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Abstract: As the usage growth rate of Internet of Things (IoT) devices is increasing, various issues
related to these devices need attention. One of them is the distribution of the IoT firmware update.
The IoT devices’ software development does not end when the manufacturer sells the devices to the
market. It still needs to be kept updated to prevent cyber-attacks. The commonly used firmware
update process, over-the-air (OTA), mostly happens in a centralized way, in which the IoT devices
directly download the firmware update from the manufacturer’s server. This central architecture
makes the manufacturer’s server vulnerable to single-point-of-failure and latency issues that can
delay critical patches from being applied to vulnerable devices. The Open Connectivity Foundation
(OCF) is one organization contributing to providing interoperability services for IoT devices. In one of
their subject areas, they provide a firmware update protocol for IoT devices. However, their firmware
update process does not ensure the integrity and security of the patches. In this paper, we propose
a blockchain-based OCF firmware update for IoT devices. Specifically, we introduce two types of
firmware update protocol, direct and peer-to-peer updates, integrated into OCF firmware update
specifications. In the direct scenario, the device, through the IoT gateway, can download the new
firmware update from the manufacturer’s server. Meanwhile, in the peer-to-peer scheme, the device
can query the update from the nearby gateways. We implemented our protocol using Raspberry
Pi hardware and Ethereum-based blockchain with the smart contracts to record metadata of the
manufacturer’s firmware updates. We evaluated the proposed system’s performance by measuring
the average throughput, the latency, and the firmware update distribution’s duration. The analysis
results indicate that our proposal can deliver firmware updates in a reasonable duration, with the
peer-to-peer version having a faster completion time than the direct one.

Keywords: blockchain; firmware update; IoT; IoTivity; OCF

1. Introduction

The center of a notable technology shift in our world is the Internet of Things (IoT). The IoT allows
several sensor devices to connect to the Internet and share IoT data. By now, around 14 billion of
“things” are connected to the Internet. A forecast from International Data Corporation (IDC) estimates
that there will be 41.6 billion connected IoT devices in 2025 [1]. With this amount of IoT devices,
the upcoming issue is interoperability between IoT devices from different manufacturers.

The IoT device software development does not end even when the manufacturer sells the device
to the customer. The manufacturer still needs to update the firmware periodically for several reasons.
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1. Releasing new features through the firmware updates.
2. When manufacturers find bugs from their released products, the firmware updates can facilitate

the distribution of bug fixes.
3. As the hackers try to exploit security vulnerabilities continuously, the manufacturers need to

regularly release updates to prevent cyber-attacks. That final reason is the most crucial one, as it
may cause catastrophic damage. For instance, attackers can manipulate the self-driving car’s
parameters to perform brake failures that may inflict dangerous accidents.

Based on several reasons mentioned above, the manufacturers need to ensure that the firmware
updates are available on time and are safe for the IoT devices. Nowadays, we commonly depend on
the over-the-air (OTA) updates for IoT devices because they are quick and convenient for users [2].
To update a particular device, users do not need to bring their device to the manufacturer. Instead,
they can connect their device to a computer and download the updates through the Internet. However,
since most OTA updates happen in a centralized way, they are vulnerable to single-point-of-failure
and latency issues. Server failures and extended network latency can delay critical patches from being
applied to exposed IoT devices. Moreover, the firmware update process must also guarantee the
integrity of the patch file.

Open Connectivity Foundation (OCF), as one of the organizations that supports IoT devices’
interoperability, provides a firmware update protocol [3,4]. However, their protocol does not have
security protection because they only discuss simple check-new-update interactions between the OCF
device and the manufacturer. Specifically, there is no step to ensure the firmware update integrity in
the OCF protocol. When the adversary intercepts the firmware update file transmission and replaces
it with malicious malware, the device will install the malware instead of the original update file.
Therefore, it is essential to add more security steps in the OCF protocol.

Blockchain is a promising technology to solve integrity and trust issues. In particular, it is
challenging to modify the information once it enters the blockchain. This feature makes the blockchain
an immutable system. Moreover, the blockchain keeps synchronous digital transaction records in each
participant’s local storage. All members can then take part in monitoring and verifying the records.
Thus, this property enhances trust in the system.

In this paper, we propose a blockchain-based OCF firmware update for IoT devices.
The manufacturer can use the blockchain to store the metadata of IoT devices’ updates. When an
IoT device receives a firmware update file, it can confirm whether metadata matches the metadata
previously saved in the blockchain. If they are not identical, then a malicious alteration must exist on
the update file. Moreover, in our proposal, IoT gateways can share the downloaded firmware updates
from the manufacturer’s server. As a result, we can disseminate traffic burden from the server to
gateways. Therefore, our proposal can avoid a single-point-of-failure issue and enhance the overall
firmware update availability.

In summary, we make the following contributions:

• We integrate blockchain and smart contracts to the OCF firmware update protocol to enhance its
integrity and transparency. The manufacturers use smart contracts in the blockchain network for
firmware update metadata storage. As the blockchain provides a hard-to-tamper reference, it can
prevent malicious changes from adversaries.

• We improve the OCF update availability by giving two options for distributing the update. In the
direct firmware update distribution, the IoT devices immediately download the update from the
manufacturer’s server. Meanwhile, in the peer-to-peer scheme, the device can query the update
from the nearby gateways. With these two ways of distributing the update, we increase the overall
robustness of the update process.

We organize the rest of the paper as follows. Section 2 provides a brief introduction to the
blockchain, Ethereum, smart contracts, OCF, and IoTivity. Section 3 summarizes previous work of the
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existing method for the blockchain-based firmware updates in general cases. We describe the proposed
architecture and protocol design in Section 4. After that, we explain the details of our implementation
in Section 5 and evaluate it in Section 6. Finally, we conclude in Section 7.

2. Background Theory

2.1. Blockchain

Blockchain is a distributed database of records or a public ledger of digital transactions that have
been executed and shared between several participants [5]. Anyone in the blockchain network can
monitor and verify the authenticity of the transactions. The consensus of a majority of the participants
in the system will verify each transaction in the public ledger. Blockchain creates permanent records
and histories of transactions. However, the permanence of the record is based on the permanence of
the network. In the context of blockchain, this means that a large portion of a blockchain community
would all have to agree to change the information and is incentivized not to change the data [5].
For example, in the blockchain, the attacker needs to control more than 50% of the network nodes to
make the blockchain network compromised [6]. However, it is difficult and costly to have that amount
of computing power at this time.

The blockchain technology relies on two cryptographic methods, which are digital signatures and
cryptographic hash functions. The digital signature provides the authenticity of a digital message.
In the blockchain, it can be used to provide integrity, authentication, and non-repudiation. There are
two properties required for the digital signature scheme [7]. The first property is straightforward;
it means that valid signatures must be verified. For example, if someone signs a message with their
secret key (sk), and his/her friend later tries to validate that signature over that same message using
his/her public key (pk), the signature must validate correctly. The second requirement is that it is
computationally infeasible to forge signatures. An adversary who knows your public key and gets to
see your signatures on some other messages cannot forge your signature on some message for which
he has not seen your signature.

The cryptographic hash function will compute a hash value from the given input. In the
blockchain, each block will store the hash value of the previous block. The change of one datum can be
easily detected. If the adversary changes any data of one block, the next block’s data will be changed.
Therefore, the cryptographic hash function has an essential role in maintaining data integrity in the
blockchain network. This function should have four properties:

1. Deterministic means that the same input will always produce the same output.
2. One-way function means that the function can easily compute the input, but it is infeasible to

revert it from the hash value [8].
3. Collision resistance is when it is difficult to find two different messages as input with the same

hash value, for instance, m1 and m2, and hash(m1) = hash(m2) [9].
4. Pseudorandom means that a change in the input must result in an unforeseeable change of the

output. If the hash value of the input two was four, the hash of three better not be six [10].

2.2. Ethereum and Smart Contracts

One of the well-known blockchain protocols is Ethereum. Ethereum is an open-source, public,
and blockchain-based distributed ledger featuring smart contracts functionality. It enables developers
to build blockchain applications with business logic that executes in a decentralized environment
while leveraging the high availability of the Ethereum network [11]. There are two different types of
accounts in Ethereum: externally owned accounts (EOAs) and contract accounts. Users control EOAs,
often via software such as a wallet application external to the Ethereum platform.

In contrast, contract accounts are controlled by program code (also commonly referred to as
“smart contracts”) that is executed by the Ethereum Virtual Machine [12]. Nick Szabo created the term
“smart contract” in the 90s. Szabo used a vending machine’s basic example to describe how real-world
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contractual obligations can be programmed into software and hardware systems. Everyone who
puts the correct amount of coins into the machine can expect to receive a product in exchange [13].
Similarly, on Ethereum, contracts can hold value and unlock it only if specific conditions are met. It is
defined as computer code running on top of a blockchain and is correctly executed without fraud or
any interference from a third party [13]. The owner publishes a smart contract, and it will exist at an
address (its public key) in the network. The users and the contract owner can interact with the contract
by calling the already defined functions. The contract is transparent and deterministic—its behavior is
defined at the time of its publication, and its code is available for inspection on the blockchain [14].
Additionally, a smart contract is immutable. After deploying the code, a smart contract cannot be
changed. The only way to modify the smart contract is to deploy a new instance [12].

2.3. Open Connectivity Foundation (OCF) and IoTivity

The OCF is one of the organizations that contribute to the IoT standardization to provide
interoperability. The OCF is also an industry group that delivers an IoT software framework
specification and a product certification program. The organization includes well-known companies
such as Intel, Cisco, General Electric, Samsung, Microsoft, Qualcomm, and IBM in its membership.
The OCF specification has adopted a resource-oriented architecture (ROA), implying that information
and concepts are represented as resources. Resources are specified in RESTful API Modelling Language
(RAML). Each resource definition contains a unique identifier, an indication of whether the resource is
an actuator or a sensor or another type, and a list of supported methods a JSON schema for input and
output for each method [3,15].

IoTivity is an open-source framework that implements the OCF protocol for easy and secure
device-to-device communication for IoT devices [16,17]. It runs as middleware and aims to provide
connectivity devices to the cloud and device to device. The software framework is licensed under the
Apache license version 2.0.

2.4. OCF Firmware Update Protocol

As shown in Figure 1, the OCF firmware update protocol is triggered by the client’s update
request. For the convenient explanation of our proposed protocol, we add two notes with black circle
mark (l) that are called “new firmware available” and “software validation” into the original OCF
firmware update protocol. The entities involved in this protocol are the client, pstat, softwareupgrade,
and external server. The client is the OCF device that will initiate the update. The pstat and
softwareupgrade are the OCF resource model. They reside in the OCF device. The resource model
defines the concepts and mechanisms that provide consistency and core interoperability between OCF
ecosystems devices [3,4].

The softwareupgrade resource is used to control software updates of the device [3,18].
Then, the pstat resource stands for provisioning status resource. It maintains the device’s provisioning
status [19,20]. The softwareupgrade resource has a property value called state. It will show
idle, new software available (NSA), software version validation (SVV), software version available
(SVA), and upgrading value. This state will affect the pstat’s property value. The pstat resource has
several property values, but there are two properties that will take part on this case—target mode (tm)
and current mode (cm). The value of this property will be changed along with the softwareupgrade
state’s value. The values of tm and cm will be binary, where the tm bit indicates that the action is
initiated and the cm bit indicates the result of the action [19,20].
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Figure 1. OCF firmware update protocol, adapted from [3] (from top-left to bottom-right).

From the “observe device” step to the “trigger software update” step, the OCF device will check
the state of pstat and softwareupgrade resources. If these two resources are idle, the OCF device
will initiate the request to check the firmware update on the external server in the “new software
availability check” step. On receiving notification of firmware update is available from the server,
the pstat and softwareupgrade resource will set their state to new software available. At the end of
the “software download” step, it will retrieve the package from the external server. In the “software
validation” and “upgrade image” steps, those two OCF resources will set the state to downloading
and installing the new firmware update. A more detailed explanation is provided in Section 4.

3. Related Work

In [3,4], OCF provides a specification for the firmware update process from the OCF device to the
manufacturer (external server). However, their protocol does not have security protection because
they only discuss simple check-new-update interactions between the OCF device and the external
server. Specifically, there is no step to ensure the integrity of the firmware update in the OCF protocol.
To ensure the update file’s integrity, we can simply modify the protocol by including checking of
the firmware package signatures. However, we introduced blockchain in the OCF firmware update
protocol. By using blockchain technology, peer-to-peer firmware update becomes possible. Thus,
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IoT devices can share the available newest update through IoT gateways. Then, they can check the
integrity and validity of the update to the blockchain network. As the gateways provide update
distribution on behalf of the manufacturer, single-point-of-failure is prevented, and firmware update
availability is increased.

Our proposed protocol is specific for the OCF firmware update process. However, we also
compare our proposed protocol to the other paper about the general IoT firmware update that utilizes
blockchain. Lee and Lee [21] proposed a blockchain-based secure firmware update for embedded
devices in an IoT environment. This method gives some possibility to check the firmware version before
the update begins, which one has a higher or lower version. However, this will later give redundancy
checking that may cause unnecessary network traffic and computational power consumption and
operations for the nodes. Besides, the method only provides showcases for firmware updates from
one manufacturer instead of the various manufacturers. In fact, many IoT devices from various
manufacturers will exist in an IoT environment. Therefore, this firmware update framework does not
apply to a heterogeneous IoT environment. Boudguiga et al. proposed the other scheme of blockchain
technology for firmware update [22]. There are innocuousness checking nodes that acknowledge the
transaction before the IoT device can download and install it. Therefore, it delays the update operation.

These previous two solutions use Bitcoin technology. In Bitcoin, it takes around 10 min to verify a
transaction and create a new block. For Ethereum, the average time for one block creation is 10–20 s [23].
Time is an essential factor when distributing a newer version of firmware to the IoT devices. Moreover,
developers can utilize smart contracts in Ethereum to build a decentralized application because smart
contracts will execute when the conditions are met. In the case of firmware updates’ distribution, each
version of firmware released by the device’s manufacturer will be recorded in the smart contracts.
When devices want to download the new firmware, they can verify it through the smart contracts.
Furthermore, Ethereum provides a lightweight node for constrained and low capacity devices that
cannot afford to store multiple dozen Gigabytes of blockchain data [24,25].

Yohan et al. [26] also proposed a firmware update protocol based on blockchain. Their protocol
was designed based on Ethereum. They provide direct and indirect firmware update distribution.
However, in their scheme, they process the received messages without verification, which means
that there is a possibility that the adversary can send the messages, or the adversary can modify the
messages.

4. The Proposed Protocol

In this section, we propose blockchain-based OCF firmware update protocols. The update
protocols consist of two ways of distributing firmware updates: a direct and a peer-to-peer update.
In the direct firmware update, the device, through an IoT gateway, can download the new firmware
update directly from the manufacturer’s server. Meanwhile, in the peer-to-peer scheme, the device can
query the update from the nearby gateways that have downloaded the new firmware. By providing
a peer-to-peer update scheme, because the gateways provide update distribution on behalf of the
manufacturer, we can prevent a single-point-of-failure and increase overall firmware update availability.
Moreover, Ref. [22] has innocuousness checking nodes that check the update against bugs and known
attacks every time the manufacturer releases an update. Nevertheless, in our proposed scheme,
before the manufacturer releases a new firmware update, a trusted party (such as certified cybersecurity
companies) must already have checked it. This process will shorten the firmware update’s distribution
time. Protocols in [26] provide two types of blockchain-based firmware update protocols. One is
initiated by the manufacturer’s server and another initiated by the IoT device. The OCF protocol
provides the IoT device initiated protocol. Thus, we implement only the IoT device initiated protocol.
The components in protocol [26] send the messages without any integrity protection. However,
our proposed protocol provides the messages integrity protection with a digital signature and hash
algorithm. That is crucial because it will avoid allowing the adversary to alter the messages and inject
malicious code during transmission.
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4.1. The Architecture

As shown in Figure 2, three entities are involved in our protocol; the explanations of the
components follow.

• Manufacturer (full node). The manufacturers of the IoT devices such as smart bulb, thermostat, or the
other. It stores and releases a new firmware update for their devices. This entity is also a node in
the blockchain network. It will publish the firmware update metadata to the smart contracts in
the blockchain network. The set of manufacturers M is denoted as:

M = {m1, m2, ...mn}

• IoT gateway (lightweight node). The IoT gateway can be a Wi-Fi router in a smart home or another
device. The information of the IoT devices will be stored in the IoT gateway (e.g., device
manufacturer, device type, latest firmware version). The IoT gateway will download the new
firmware update for the IoT device from the manufacturer or from another gateway. The IoT
gateway is also a blockchain node. When the manufacturer stores the firmware update metadata
to the smart contracts, it will receive a notification and save the information to the local database.
The set of IoT gateways G is denoted as:

G = {g1, g2, ...gn}

• IoT devices. The sensors or embedded devices. In our cases, it will be the OCF devices. IoT device
will request and download the new firmware update from the IoT gateway. The set of IoT devices
I is denoted as:

I = {i1, i2, ...in}

Figure 2. Our proposed blockchain-based firmware update architecture.

4.2. The Protocol Design

Our proposed protocol has three parts: the creation of the smart contract, direct firmware update
distribution, and peer-to-peer firmware update. Table 1 shows the notation that we use in our design
protocol. Additionally, in our protocol, the OCF device sends or receives a request from the IoT
gateway instead of directly to the external server or the manufacturer.
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Table 1. The notation in the proposed protocol.

Name Description

Uid The update identifier
Ubin Binary file of the new firmware update

fv Newest firmware version
Mid The manufacturer identifier

dtype The device type
purl The package URL of the firmware update file
SKm Manufacturer’s secret key
SKg IoT gateway’s secret key
Msc Manufacturer’s smart contract

4.2.1. Creation of the Smart Contract

Figure 3 shows that the manufacturer releases a new firmware update. It stores the hash of
update U = (Uid, fv, Mid, dtype, purl) that is signed with the manufacturer’s secret key (SKm) to the
smart contracts. Uid is the update identifier. It is simply the hash of the firmware update’s binary
file. The smart contract will verify this request. If it is valid, the update U will be stored to the smart
contract (Msc), and it will be published to the blockchain network. Before the manufacturer releases
a new firmware update, the trusted party (for example, by certified cybersecurity companies) must
already check the new firmware update. They will check the firmware update as to whether it is free of
bugs and malicious attacks. In our protocol, since the IoT gateway is a blockchain node, it will receive
a notification when the manufacturer stores the metadata to the smart contract.

Figure 3. Creation of the firmware update smart contract.

4.2.2. Direct Firmware Update Distribution

Four entities are involved in this protocol. They are the OCF device, IoT gateway, smart contract,
and manufacturer. As shown in Figure 4, the distribution begins when the client initiates the
update process to the OCF device. We put the detailed explanation of the direct firmware update
protocol below:

• OCF device: initiate the firmware update. First, the client will observe the state of softwareupgrade
and pstat resource—whether it is idle or not. If softwareupgrade resource’s state is idle and
pstat resource’s cm value is 0, the client will set the package URL (purl) in the softwareupgrade.
This action will trigger the firmware update process by setting the pstat state’s value to “initiate
secure software update.” Then, pstat will forward it to the softwareupgrade. After the state of
softwareupgrade and pstat show that it is ready to continue the process, the softwareupgrade
resource will check if there is new firmware update by sending the purl and the current firmware
version as parameters to the IoT gateway.
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Figure 4. Direct firmware update distribution: gateway downloading a new firmware update from
the manufacturer.

• Check the firmware update to the smart contract and download the firmware update from the manufacturer.
After receiving an update request from the OCF device, the IoT gateway will check the newest
firmware update to the smart contract (Msc) for this particular device by sending the Uid. If there
is a firmware update contract for the device, Msc will reply with the signed U that is stored
in the contract to the IoT gateway. The IoT gateway will receive this message and verify the
signature. If valid, it will send the signed Uid to the manufacturer to request the binary file. Then,
the manufacturer will verify the signature. If verified, it will reply with the binary file (Ubin) to the
IoT gateway. The IoT gateway will verify the binary file by comparing the hash value of Ubin and
the Uid value from the manufacturer. If they are equal, the IoT gateway will send a notification to
the OCF device.
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• OCF device: downloading and upgrading. On the OCF device’s side, as shown in Figure 1,
the softwareupgrade resource will notify the pstat resource and the client of a new software
update by sending NSA state. The pstat will set the cm value to “new software available” and
notify the client. Moreover, the pstat will set its internal state of tm to “initiate software version
validation.” Later, the pstat will relay this state to the client and change the cm value to “software
version validation.” Subsequently, the pstat will notify the state’s changing to softwareupgrade.
Then, the softwareupgrade will inform the state’s changing to the client by sending SVV as its
state value. In the next step, the OCF IoT device will send “retrieve the package” request to the
IoT gateway through the softwareupgrade resource. After the package has been downloaded,
the softwareupgrade resource will send SVA state to the pstat resource and client. The pstat
will set the cm value to “valid version available.” Afterward, it will set its internal “initiate
secure software update” state and send the same state to the softwareupgrade. In order to
upgrade the firmware, the pstat and softwareupgrade will send the upgrading state to the
client. After successfully installing the new firmware, the pstat will change the tm bit value to 0.
Then the pstat and softwareupgrade will notify their idle state to the client.

The proposed protocol provides an integrity service to the firmware update by using the
signature/verification scheme on the firmware update checking step.

4.2.3. Peer-To-Peer Firmware Update Distribution

The peer-to-peer firmware update protocol happens between devices with the same specifications
and from the same manufacturer. The device’s gateway will download from the other gateway that
has been downloaded the new firmware. As shown in Figure 5, IoT gateway 2 requests an update
from IoT gateway 1.

• OCF device initiating the firmware update. For this part, see the explanation in Section 4.2.2.
• Update availability check. As shown in Figure 5, after receiving an update request from the OCF

device i2, IoT gateway 2 will check the newest firmware update to the smart contract (Msc) for
this particular device by sending the Uid. After that, Msc will check the contract for compatibility
with the request. If there is a firmware update contract for the device, Msc will send the signed U
stored in the contract. IoT gateway 2 will receive this message and verify the signature. If valid,
it will send a request to IoT gateway 1 to check the availability of the firmware. IoT gateway 1
will search for the compatible update for this device in the local database. If available, it will send
the signed U and challenge c to give the update notification; otherwise, it will send a signed NA
(not available) message. After that, IoT gateway 2 will verify the signature. If verified and the
message is not NA, it will continue; otherwise, the process will be terminated. The next step is
comparing the Uid from IoT gateway 1 and Uid from Msc. If the value is equal, IoT gateway 2 will
create a connection to IoT gateway 1 for downloading the firmware. Afterward, IoT gateway 2
can verify the binary file by comparing the hash of Ubin from the IoT gateway 1 and the Uid value.
If the value is equal, IoT gateway 2 will forward it to the OCF device; otherwise, it will reject it.

• OCF device downloading and upgrading. For this part, see the explanation in Section 4.2.2.
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Figure 5. Peer-to-peer firmware update distribution: gateway downloading a new firmware update
from another gateway.

Like the direct update protocol, the peer-to-peer update protocol also provides the integrity
service to the firmware update.
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5. Implementation

5.1. Development Environment

Our proposed method’s development environments are summarized in two tables, one for the
manufacturer and the blockchain network, and another for the IoT gateway and IoT device, as shown in
Tables 2 and 3. Both manufacturer and blockchain network reside in Ubuntu Linux 16.04 LTS under the
VMWare virtual environment. The virtual environment was installed on a Windows 10 host machine
with Intel Core i5-7200U @2.50 GHz CPU and 4 GB memory. For the manufacturer, we used Express.js
to generate a REST API. It provides GET requests for IoT gateways. Web3.js was used to facilitate
communication between the manufacturer and the blockchain network. Additionally, we used Node.js
as a programming language. Our blockchain network was based on Ganache. Ganache is a rapid
Ethereum and Corda distributed application development [27]. Solidity and Node.js were used as
programming languages to write a smart contract.

Table 2. Development environment for the manufacturer and the blockchain network.

Parameters Manufacturer Blockchain Network

CPU Intel Core i5-7200U @2.50 GHz
Memory 4 GB

OS Ubuntu Linux 16.04 LTS
Node v.13.14.0

Ethereum client x Ganache-client
Library and Framework Express.js, Web3.js x
Programming language Node.js Solidity, Node.js

Table 3 describes the development tools and technologies for implementing the IoT gateway and
the IoT device. Raspbian Buster was installed on the Raspberry Pi 3 Model B with 1 GB memory for
both the gateway and the IoT device. The gateway used SQLite3 as a database management system to
store device information and firmware updates’ metadata from smart contracts. Express.js was used to
generate REST API requests (POST and GET requests) and Web3.js to enable communication between
the IoT gateway and the blockchain network. Additionally, Node.js was used as a programming
language for both the gateway and the IoT device. Nevertheless, the IoT device had C as an additional
programming language for IoTivity’s code. Besides, IoTivity Lite 2.0.5 was installed to make this
device an IoTivity server. Additionally, the IoT device was connected to the Dallas temperature sensor.

Table 3. Development environment for the IoT gateway and the IoT device.

Parameters IoT Gateway IoT Device

Hardware Raspberry Pi 3 Model B
Memory 1 GB

OS Raspbian Buster
Database SQLite3 x

Server x IoTivity Lite 2.0.5
Resources x Temperature

Library and Framework Express.js, Web3.js Express.js, LibCurl
Programming language Node.js Node.js, C

5.2. Implementation Design

The proposed method’s use case deployment is divided into three parts: implementation of
the creation of firmware update smart contract, direct firmware update, and peer-to-peer firmware
update distribution. In our implementation, there were five entities. We used the VMWare virtual
environment to set up the manufacturer and blockchain network. Our blockchain network was based
on Ganache. The IoT gateway and IoT device were hosted on Raspberry Pi. In the IoT gateway,
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SQLite3 was used as a database to store metadata from smart contracts and device information.
For handling the REST API request, we used Express.js. It supports GET requests for IoT devices and
manufacturers. To communicate with the blockchain network, Web3.js was used in the IoT gateway
and the manufacturer. The IoT device was connected to a physical temperature sensor. Besides,
it hosted the IoTivity server while the client hosted the IoTivity client. All of these entities were in
the same network. Figure 6 shows our implementation of IoT network setup. We used a Wi-Fi link
to simulate a remote connection to the manufacturer and used a wired link to simulate the local
connection between gateways.

5.2.1. Creation of the Smart Contract

First, we will explain the implementation of the creation of firmware update smart contract of
Figure 3. As shown in Figure 6, the manufacturer has a new firmware update in the software update
repository. To distribute the new firmware, the manufacturer stores the metadata to the smart contract.
By the end of this process, the IoT gateways that participate in the blockchain network will be able to
obtain the new firmware update information and save it to its local database. The detail explanation is
described as follows:

1. The manufacturer creates a firmware update smart contract.
2. The manufacturer stores the metadata (U) to the smart contract. The metadata consist of

Uid, fv, Mid, dtype, purl which are signed with the manufacturer’s secret key (SKm).
3. “NewFirmwareStored” event in the blockchain network is triggered. Since the IoT gateways is a

blockchain node, it will receive the event notification. The Uid is sent through this event.
4. The IoT gateways call the “getMetadata” function in the smart contract to request the

full metadata.
5. The IoT gateways receive the metadata (U).
6. The IoT gateways verify the signature. We use the "recover" function from EthCrypto’s library to

recover the signer’s public address in the blockchain network with their signature as input [28].
If verified, it will save the metadata to the local database; otherwise, the data are rejected.

Figure 6. Implementation of creation of firmware update smart contract.
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5.2.2. Direct Firmware Update Distribution

The second part is the direct firmware update distribution of Figure 4. As shown in Figure 7,
direct firmware update distribution starts when the client sends an update request (step 1).
According to OCF firmware update protocol, their protocol is a scheduled firmware update
process [3,4]. Thus, in the IoTivity Lite GitHub [29], the client will need to send a POST request
to the IoTivity server that resides in the IoT device with three parameters—package URL (purl),
software update’s action (swupdateaction), and the time to update (updatetime). The package URL
will be directed to the IoT gateway address, the swupdateaction will be set to “isac” (initiate secure
availability check), and the updatetime will be set to the time when the client wants the IoT device
to update the firmware with the format “YYYY-MM-DDThh:mm:ssZ.” According to the scheduled time,
the swupdateaction will be changed to “isac.” Then, it will trigger the next step of the firmware update
process. Three functions exist in the IoTivity server to process the firmware update based on the
step. The names of the functions are Check New Version, Download Update, and Perform Upgrade.
Therefore, we created three REST APIs to utilize these functions to communicate with the IoT gateway
and install the new firmware update. We explain more about three functions below:

Figure 7. Implementation of a direct firmware update distribution.

• Check New Version (step 2–8). If it is time to update, the IoT device will request the IoT gateway
to check for a new update (2). The IoT gateway will then query the local database as to whether
there is any compatible update based on the manufacturer and the device specifications (3).
Additionally, it will check whether the current firmware version is lower than the value in
the database. If the checking conditions are all matched, the IoT gateway will send Uid and
firmware version to the manufacturer and sign it with the gateway’s secret key (SKg) (4). On the
manufacturer side, after receiving the request, it will verify the signature using EthCrypto.recover
(5). If verified, it will connect to the IoT gateway to deliver the binary file (6). After the IoT
gateway receives the binary file, it will verify the hash of the binary file and compare the hash
with the Uid (7). If they are equal, a notification will be sent to the IoT device, and otherwise reject
it (8).

• Download Update (step 9–10). After receiving a notification, the IoTivity server in the IoT device
will change the state of pstat and softwareupgrade resources. It will then request to download
the binary file to the IoT gateway (9). After receiving the request, the IoT gateway will send the
binary file to the IoT device (10).
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• Perform Upgrade (step 11). In this step, the IoT device extracts and installs the new firmware.
To proceed with this step, we utilize Diff3 and patch function. Before we explain further,
we will explain the process on the manufacturer’s side. Thus, in our implementation, when the
manufacturer has a new firmware update, they use Diff3 to compare old and new firmware files
and then to merge them into one new file with .patch format. Figure 8 shows an example of a
.patch file. The manufacturer wants to add a new function so that the IoT device can read the
temperature in Fahrenheit. In the old version, the IoT device only read in Celsius. This file will
be used to update the old firmware in the IoT device. Diff3 makes the update faster. It will
not replace the whole file, but it will only remove or add the lines as in the written .patch file.
After creating the .patch file, the manufacturer will create a MAKE file with commands in it to
execute the patch. Then, the manufacturer will insert both .patch and MAKE files into an archive
(.zip) file. After the IoT device has the .zip file, it will extract the .zip file and run the MAKE file to
start the .patch file.

Figure 8. The .patch file created using Diff3.

5.2.3. Peer-To-Peer Firmware Update Distribution

As shown in Figure 9, the implementation of a peer-to-peer firmware update consists of four
entities: the client, the IoT device (IoTivity server), IoT gateway 1, and IoT gateway 2. Similarly to
the direct firmware update protocol, when the client wants to update the firmware, the client needs
to set the time, the action, and the URL to the IoTivity server that resides in the IoT device. We also
implemented three REST APIs to support communication between IoTivity server and IoT gateway:
Check New Version, Download Update, and Perform Upgrade. The flow is the same as we explained
in Section 5.2.2, except, in this case, IoT gateway 1 has the new firmware update on its local database,
and IoT gateway 2 does not have the new firmware update. Instead of the manufacturer, IoT gateway
2 will download the new firmware from IoT gateway 1. Since they are in the same network and
each gateway has an IP address list, IoT gateway 2 will send a broadcast message to the IP address
list to determine which one has the new firmware update. After finding the gateway with the
newest firmware update, IoT gateway 2 will download the update from this gateway instead of the
manufacturer. Thus, in the peer-to-peer update, the primary interaction is between the gateways.
It will not include the manufacturer as the host to download the firmware update’s file. Since gateways
help the firmware update distribution jobs, it will help to avoid the single-point-of-failure problem
and increase overall firmware update availability. Additionally, it maintains the firmware update file’s
reliability by using a smart contract in the blockchain network.
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Figure 9. Implementation of a peer-to-peer firmware update distribution.

6. Evaluation and Discussion

6.1. Evaluation

This part describes the evaluation results of the implementation of our proposed method.
We tested our direct firmware update and peer-to-peer firmware update implementation. We measured
the time taken when finishing some numbers of requests that were set up for testing. We also
measured the average latency and the average throughput of both the Check New Version step and
Download Update step. For this test, we utilized the Autocannon, which is an HTTP benchmarking
tool [30]. It provides two ways of usage, with the command line or programmatically using Node.js
programming language. It also offers several parameters that we could configure according to our
test purposes.

We evaluated our test in ten groups of requests; each group’s total requests were increased by
one hundred. It started with 100 requests, and the last group had 1000 requests. Table 4 shows the
time performance for the Check New Version step. For the lowest number of requests, the direct
firmware update protocol needs 4.28 s. To finish the last group, 1000 requests, this protocol needs
45.28 s. For peer-to-peer firmware update, the lowest number of requests, 100 requests, takes 5.22 s.
The last group, 1000 requests, takes 36.26 s. Figure 10 shows the time performance for the Check New
Version step of direct and peer-to-peer firmware update. The peer-to-peer firmware update protocol is
faster than the direct firmware update protocol.

Table 4. Direct firmware update and peer-to-peer firmware update: the results of duration for the
Check New Version step.

Number of Requests
Duration (s)

Direct Firmware Update Peer-to-peer Firmware Update

100 4.28 5.22
200 9.26 8.30
300 12.27 11.23
400 20.22 16.32
500 26.30 20.23
600 28.24 21.33
700 35.26 25.28
800 36.24 29.26
900 38.26 31.28

1000 45.28 36.26
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Figure 10. The duration of the Check New Version step: direct firmware update vs. peer-to-peer
firmware update.

Figure 11 shows the comparison results of the average throughput and average latency
performances of ten groups of requests in the Check New Version step for both protocols. Figure 11a
shows that peer-to-peer firmware update protocol can handle 26.32 req/s. This value is higher than
that of direct firmware update protocol. If there are 10,000 requests, the estimation time of peer-to-peer
firmware update protocol to finish this step is 379.83 s or 6.3 min. The direct firmware update protocol
can handle 22.1 req/s. That means that if there are 10,000 requests, the estimation time to finish this
step is 452.38 s or 7.5 min. Figure 11b shows that the average latency of peer-to-peer firmware update is
360.92 ms. This value is lower than that for the direct firmware update protocol—437.52 ms. In terms of
average latency and average throughput performance, the peer-to-peer protocol performs better than
the direct update. The former communicates locally between gateways, while the latter communicates
remotely between gateway and manufacturer.

Figure 11. Comparison of average throughput (a) and average latency (b) in the Check New Version
step between direct firmware update and peer-to-peer firmware update.

As the second part of the performance measurement, we measured the duration performance,
the average latency, and the average throughput for the Download Update step. We evaluated with the
same procedures as those for the Check New Version step. Table 5 shows the testing results of duration
performance for the Download Update step of both direct firmware update and the peer-to-peer
firmware update protocol. For the lowest request, the direct firmware update protocol needs 3.28 s,
and for the last group, 1000 requests take 21.32 s. For peer-to-peer firmware updates, it takes 3.25 s to
finish 100 requests, and it takes 19.23 s to finish 1000 requests. Figure 12 shows that the durations of
both protocols to finish the second step are almost the same. However, the peer-to-peer protocol has a
slightly lower duration than the direct firmware update protocol.
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Table 5. Direct firmware update and peer-to-peer firmware update: the results of duration for the
Download Update step.

Number of Requests
Duration (s)

Direct Firmware Update Peer-to-Peer Firmware Update

100 3.28 3.25
200 5.30 4.25
300 7.35 6.25
400 9.20 8.28
500 10.31 11.26
600 12.28 12.24
700 14.30 13.33
800 16.28 15.34
900 18.29 17.27

1000 21.32 19.23

Figure 12. The duration of Download Update step: direct firmware update vs. peer-to-peer
firmware update.

The average throughput and average latency of ten groups of requests are shown in Figure 13.
The peer-to-peer protocol can handle 49.1 req/s. That means that if there are 10,000 requests,
the peer-to-peer firmware update protocol can finish this step in 203.42 s or 3.3 min. This value
is smaller compared to the direct firmware update protocol that can handle 45.8 req/s. That means that
if there are 10,000 requests, the direct firmware update protocol can finish this step in 218.21 s or 3.6 min.
The direct firmware update takes 11 min to finish 10,000 requests of two primary steps, and peer-to-peer
takes 9.6 min. The average latency result for direct firmware update was 202.73 ms. This value is
higher compared to the peer-to-peer protocol, which got a value of 189.58 ms. Our evaluations of
both protocols in the Check New Version step and Download Update step show that the peer-to-peer
firmware update protocol has better time performance than the direct firmware update protocol.

Figure 13. Comparison of average throughput (a) and average latency (b) in the Download Update
step between direct firmware update and peer-to-peer firmware update.

We also evaluated the computational complexity and data transmission size for direct firmware
update and peer-to-peer firmware update. As shown in Table 6, compared to the direct firmware
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update, a peer-to-peer firmware update requires the extra computation of one hashing, one digital
signature, and one signature verification. Additionally, it requires 197 bytes of extra data transmission.
One gateway will need an extra 7.85 KB of memory space to implement a peer-to-peer update.
With this cost, the peer-to-peer firmware update can increase overall firmware update availability and
disseminate the traffic burden from the manufacturer’s server to the gateways.

Table 6. Comparison of computational complexity and data transmission size between direct firmware
update and peer-to-peer firmware update.

Parameters Direct Firmware Update Peer-to-Peer Firmware Update

Code size in gateway (KB) 8.86 7.85
Total # of Hash 2 3

Total # of Digital Signature 2 3
Total # of Signature Verification 2 3

Total data transmission size (bytes) 455 652

6.2. Discussion

We can consider two cases of a single-point-of-failure problem for a firmware update distribution
server. First, when the adversary disables the manufacturer’s server service. Second, when the
adversary successfully modifies the firmware update. For the first case, our proposed protocol has
two ways to distribute the firmware update. Thus, if at least one of the gateways has downloaded
the firmware before the manufacturer has disabled it, a device can get the firmware update by
downloading the firmware from the gateway with the peer-to-peer firmware update. However,
without this gateway’s participation, we cannot provide peer-to-peer updates. To encourage gateways’
participation, manufacturers can give gateways an incentive when they successfully participate in
peer-to-peer update distribution. We consider this incentive mechanism viable future work. For the
second case, if an attacker wants to modify the firmware update without being detected, the attackers
should have to successfully modify the firmware update and the blockchain network’s transaction
block. To do that, the attacker needs to control more than 50% of the blockchain network. However,
it is very difficult and costly to have that amount of computing power. Thus, our proposed protocol
can overcome this kind of attack.

References [21,22] proposed the idea of blockchain-based firmware update distribution. In [21],
their method gives some possibility to check the firmware version before the update begins, regarding
which one has a higher or lower version. However, this will later cause redundancy checking that
may cause unnecessary network traffic and increase nodes’ computational power consumption and
operations. Besides, the method only provides showcases for firmware updates from one manufacturer
instead of the various manufacturers. In fact, many IoT devices from various manufacturers will
exist in an IoT environment. In contrast, our protocols support multiband firmware updates because
our protocol is based on the OCF specification that supports the various IoT devices category [31].
Reference [22] has innocuousness checking nodes that check the update against bugs and known attacks
every time the manufacturer releases an update. Nevertheless, before the manufacturer releases a new
firmware update in our proposed scheme, a trusted party (such as certified cybersecurity companies)
must have already checked it. This process will shorten the firmware updates’ distribution time.

These previous two solutions use Bitcoin technology. It takes around 10 min to verify a
transaction and create a new block in Bitcoin—however, our proposed protocol is based on Ethereum.
For Ethereum, the average time for one block creation is 10–20 s [23]. Time is an essential factor
when distributing a newer version of firmware to the IoT devices. Moreover, developers can utilize
smart contracts in Ethereum to build a decentralized application. The manufacturer will store each
firmware update’s metadata in the smart contract. When devices want to download the new firmware,
they can verify it through the smart contracts. Furthermore, Ethereum provides a lightweight node
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for constrained and low capacity devices that cannot afford to store multiple dozen Gigabytes of
blockchain data [24,25].

In [26], the author also proposed a firmware update protocol based on blockchain, and it was
designed based on Ethereum. The components in this protocol send the messages without any integrity
protection. However, our proposed protocol provides the messages with integrity protection with a
digital signature and hash algorithm. That is crucial because it will avoid the adversary from altering
the messages and injecting malicious code during transmission.

7. Conclusions

We proposed two protocols to distribute a firmware update: direct firmware update and
peer-to-peer firmware update distribution. Both protocols check the firmware update to a smart
contract. However, the direct firmware update protocol downloads the update directly from the
manufacturer’s server. The peer-to-peer firmware update protocol happens between devices with the
same specifications and from the same manufacturer. Therefore, IoT devices can share the available
newest updates through IoT gateways. As the gateways provide update distribution on behalf of
the manufacturer, single-point-of-failure is prevented, and firmware update availability is increased.
For the blockchain network, we use Ethereum because the creation speed is faster than Bitcoin, which is
around 10–20 s on average to create one block. Besides, Ethereum can utilize smart contracts to build a
decentralized application because smart contracts will execute when the conditions are met. In the case
of firmware update’s distribution, each version of firmware released by the device’s manufacturer will
be recorded in the smart contract. When devices want to download the new firmware, they can verify
it through the smart contract. Furthermore, Ethereum provides a lightweight node for constrained and
low capacity devices that cannot afford to store multiple dozen Gigabytes of blockchain data.

We implemented our proposed protocols in Raspberry Pi 3 Model B and the VMWare virtual
environment. There are three nodes in the blockchain network: one manufacturer and two
gateways. We evaluated the proposed system’s performance by measuring the average latency,
average throughput, and duration of both protocols to finish two main steps, Check New Version
step and Download Update step. With request/second values, we measured the total duration that
it takes to handle 10,000 requests. The direct firmware update needs 11 min, and the peer-to-peer
firmware update needs 9.6 min. These evaluations show that the peer-to-peer firmware update
protocol has better time performance than the direct firmware update protocol. We also evaluated
the computational complexity and data transmission size for the direct firmware update and the
peer-to-peer firmware update. Compared to the direct firmware update, the peer-to-peer firmware
update requires the extra computation of one hashing, one digital signature, and one signature
verification. Additionally, it requires 197 bytes of extra data transmission. One gateway will need an
extra 7.85 KB of memory space to implement a peer-to-peer update. With this cost, the peer-to-peer
firmware update can increase overall firmware update availability and disseminate the manufacturer’s
server’s traffic burden to the gateways.

Author Contributions: Conceptualization, E.N.W. and Y.E.O.; data curation, E.N.W. and Y.E.O.; formal analysis,
E.N.W. and Y.E.O.; funding acquisition, S.-G.L. and J.-H.L.; investigation, E.N.W. and Y.E.O.; methodology, E.N.W.
and Y.E.O.; project administration, S.-G.L. and J.-H.L.; resources, S.-G.L. and J.-H.L.; software, E.N.W. and Y.E.O.;
supervision, S.-G.L. and J.-H.L.; validation, E.N.W. and Y.E.O.; visualization, E.N.W.; Writing—original draft,
E.N.W.; writing—review and editing, E.N.W., Y.E.O., S.-G.L., and J.-H.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by Basic Science Research Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Education (grant number: 2018R1D1A1B07047601) and also supported
by Dongseo University Research Fund of 2020.

Acknowledgments: We would like to thank the anonymous reviewers for their comments and suggestions that
helped us improve the paper.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2020, 10, 6744 21 of 22

References

1. The Growth in Connected IoT Devices Is Expected to Generate 79.4ZB of Data in 2025, According to a New
IDC Forecast. Available online: https://www.idc.com/getdoc.jsp?containerId=prUS45213219 (accessed on
4 June 2020) .

2. He, X.; Alqahtani, S.; Gamble, R.; Papa, M. Securing Over–The–Air IoT Firmware Updates using Blockchain.
In Proceedings of the Association for Computing Machinery, 2019. Available online: https://doi.org/10.
1145/3312614.3312649 (accessed on 13 May 2019).

3. Open Connectivity Foundation. OCF Core Specification v2.0.3. Available online: https://openconnectivity.
org/specs/OCF_Core_Specification_v2.0.3.pdf (accessed on 18 July 2019).

4. Foundation, O.C. OCF Core Optional 2.1.1. Available online: https://openconnectivity.org/specs/OCF_
Core_Optional_Specification_v2.1.2.pdf (accessed on 8 April 2020).

5. Laurence, T. Blockchain; For Dummies; John Wiley & Sons: Hoboken, NJ, USA, 2017.
6. Zhang, R.; Xue, R.; Liu, L. Security and Privacy on Blockchain. arXiv 2019, arXiv:1903.07602.
7. Narayanan, A.; Bonneau, J.; Felten, E.; Miller, A.; Goldfeder, S. Bitcoin and Cryptocurrency Technologies;

Princeton University Press: Princeton, NJ, USA, 2016.
8. Holbreich, A. Cryptographic Hash Functions. Available online: http://alexander.holbreich.org/cryptographic-

hash-functions/(accessed on 4 July 2019).
9. Merkle, R.C. One Way Hash Functions and DES. In Advances in Cryptology—CRYPTO’ 89 Proceedings;

Brassard, G., Ed.; Springer: New York, NY, USA, 1990; pp. 428–446. [CrossRef]
10. Hash Functions. Available online: https://academy.horizen.global/technology/advanced/hash-functions/

(accessed on 5 June 2020).
11. What is Ethereum? Available online: https://docs.ethhub.io/ethereum-basics/what-is-ethereum/#what-

are-smart-contracts-and-decentralized-applications (accessed on 1 June 2020).
12. Antonopoulos, A.M.; Wood, G. Mastering Ethereum: Building Smart Contracts and Dapps; O’reilly Media:

Sebastopol, CA, USA, 2018.
13. Szabos, N. The Idea of Smart Contracts. 1997. Available online: https://nakamotoinstitute.org/the-idea-of-

smart-contracts/ (accessed on 7 April 2020).
14. Refai, A.; Wu, E. Blockchain for Secure IoT Firmware Updates. Available online: https://yoojeenwoo.github.

io/EE209AS/ (accessed on 25 March 2019).
15. ELFSTRÖM, K. Evaluation of IoTivity: A Middleware Architecture for the Internet of Things. Available online:

http://kth.diva-portal.org/smash/record.jsf?pid=diva2 (accessed on 13 December 2018).
16. IoTivity. IoTivity. Available online: https://iotivity.org/about (accessed on 2 January 2020).
17. Dang, T.B.; Tran, M.H.; Le, D.T.; Choo, H. On evaluating iotivity cloud platform. In International Conference

on Computational Science and Its Applications; Springer: New York, NY, USA, 2017; pp. 137–147.
18. Foundation, O.C. OCF Core Specification v2.1.2. Available online: https://openconnectivity.org/specs/

OCF_Core_Specification_v2.1.2.pdf (accessed on 8 April 2020).
19. Open Connectivity Foundation. OCF Security Specification v2.0.3. Available online: https://openconnectivity.

org/specs/OCF_Security_Specification_v2.0.3.pdf (accessed on 18 July 2019).
20. Open Connectivity Foundation. OCF Security Specification v2.1.2. Available online: https://openconnectivity.

org/specs/OCF_Security_Specification_v2.1.2.pdf (accessed on 8 April 2020).
21. Lee, B.; Lee, J.H. Blockchain-based secure firmware update for embedded devices in an Internet of Things

environment. J. Supercomput. 2017, 73, 1152–1167. [CrossRef]
22. Boudguiga, A.; Bouzerna, N.; Granboulan, L.; Olivereau, A.; Quesnel, F.; Roger, A.; Sirdey, R. Towards

Better Availability and Accountability for IoT Updates by Means of a Blockchain. In Proceedings of the
2017 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), IEEE, Paris, France,
26–28 April 2017; pp. 50–58. [CrossRef]

23. Siriwardena, P. The Mystery Behind Block Time. Available online: https://medium.facilelogin.com/the-
mystery-behind-block-time-63351e35603a (accessed on 4 June 2019).

24. Running an Ethereum Node. Available online: https://docs.ethhub.io/using-ethereum/running-an-
ethereum-node/ (accessed on 4 May 2020).

25. Light Client Protocol. Available online: https://eth.wiki/en/concepts/light-client-protocol (accessed on
4 May 2020).

https://www.idc.com/getdoc.jsp?containerId=prUS45213219
https://doi.org/10.1145/3312614.3312649
https://doi.org/10.1145/3312614.3312649
https://openconnectivity.org/specs/OCF_Core_Specification_v2.0.3.pdf
https://openconnectivity.org/specs/OCF_Core_Specification_v2.0.3.pdf
https://openconnectivity.org/specs/OCF_Core_Optional_Specification_v2.1.2.pdf
https://openconnectivity.org/specs/OCF_Core_Optional_Specification_v2.1.2.pdf
http://alexander.holbreich.org/cryptographic-hash-functions/
http://alexander.holbreich.org/cryptographic-hash-functions/
http://dx.doi.org/10.1007/0-387-34805-0_40
https://academy.horizen.global/technology/advanced/hash-functions/
https://docs.ethhub.io/ethereum-basics/what-is-ethereum/#what-are-smart-contracts-and-decentralized-applications
https://docs.ethhub.io/ethereum-basics/what-is-ethereum/#what-are-smart-contracts-and-decentralized-applications
https://nakamotoinstitute.org/the-idea-of-smart-contracts/
https://nakamotoinstitute.org/the-idea-of-smart-contracts/
https://yoojeenwoo.github.io/EE209AS/
https://yoojeenwoo.github.io/EE209AS/
http://kth.diva-portal.org/smash/record.jsf?pid=diva2
https://iotivity.org/about
https://openconnectivity.org/specs/OCF_Core_Specification_v2.1.2.pdf
https://openconnectivity.org/specs/OCF_Core_Specification_v2.1.2.pdf
https://openconnectivity.org/specs/OCF_Security_Specification_v2.0.3.pdf
https://openconnectivity.org/specs/OCF_Security_Specification_v2.0.3.pdf
https://openconnectivity.org/specs/OCF_Security_Specification_v2.1.2.pdf
https://openconnectivity.org/specs/OCF_Security_Specification_v2.1.2.pdf
http://dx.doi.org/10.1007/s11227-016-1870-0
http://dx.doi.org/10.1109/EuroSPW.2017.50
https://medium.facilelogin.com/the-mystery-behind-block-time-63351e35603a
https://medium.facilelogin.com/the-mystery-behind-block-time-63351e35603a
https://docs.ethhub.io/using-ethereum/running-an-ethereum-node/
https://docs.ethhub.io/using-ethereum/running-an-ethereum-node/
https://eth.wiki/en/concepts/light-client-protocol


Appl. Sci. 2020, 10, 6744 22 of 22

26. Yohan, A.; Lo, N.W. An Over-the-Blockchain Firmware Update Framework for IoT Devices. In Proceedings
of the 2018 IEEE Conference on Dependable and Secure Computing (DSC), IEEE, Kaohsiung, Taiwan,
10–13 December 2018; pp. 1–8. [CrossRef]

27. Ganache Overview. Available online: https://www.trufflesuite.com/docs/ganache/overview (accessed on
20 February 2020).

28. Eth-crypto GitHub. Available online: https://github.com/pubkey/eth-crypto#recover (accessed on
4 January 2020).

29. IoTivity. IoTivity Lite GitHub. Available online: https://github.com/iotivity/iotivity-lite (accessed on
2 January 2020).

30. mcollina. Autocannon. Available online: https://github.com/mcollina/autocannon (accessed on 5 May 2020).
31. Open Connectivity Foundation. OCF Device Specification v2.2.0. Available online: https://openconnectivity.

org/specs/OCF_Device_Specification_v2.2.0.pdf (accessed on 22 July 2020).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/DESEC.2018.8625164
https://www.trufflesuite.com/docs/ganache/overview
https://github.com/pubkey/eth-crypto#recover
https://github.com/iotivity/iotivity-lite
https://github.com/mcollina/autocannon
https://openconnectivity.org/specs/OCF_Device_Specification_v2.2.0.pdf
https://openconnectivity.org/specs/OCF_Device_Specification_v2.2.0.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background Theory
	Blockchain
	Ethereum and Smart Contracts
	Open Connectivity Foundation (OCF) and IoTivity
	OCF Firmware Update Protocol

	Related Work
	The Proposed Protocol
	The Architecture
	The Protocol Design
	Creation of the Smart Contract
	Direct Firmware Update Distribution
	Peer-To-Peer Firmware Update Distribution


	Implementation
	Development Environment
	Implementation Design
	Creation of the Smart Contract
	Direct Firmware Update Distribution
	Peer-To-Peer Firmware Update Distribution


	Evaluation and Discussion
	Evaluation
	Discussion

	Conclusions
	References

