’s twist angle ranging from 10◦ to 60◦ has been
selected for the form-finding analysis for the spine biotensegrity models. The symbol αi is defined by
the twist angles for the i-th stage’s triangular cells. Arrangement of the spine biotensegrity models with
αi ≥ 60◦ is found to be not feasible due to the problem of closely spaced struts. Figure 11 shows the
form-finding analysis with the application of the same twist angle 10◦ to 50◦ for all the triangular cells
in the spine biotensegrity models (i.e., cases 10101010, 20202020, 30303030, 40404040, and 50505050).
The case 10101010 denotes the model as α1=α2 = α3 = α4 = 10◦. The cables in compression are slacked
and should be removed. The slackened cables of SB1 are indicated by the red line (Figure 11). From the
form-finding analysis, it is found that SB1 with α1 = α2 = α3 = α4 = 50◦ yields the least degree of
slackness (9 slackened cables). Larger twist angles tend to reduce the number of slacked cables, but at
α1 = α2 = α3 = α4 = 20◦, the number of slacked cables is maximum. For 10◦ ≤ αi ≤ 40◦, slackened
cables are found to occur throughout the model. For αi = 50◦, more slackened cables are found to occur
at the first and third stages. The information about slackened cables at each trial case is an important
input in the iterative analysis.

Figure 11. Effect of same twist angles on numbers of slackened cables for SB1.
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Figure 12 shows the analysis with the application of various combinations of twist angles for
triangular cells within the model (i.e., cases 10505050, 20505050, 30505050, and 40505050). It is found
that cases where the α1 for the triangular cell at stage 1 is less than 50◦ lead to a lesser number of
slackened cables in comparison with other combinations of α2, α3, α4 (Figure 12a). A similar effect of
such combinations of twist angles is found in SB2 and SB3. When α1 changes while the other αi are
held at 50◦, the numbers of slackened cables ranged from three to nine for SB1, SB2, and SB3 are found
(Figure 12b). In the model SB1 and SB3, the numbers of slackened cables are maximum at α1 = 20◦.
In the case of α1 = 10o in SB1 and α1 = 40◦ in SB3, the number of slackened cables is minimum. On the
other hand, SB2 is not sensitive to α1. In SB1, as α2 and α3 are assigned larger values, the number
of slackened cables decreases. Figure 13 illustrates the numbers and position of slackened cables for
parameter α1 = 10◦−40◦ and α2 = α3 = α4 = 50◦ in SB1. At α1 = 10◦, number of slackened cables
decreases to five and is uniformly located throughout the stages.

Figure 12. Effect of various combinations of twist angles on number of slackened cables for (a) SB1 and
(b) SB1, SB2 and SB3.

Figure 13. Effect of various twist angles for triangular cell at stage one on number of slackened cables
in SB1.

4.2. Iterative Results Using Approach Two

Self-equilibrated state of spine biotensegrity models cannot be found by approach one. The case
30505050 (selected based on the form-finding results from SB1, SB2 and SB3) is then employed
in approach two in the subsequent process of searching for the self-equilibrated configuration.
Under approach two, the modified nodes are 18 nodes excluding the base and top nodes (i.e, node
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4 to node 21). The controllable range of the nodal coordinates is less than 15 mm in the y direction.
Few cases (i.e., cases A1 to H1) that are close to the self-equilibrated state are chosen to demonstrate
the feasibility of the form-finding approach. Figure 14 shows the numbers and positions of slackened
cables in SB1. It is seen that SB1 still preserves the spine anatomical parameters, especially the natural
curvature of the spine. It is also important to note that the position of slackened cables changes even
though the modifications of nodal coordinates are small.

Figure 14. Effect of different modifications of nodal coordinates on the number of slackened cables
in SB1.

Table 1 presents the axial forces of the potential slackened cables of SB1. As can be seen in Table 1,
although the slackened cables 40, 50, 59, and 68 may change into tension state easily, the remaining
cables (particularly cable 51 and 65) remain slackened in most of the cases. In the case of B1, it is
apparent that the case with the modification of node 5 instead of node 6 reduces the degree of slackness
in most of the slackened cable (especially in cables 40, 42, 57, 65, and 67). Additionally, the modification
of node 19 in case F1 clearly shows the effect of further reducing the degree of slackness in the slackened
cables 51, 59, 65, and 66 compared to case E1. However, such modification in case F1 also leads to
an increase in the degree of slackness in slackened cables 42 and 67. This situation is improved by
excluding node 13 in case G1. Since node 19 showed its significance in changing slackened cables 51,
59, 65, and 66 to tension state, further modification of coordinates of node 19 was carried out. This led
to case H1, where a self-equilibrated SB1 is successfully determined. Similar form-finding strategies
are applied to SB2 and SB3.
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Table 1. Axial forces in SB1 for cases A1–H1.

Modification of Nodal Coordinates (mm) in Y-Direction for Cases A1-H1

Case
Nodes

Case
Nodes

6 20 15 12 13 14 5 4 19 6 20 15 12 13 14 5 4 19

A1 −10 −5 −7 3 −3 −7 0 0 0 E1 0 −5 −7 4 −3 −7 −10 0 0
B1 0 −5 −7 3 −3 −7 −10 0 0 F1 0 −5 −7 4 −3 −7 −10 0 2
C1 0 −5 −7 3 −3 −7 −15 0 0 G1 0 −5 −7 4 0 −7 −10 0 2
D1 0 −5 −7 3 −3 −7 −10 −5 0 H1 0 −5 −7 4 0 −7 −10 0 7

Axial Force (N) for Case 30505050 and Cases A1-H1

Cable 30505050 A1 B1 C1 D1 E1 F1 G1 H1
40 −7.73 1.65 3.94 10.00 10.00 5.00 10.00 5.00 6.07
42 10.00 −2.74 0.11 1.58 −2.24 1.93 −7.74 1.85 0.79
50 −8.82 18.54 13.10 17.25 18.81 13.31 13.63 10.88 3.82
51 −1.11 −2.27 −2.77 −4.06 −3.73 −5.45 −4.13 −4.44 0.03
57 −28.56 −2.52 −1.69 −1.44 −2.10 8.42 12.57 14.38 22.26
58 12.93 −8.27 −8.49 −12.13 −11.63 −5.71 0.45 6.28 30.40
59 −6.35 0.43 0.68 0.93 0.85 −0.59 0.16 −1.07 4.27
65 −5.27 −13.28 −9.38 −12.76 −13.66 −14.13 −11.70 −12.91 0.03
66 10.00 −5.29 −5.64 −8.06 −7.67 −3.06 1.97 5.88 24.13
67 −2.89 −1.41 −0.81 −0.10 0.05 0.13 −0.60 0.03 0.03
68 −7.86 10.00 6.65 10.91 11.04 2.91 10.00 3.09 6.57

Note: Shaded cells denote slackened cables.

4.3. Spine Biotensegrity Models

Three variations of spine biotensegrity models (SB1, SB2, and SB3) are successfully established by
using the proposed form-finding strategies. Figure 15 illustrates the configuration and nodal numbers.
The larger nodes represent the modification through approach two. In any model, nodes of all cells
excluding the nodes at top and base are considered for modification during approach two. Table A1 in
Appendix A shows the nodal coordinates for the spine biotensegrity models.

Figure 15. Self-equilibrated configuration for spine biotensegrity models (a) SB1, (b) SB2 and (c) SB3.
Note: (+/−7) denotes either positive or negative displacement of 7 mm at the selected node.
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The determined coefficients βi are −1399.907, −2490.990, −131.972 in SB1, 786.626, −2855.643,
462.793 in SB2 and −1368.241, 1188.504, 74.294 in SB3. The above sets of coefficients beta βi (i = 1, 2, 3),
are used to calculate the vector of axial forces (see Equation (10) that satisfy the inequality constraint
represented by Equations (12) and (13). It is emphasized that the solution obtained for the
self-equilibrated configuration for SB1, SB2, and SB3 represents one possible configuration with
close resemblance to the geometry of the human spine. The self-equilibrated configuration could
be further refined through solution of constrained optimization problem using maximum stiffness,
minimum weight or other suitable criteria as objective functions.

In the process of determination of coefficients βi*, the combinations of coefficients β1*, β2* and β3*
that lead to tension in struts or compression in cables are rejected. Non-acceptance of the trial values of
coefficients βi*(i = 1,2,3) obtained from solution of problem defined by Equation (11) is always due to
non-satisfaction of Equation (12) (the existence of slackened cables) within the trial configuration of
spine biotensegrity models.

The proposed form-finding strategy using approach one and two yields updated trial
configurations of spine biotensegrity models to reduce slackened cables and to maintain closely
the geometrical characteristics of the spine. Approach two eliminates inconsistent cables and further
refines the configuration. It is found that, although modification of nodal coordinates in some cases
can reduce slackened cables, increment in the degree of slackness in other slackened cables and the
generation of new slackened cables are observed. Therefore, a good understanding of the relationship
between the modified nodes and the change in axial forces in a spine biotensegrity model is essential
in searching for a self-equilibrated model.

5. Conclusions

This paper presents a trial-and-error iterative process for form-finding of three variations of
biotensegrity models inspired by the form of human spine. The developed element connectivity chart
inspired by Pugh’s diamond pattern is able to generate N-stage class one biotensegrity structures.
The proposed form-finding strategy consists of two approaches. In the first approach, the twist angles of
the cells in each stage, which simulates the geometrical characteristics of the spine, are varied to reduce
slackened cables. In the second approach for further refinement, nodal coordinates are varied to reduce
and eliminate slackened cables. Through form-finding analysis, the characteristics of the biotensegrity
models are found. Twist angle, except for the lowest cell, are appropriate at 50o. The slacking of cables
is very sensitive to twist angles near the thoracic and lumbar region. The sensitivity to twist angle
of the lowest cell is dependent on the shape of the cell. This study has successfully established for
the first time the possible self-equilibrated configurations of biotensegrity models inspired by the
human spine. Future works such as shape change analysis, building and controlling real biotensegrity
models and conducting experiments considering external loading and operational challenges as well
as formulation of self-collision and external collision of the spine biotensegrity models should be
carried out. The outcome of such future works could then lead to the possible application of spine
biotensegrity in area of robotic tools and deployable structures.
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Nomenclature

Ac Cross sectional area of cable
As Cross sectional area of strut
B Matrix of directional cosines
B+ Moore-Penrose generalized inverse of matrix B

β*
Vector of arbitrary coefficients for linearly independent
self-equilibrium stress modes

D Triangle altitude
Es Young modulus of strut
F Vector of nodal forces
Φ Eigenvector associated with the eigenvalue Λ

G Matrix for existence of solution for Equation (2) (see Equation (7))
Is Moment inertia of section
Ls Length of strut
LT Length of cable or strut element
Λ Eigenvalues of matrix G
λ Vector of directional cosines
n Vector of axial forces
nc Axial forces of cable
ns Axial forces of strut
θ Half of the vertex angle
σc Yield stress of cable
σs Yield stress of strut
−
x Vector of nodal coordinates

Appendix A

Table A1. Nodal coordinates of SB1, SB2 and SB3.

Nodes
SB1 SB2 SB3

x y z x y z x y z

1 9.33 −1.23 0 9.33 -1.23 0 9.33 −1.23 0
2 −24.01 −48.3 0 −35.34 −45.27 0 −49.24 -41.54 0
3 14.67 −58.67 0 26 −61.7 0 39.91 −65.43 0
4 −8.9 9.49 123.78 −8.9 9.49 123.78 −8.9 9.49 123.78
5 −14.71 −55.48 141.36 −25.95 −48.49 141.36 −39.72 −52.18 141.36
6 23.61 −35.21 141.36 34.85 −44.2 141.36 48.62 −45.51 141.36
7 −33.22 -39 52.83 −33.22 −39 52.83 −33.22 −39 52.83
8 11.48 −71.52 70.41 8.47 −82.75 70.41 4.77 −96.53 70.41
9 21.75 −33.19 70.41 24.76 −21.96 70.41 28.45 1.82 70.41
10 −10.04 52.87 382.82 −10.04 52.87 382.82 −10.04 59.87 382.82
11 −7.19 14.89 372.81 −14.34 11.56 372.81 −23.12 0.46 372.81
12 17.23 30.28 372.81 24.38 29.61 372.81 33.16 33.7 372.81
13 14.15 63.71 332.85 14.15 63.71 332.85 14.15 63.71 332.85
14 −18.11 34.13 332.85 −24.57 45.65 332.85 −32.51 51.21 332.85
15 3.96 18.67 332.85 10.42 16.15 332.85 18.36 10.49 332.85
16 −5.08 10.05 531.04 −5.08 10.05 531.04 −5.08 10.05 531.04
17 −7.84 −21.15 533.31 −13.91 −22.77 533.31 −21.37 −24.77 533.31
18 12.91 −15.59 533.31 18.99 −13.96 533.31 26.44 −11.96 533.31
19 −18.29 2.21 527.57 −18.29 −9.79 527.57 −18.29 −4.79 527.57
20 6.37 −27.52 519.59 4.74 −28.59 519.59 2.74 −36.05 519.59
21 11.93 −1.77 519.59 13.56 4.31 519.59 15.55 4.77 519.59
22 −7.58 9.77 564.29 −7.58 9.77 564.29 −7.58 9.77 564.29
23 −5.12 −18.78 564.29 −10.33 −21.21 564.29 −16.74 −24.21 564.29
24 12.7 −10.47 564.29 17.91 −8.04 564.29 24.33 −5.05 564.29
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