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Abstract: Evaluating dynamic loads in real time is crucial for health monitoring, fault diagnosis
and fatigue analysis in aerospace, automotive and earthquake engineering among other vibration
related applications. Developing such algorithms can be vital for several safety and performance
functionalities. Therefore, over the past few years the identification of dynamic loads has attracted
a lot of attention; however, little literature on the online identification can be found. In this paper,
we propose an online-identification method of structural dynamic loads so that the dynamic load
is evaluated in real time and while the system response is still being measured. This is achieved by
significantly improving the identification efficiency while retaining a high accuracy. The proposed
method which is based on Kalman filter, is introduced in detail for a finite as well as an infinite
number of degrees of freedom. Starting from an initial guess of the state vector we evaluate the error
covariance, which then helps to identify the value of the excitation force using a weighted least square
method and minimizing the covariance unbiased estimation. This is repeated at certain time intervals
i.e., time steps where the state vector is updated in real time as acceleration measurements are
updated. The feasibility of the method is validated using numerical simulations and an experimental
verification where a detailed LabVIEW (National Instruments Ltd.) implementation is provided.

Keywords: online identification; kalman filter; inverse problem; real-time identification; dynamic
load; LabVIEW

1. Introduction

Dynamic load identification is a relatively wide area of research that covers a range of
applications [1–5]. It is crucial to evaluate the dynamic loads on a mechanical system in many applications
such as design optimization, diagnostics, control and monitoring. It is common to record the system
response in terms of displacement, velocity or acceleration which can then be processed offline to evaluate
the external forces/loads. Although this is a relatively well-established area of research but it is still under
continuous development where several challenges remains to be unsolved [2,6,7]. A major challenge in
this regards is about moving the load identification process from offline to online computations so that
the dynamic load is evaluated in real time and while the system response is still being measured.

In this paper, we focus on identifying the dynamic load in real time which we refer to as the online
load identification. This challenge is mainly motivated by the automotive industry and is highly relevant
for applications in autonomous vehicles [8–10]. For example in autonomous vehicles it is important to
evaluate the external dynamic load on a vehicle to take decisions related to acceleration/deceleration or
trajectory optimization [9]. Having real-time accurate estimates of the dynamic loads on such systems
can help to prevent catastrophic failures.
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In recent decades the dynamic load identification technology has seen consistent improvements
where several algorithms were developed including wavelet transform [11,12], neural network-based [13,14]
and inverse system [15,16] methods. Generally speaking the developed algorithms can be organized
into two categories [17–19], namely time domain [20,21] and frequency domain [22,23] methods. Each
category presents several advantages and disadvantages. The frequency domain methods are in general
simple to implement but they are not suitable for analyzing transient responses [24–27]. This limits the
applicability of these methods to dynamic systems that involve a transient load. On the other hand the
time domain methods can work with non-stationary loads but unless very small time steps are used
such methods can accumulate large errors over the time [20,28].

The time domain-based methods combine the equation of motion with a discrete time history. In this
paper we implement the second inverse problem to recover the dynamic load on a mechanical system in
the time domain [29]. This class of inverse problems reconstruct the dynamic loads using the response
data and the structural system specifications. The solution of the second inverse problem has been a
general base for several developments in dynamic load identification. A single-point method was used
to identify loads distribution in power systems for both single-phase and three-phase applications [30].
Using accelerations measured in a Bohai offshore platform it was possible to identify the dynamic
ice load [31]. Different approaches were proposed to deal with uncertainties in the problem [7,8].
However, the main body of the published literature focuses mainly on the offline identification approach
i.e., reconstructing the dynamic load history offline after collecting the response information online.
This situation is mainly driven by the intensive computations that the inverse solution requires and at
the same time the limited computing resources that can be dedicated to a structural system in order to
process the response. It is also related to the high frequency rate at which the dynamic loads could be
changing such as in vibrating structures. Therefore, limited amount of literature is available on real-time
dynamic load identification where the response is processed online [32,33].

Although time domain methods are successfully used to identify the dynamic load offline but
they need to be further developed before they can be adopted for online load identification. The main
burden is related to the CPU time required to evaluate a single time step which is often much longer
than the frequency at which the load changes. The development of powerful system-on-chip and
mobile computing units have opened a space for developing several online dynamic load identification
algorithms [32–34]. This paper proposes a dynamic load identification algorithm in the time domain using
Kalman filter so that the proposed algorithm can be efficiently implemented for online identification.
The worked developed so far is restricted to applications where a priori knowledge about the solution
is used to solve the inverse problem online. The main contribution in this work is to try to recover a
dynamic load in real time and build the time history of the load as it happens.

Kalman filter was first proposed by R.E. Kalman [35] in 1960. The filter is used in general to
evaluate a state vector in the time domain by calculating the minimum-variance unbiased estimation of
a predicted value and a measured value. As a recursive algorithm, Kalman filter has the advantages
of an iterative algorithm such as a small memory occupation and a reduced number of computations.
The algorithm can efficiently and accurately be used to estimate the current state of a system based on
the latest measured state. The classical Kalman filter was originally proposed for linear systems. But
several algorithms were later developed to adapt Kalman filter for non-linear applications. For example
an extended Kalman filter (EKF) was used to linearize the non-linear state-space model [36]. It was
shown that using the stator flux and motor speed, the identification based on the EKF is effective
for non-linear structures. The untracked Kalman filter was proposed to avoid deriving the Jacoby
matrix from the partial derivation of a non-linear system of equations [37,38]. Compared with the
EKF, it is a more accurate non-linear system identification algorithm. The central differential Kalman
filter uses the central difference method to linearize a system [39]. The augmented Kalman filter
was proposed for dynamic load identification in a combined deterministic-stochastic setting [40,41].
Meanwhile, the experimental results show that the augmented Kalman filter can be efficiently used
for earthquake-related excitation estimates. Furthermore, polluted data or uncertainty in a model are
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also considered in space with Kalman filter [42,43]. Although there are some advantages for these
identification methods based on Kalman filter in some specific cases, compared to our proposed
method, these different methods were only adopted for the discrete systems with few degrees of
freedom, without considering the running of the loads in real application, and cannot reconstruct the
external load in real time.

Different load identification methods were also developed based on the idea of Kalman filter.
In order to identify the external excitation acting on a non-linear structural system the extended
Kalman filter was combined with the recursive least square method [44] or the unscented Kalman
filter is used [38]. The latter algorithm was verified by comparing the results to those found using
numerical simulations of a non-linear centralized mass system as well as using experimental results.
Moreover, the filter was also used for identifying excitation with a linear time discretization based on
the minimum-variance unbiased estimate of the least square method [45]. The proposed algorithm is
globally optimal in the minimum-variance unbiased sense. In a different application Kalman filter
was used to separate the modal wind load from the measured acceleration response [46]. The modal
wind load on a structure were identified by establishing the relevant filter gain matrix and using the
noise covariance matrix. Moreover, for excitation identification on a non-linear structure, a method
combining the least squares algorithm with adaptive decay factor was proposed [47] where a dual
Kalman filter method was developed for identifying excitations. Here a numerical model is used to
verify the anti-drift performance of the method.

In this study, we aim to estimate a dynamic load in the time domain by introducing an excitation
identification step in Kalman filter. This step combines the time update and the measurement update
steps to recover the external force in real time. The proposed method works with a finite as well as an
infinite number of degrees of freedom using the modal transform method. The method is validated
using experimental results as well as by comparison with a standard method. The source code of the
developed algorithm is implemented in LabVIEW (National Instruments Ltd.) and made available in
the paper Appendix A. The implementation is used to verify the algorithm experimentally. The main
objective of our work is to provide an online dynamic load identification approach by significantly
reducing the CPU time needed to solve the inverse problem. The presented results show the significant
reduction in the CPU time with the proposed method when compared to the standard method.

The rest of this paper is structured as follows. In Section 2 the proposed algorithm is presented
and the implementation to a finite and infinite number of degrees of freedom is explained. To verify the
accuracy of the proposed algorithm, numerical simulations are performed in Section 3. Furthermore,
lab experiments are also used to study the performance of the method which helps to establish the
reliability of the proposed algorithm. To this end in Section 4 a prototype software is developed in
LabVIEW (National Instruments Ltd.) and used for the lab experiments in two tests where experimental
and numerical results are compared to illustrate the efficiency of the proposed algorithm. We finish
the paper with some concluding remarks.

2. Online Dynamic Load Identification Method

2.1. Problem Formulation

For a given n-DOFs system subjected to a dynamic excitation u(t) such as shown in Figure 1,
applying Newton’s second law results into the following system of n-equations written in matrix form

Mp̈(t) + Cṗ(t) + Kp(t) = Buu(t) (1)

where p(t), ṗ(t) and p̈(t) are the displacement, the velocity and the acceleration vectors, respectively.
The matrices M, C and K are the mass, damping and stiffness matrices, respectively. The matrix Bu is
composed of zeros and ones and is used to apply the load u(t) only at the excitation points. In this
study damping is assumed to be proportional to the stiffness. Furthermore, we assume the system is
linear and time-invariant while the position of the forces to be identified is determined. It should be
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noted that the method we propose in this work may also be applied to other discrete systems that can
be written in a fashion similar to Equation (1).

Figure 1. Schematic diagram of an n-DOFs system.

The state-space equation of 2n-dimensions can be obtained by rewriting the equation of motion (1)
such as

x(t) = Acx(t) + Bcu(t) (2)

where Ac is the system matrix while Bc is the control matrix and are is defined as

Ac =

[
0 I

−M−1K −M−1C

]
, Bc =

[
0

M−1Bu

]
, x(t) =

[
p(t)
ṗ(t)

]

We divide the time domain into a set of sampling points so that t = t0, t1, t2, . . . , tk , . . . where a
uniform time interval δt = tk+1 − tk is used for the divisions. Assuming a reasonably small δt it is
possible to approximate the excitation u(t) as a constant within any time interval tk+1, tk. Thus, the
discrete state-space Equation (2) can be rewritten as

xk+1 = Axk + Buk (3)

where xk+1 and xk represent the structural state vector at the time instants (k + 1)δt and kδt, respectively.
The constant external excitation in the time interval tk , tk+1 is uk, while A is the system matrix of the
discrete state-space equation and B is the control matrix of the discrete state-space equation. The two
matrices are given by

A = eAcδt (4)

B = (A− I)A−1
c Bc (5)

We also define the measurement vector yk+1 at the time instant (k + 1)δt as

yk+1 = Hxk + Duk (6)

The entries of the matrices H and D are related to the taken measurement which can be
displacement, velocity or acceleration. In this paper we use accelerometers to evaluate the acceleration
data. Hence, we write the two matrices H and D as

H =
[
−H0M−1K −H0M−1C

]
(7)

D =
[
H0M−1Bu

]
(8)

where H0 is a position matrix composed of 0 and 1 with 1 corresponding to the degrees of freedom
where a measurement is taken. In this paper we propose an algorithm to identify the excitation load
u(t) at each interval in real time as the measurement yk+1 is collected.
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2.2. Online Force Identification Method

The key point of the proposed method is to build a recursive algorithm for the dynamic load
identification in the time domain. The system state is described as a series of time steps that are
updated based on the measurement taken and the state unbiased estimation. We then identify the
dynamic load using the weighted least square method to minimize covariance unbiased estimation.
The state update, the load identification and the measurement update are achieved using the following
three equations:

xk|k−1 = Axk−1|k−1 + Bûk−1 (9)

ûk = Jk(yk −Hxk|k−1) (10)

xk|k = xk|k−1 + Kk(yk −Hxk|k−1 −Dûk) (11)

The matrices Jk and Kk are needed for unbiased estimates of the system state i.e., xk|k and the
load estimates ûk. The entries of Jk are determined using the weighted least square method when
identifying the load while those of Kk are evaluated within the process of the state unbiased estimation
of the minimum variance.

Based on Equations (9) and (3), the error and covariance matrix of xk|k−1 can be written as

x̃k|k−1 = xk − xk|k−1 = Ax̃k−1|k−1 + Bũk−1 + wk−1 (12)

Px
k|k−1 =

[
A B

] [ Px
k−1|k−1 Pxu

k−1

Pux
k−1 Pu

k−1

] [
A>

B>

]
+ Gk−1 (13)

The covariance matrix of response positions Px
k−1|k−1 and Pux

k−1 and of excitation positions Pu
k−1

and Pxu
k−1 are given by

Px
k−1|k−1 = E(x̃k−1|k−1x̃>k−1|k−1)

Pu
k−1 = E(ũk−1ũ>k−1)

Pux
k−1 = (Pxu

k−1)> = E(ũk−1ũ>k−1|k−1)

We define the residual vector as
ỹk = yk −Hxk|k−1 (14)

where the measurement yk including some error, is defined by

yk = Hxk + Duk + vk (15)

By substituting Equation (15) back into (14) we get

ỹk = Duk + Hx̃k|k−1 + vk = Duk + ek (16)

Substituting Equation (14) into (10)

ûk = JkDuk + Jkek (17)

where xk|k−1 is unbiased estimation, E(vk) = 0 and E(ỹk) = DE(uk). In addition, ûk is unbiased
estimation then JkD = I. We also define R̃k as

R̃k ≡ E(eke>k ) = HPx
k|k−1H> + Rk with Rk = E(vkv>k ) (18)
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Using Cholesky decomposition we can rewrite R̃k as

R̃k = SkS>k (19)

Multiplying Equation (16) with S−1
k we get

S−1
k ỹk = S−1

k Duk + S−1
k ek (20)

Thus, the minimum-variance approximation of uk based on the least square method is

uk = (S−1
k D)+S−1

k ỹk = (D>R̃−1
k D)−1D>R̃−1

k ỹk (21)

and the matrix Jk is then given by

Jk = (D>R̃−1
k D)−1D>R̃−1

k (22)

We substitute Equation (10) into (11) to get the state vector xk|k

xk|k = xk|k−1 + Lk(yk −Hxk|k−1) (23)

where for convenience we write Lk = Kk(I−DJk). From Equations (23) and (16), we obtain

x̃k|k = (I− LkH)x̃k|k−1 − LkDuk − Lkvk (24)

where x̃k|k = xk − x̂k|k and x̃k|k−1 = xk − x̂k|k−1. Since x̃k|k is an unbiased estimation we can assume
LkD = 0 and the variance Px

k|k of xk|k can be evaluated as

Px
k|k = Px

k|k−1 − LkHPx
k|k−1 − Px

k|k−1H>L>k + Lk(HPx
k|k−1H> + Rk)L>k (25)

Furthermore, because xk|k is unbiased estimation of the minimum variance we aim to minimize
Px

k|k or its trace tr(Px
k|k), hence, we differentiate tr(Px

k|k)

d
(

tr(Px
k|k)
)

d(Lk)
= −2

(
HPx

k|k−1

)>
+ 2Lk

(
HPx

k|k−1H> + Rk

)
(26)

and then search for the solution when the derivative is equal to zero so that

Lk = Px
k|k−1H>R̃−1

k (I−DJk) (27)

while
Kk = Px

k|k−1H>R̃−1
k (28)

Substituting Equation (27) into (25) we have

Px
k|k = Px

k|k−1 −Kk

(
R̃−1

k −DPu
k D>

)
K>k (29)

From Equation (24) and using LkD = 0 we obtain

Pxu
k = −Px

k|k−1H>J>k = −KkDPu
k (30)

which can now be solved. The previous steps are summarized in Algorithm 1.
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Algorithm 1 Dynamic load online identification algorithm based on Kalman Filter
1: Given initial value X0|−1,px

0|−1.

2: Dynamic load identification

3: R̃k = HPx
k|k−1H> + Rk

4: Jk =
(

D>R̃−1
k D

)−1
D>R̃−1

k

5: û = Jk

(
yk −HXk|k−1

)
6: Pu

k =
(

D>R̃−1
k D

)−1

7: Measurement update step

8: Kk = Pk|k−1
xH>R̃−1

k

9: xk|k = xk|k−1 + Kk

(
yk −Hxk|k−1 −Dûk

)
10: Px

k|k = Px
k|k−1 −Kk

(
R̃−1

k −DPu
k D>

)
K>k

11: Pxu
k =

(
Pux

k
)> = −KkDPu

k

12: Time step update

13: Xk+1|k = AXk|k + Bûk

14: Px
k+1|k =

[
A B

]  Px
k|k Pxu

k

Pux
k Pu

k


 A>

B>

 + Gk

We assume here that the structure parameters including the mass, damping and stiffness matrices
are given. The schematic diagram in Figure 2 shows the input and the output of the proposed method.
It should be stressed that the response data is updated at the time intervals δt, hence, the dynamic load
is identified at the same intervals.

Figure 2. Schematic diagram of the input and the output of the dynamic load identification method
based on Kalman filter.
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2.3. Infinite Number of Degrees of Freedom and Modal Truncation

The computations involved in the above algorithm increases exponentially with the increase in
the number of degrees of freedom. Hence, depending on the computational power the above algorithm
may not achieve real-time. Here it should be noted that by real time we mean that the CPU time needed
to evaluate the dynamic load is an order of magnitude shorter than the time interval δt. Although the
algorithm can easily achieve that for relatively small number of degrees of freedom, but this becomes
more challenging when studying a complex structure. In this subsection we aim to introduce some
changes so that the algorithm will remain efficient even at a large degree of freedom. To this end the
modal analysis theory is used to achieve the modal transformation. Hence, the n-order dominant modal
characteristic of a structure is used to replace the full modal characteristic. Thus, the computations can
be significantly reduced and higher efficiency can be achieved so that the algorithm can still identify
the dynamic load in real time even for complex structures.

Figure 3, shows a simply supported beam subjected to dynamic load at a given position la.
The beam length is l and the dynamic load functions is u(t).

Figure 3. Simply supported beam model under single-point concentrated dynamic load.

Using the modal transform method, the response of the beam can be given as

p(t) = wq(t) (31)

where q(t) is the modal displacement vector and w = [ϕ1, ϕ2 · · · ϕn] the modal matrix. Substituting
Equation (31) into (1), we get

w>Mwq̈(t) + w>Cwq̇(t) + w>Kwq(t) = w>Buu(t) (32)

Since the mode shapes are orthogonal we can write

w>Mw = I (33)

w>Kw = l (34)

where l = diag(λ1, λ2 · · · λn) and λi = ω2
i is the ith-order eigenvalue. Then Equation (32) can be

simplified as
q̈(t) + gq̇(t) + lq(t) = w>Buu(t) (35)

where g = w>Cw is modal damping matrix where we assume proportional damping in the system
i.e., g = diag(2ξ1ω1, 2ξ2ω2, · · · 2ξnωn) with ξi being the damping ratio of the ith-mode shape.

After transforming the continuous system to a discrete one the approach proposed in the previous
section can now be applied where in the modal space the state vector can be defined as

x(t) =

[
p(t)
ṗ(t)

]
(36)
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while the system Ac and the control Bc matrices are rewritten as

Ac =

[
0 I
−l −g

]
, Bc =

[
0

w>Bu

]
(37)

Again, if the measured response is acceleration we can obtain the matrices H and D by

H =
[
−H0wl −H0wg

]
, D = H0ww>Bu (38)

Once the matrices Ac, Bc, H and D are obtained for the continuous system the online-identification
algorithm of dynamic loads can be used in the same way as before. But again it should be noted
that the number of critical mode shapes to be considered will affect the speed of computations in
achieving real time. Basic criteria are often considered for the truncation of the number of mode
shapes in vibrations [48]. The natural mode shapes with frequencies close to the excitation frequencies
must be considered. In general the first few natural frequencies dominate the response of a structure.
Obviously, considering more mode shapes increase the computation accuracy. However, adding more
frequencies will also increase the computational cost. Therefore, it is important to identify the number
of the critical mode shapes that must be considered to achieve a given accuracy before implementing
the algorithm. This will depend on the complexity of the structural as well as the location and the
frequencies of the applied excitation. In general for a simply supported beam similar to the one in
Figure 3 the first four to eight mode shapes are enough to represent its dynamic behavior.

3. Numerical Experiments

In this section, we aim to evaluate the efficiency and the accuracy of the proposed algorithm
using a set of numerical experiments. Two methods are used to evaluate the results accuracy, namely
the peak relative error method (PREM) and the angle cosine method (ACM). For the PREM we use

PREM(X, Y) =
| maxY(i)−maxX(i) |

| maxX(i) | × 100% (39)

where X(i) represents the exact value while Y(i) is the identified value. The method is only concerned
with the error at the maximum value. However, the phase shift is not captured in this method.

The error in the ACM is defined as

s(X, Y) = cos θ =

n
∑
i=1

X(i)Y(i)√
n
∑
i=1

X2(i)
n
∑
i=1

Y2(i)

(40)

Unlike the previous error measure this method helps to evaluate the global error. The ACM is
often used for measuring the error in a waveform signals such as the dynamic loads considered in
this paper. The signal similarity is captured by correlation calculation of one-dimensional vectors.
The upper limit for this measurement is one. The closer the value of s(X, Y) to one the better the
identification results are.

For the numerical experiments we consider a simply supported beam. The beam length is l = 1 m
and the cross section is w = 0.05 m×d = 0.005 m2. For the material properties we consider steel:
the elasticity modulus E = 2.06× 1011 Pa, the Poisson’s ratio ν = 0.3 and the density ρ = 7900 kg/m3.
The beam is meshed into 50 8-noded uniform hexahedron elements. The excitation force F(t) is applied
at the bottom node between elements 21 and 22. The element numbers and the force location are
indicated in Figure 4. The finite element software Patran [49] is used to obtain the beam response
under different type of excitations always applied at this node. Using the response measured at the
excitation point we then use the proposed algorithm to evaluate the dynamic load. Figure 4 shows
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the considered finite element. In all the following computations the time interval is δt = 0.001 s and
the mode truncation order is six. The choice of this sampling interval meets the Nyquist-Shannon
sampling theorem where 0.001 is less than half of the period 0.0024.

Figure 4. Patran model of the simply supported beam.

3.1. Multiple Impacts at Fixed Intervals

First, we consider an impact load applied as half sine wave with a duration of 0.02 s and an amplitude
1N. Four impacts are applied at 3 s intervals. The application time instants are t1 = 0.1 s, t2 = 3.1 s,
t3 = 6.1 s and t4 = 9.1 s as shown in Figure 5. The measured response is obtained using the finite
element model. The response is fed into the algorithm without applying any noise and the accurate
mode shapes are considered. Next, the 5% zero-mean Gaussian noise is added to the measured
response as well as a 5% deviation is added to all the modal parameters so that the used mode shapes
are inaccurate. The four possible combination of the clean and contaminated data are considered for
the algorithm input. The contaminated data is used to study the stability of the algorithm. Figure 6a
shows the identified results using the proposed algorithm. The figure shows that the peak load value
is captured with good accuracy (relative error is 2.91%),which is the most critical value to be identified
in the case of impact load. However, the figure also shows some noise in between the peaks which has
resulted in inflating the errors to some extent. The PREM and ACM errors for all these cases are listed
in Table 1.

Figure 5. Time history of load for the considered multiple impacts.
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Table 1. Evaluation table of continuous multiple impact load identification results.

No Noise Gaussian White Noise 5% Modal 5% Modal Error
Noise Error and Gaussian Noise

PREM 2.97% 2.78% 9.44% 9.49%
ACM 0.9816 0.8026 0.8778 0.7087

(a) Load identification without noise (b) Load identification with Gaussian white noise

(c) Load identification with 5% modal error (d) Load identification with 5% modal error and
Gaussian white noise

Figure 6. The identification results of continuous multiple impact loads.

The results suggest that the proposed online-identification method can efficiently reconstruct the
dynamic loads. Due to the limited number of mode shapes we can observe some error in identifying
the exact dynamic load. If we look into the results in Table 1 we can see that both the PREM and the
ACM errors are reasonable. Also, the identified load pattern is well in agreement with the exact load
pattern as can be seen in Figure 6. Clearly, when we use polluted data the error increases but this
increase in the error remains in line with the inaccuracy in the data i.e., introducing 5% noise into the
input leads to a proportional increase in the identification error. This suggests that the algorithm is
stable and can produce meaningful results even when the data is contaminated with noise.

3.2. Multi-Frequency Sinusoidal Load

Next we aim to test the proposed algorithm for identifying a periodic load. We redefine the
excitation force as F(t) = 0.5 sin(40πt) + 1.5 sin(60πt). All the remaining parameters of the model
are kept unchanged. However, we measure the beam response at node A which is indicated in
Figure 4. Unlike the previous case here we collect the beam response in a point that is different from
the excitation point. We use the proposed algorithm to reconstruct the dynamic load in time steps.
Again we consider clean and polluted data as an input for the four different cases considered in the
previous test.



Appl. Sci. 2020, 10, 6767 12 of 22

Figure 7a–d show the algorithm output compared to the exact excitation. We also show in Table 2
the corresponding errors in the four considered cases. As can be expected the best approximation is
achieved in the case where clean data is used i.e., Figure 7a where the PREM and the ACM errors are
about 0.38% and 0.9741, respectively. This relatively small error was achieved using only six mode
shapes in the approximation. The 5% Gaussian white noise introduced into the measured response
has a small impact on both types of errors. However, a 5% error in the modal properties cause an
order of magnitude increase in the PREM error or even two orders of magnitude when added to the
Gaussian white noise. But it should be also noted that despite the significant increase in the error when
identifying the peak load but the global error i.e., ACM remains reasonably small and the identified
wave pattern matches with high accuracy the actual sinusoidal load.

Table 2. Evaluation table of multi-frequency sinusoidal load identification results.

No Noise Gaussian White 5% Modal 5% Modal Error
Noise Error and Gaussian White

Peak relative error method (PREM) 0.38% 0.52% 6.07% 12.12%
Angle cosine method (ACM) 0.9741 0.9740 0.9703 0.9668

(a) Load identification without noise (b) Load identification with Gaussian white noise

(c) Load identification with 5% modal error (d) Load identification with 5% modal error and Gaussian
white noise

Figure 7. The identification results of multi-frequency sinusoidal load.

4. Experimental Validation

In this section, we aim to validate the proposed algorithm using physical experiments. We run
the same experiments as before but using a physical beam under dynamic loading. To this end it is
important to build a signal acquisition system and integrate it with the algorithm. In other words
we need to build both experimental hardware and software to validate the proposed algorithm in a
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physical experiment. The hardware include the sensor and its connections and a signal acquisition
module, a vibration exciter and a computer as well as the beam. The software is implemented in
LabVIEW (National Instruments Ltd.) where beside the proposed algorithm we also use the modules:
response acquisition and display, modal data reading, online identification of dynamic load and data
storage and recall. The components of the experimental work are displayed in Figure 8.

Figure 8. The composition of online dynamic load identification system.

The algorithm implementation on LabVIEW (National Instruments Ltd.) is shown in Figure 9
and the source code is given in the Appendix A. After starting the system, the parameters are first
initialized and then the software waits for operation command. Once the system is operational it
initiates the mode data reading and Kalman Filter. Next, the data collection and the load identification
begins. The response data collected, and real-time identified load is then displayed step-by-step on the
user interface.

Figure 9. Software running logic (left) and the parallel processing multitask architecture of software (right).
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To realize the software real-time load identification function, it is necessary to perform four
different tasks simultaneously: uninterrupted response data acquisition, Kalman Filter iterative
identification of the load, interface display and continuous force excitation. This puts a significant
computational burden on the computing hardware. To deal with this it is important to develop
a parallel implementation for the system. The programming language of LabVIEW, is inherently
multi-threaded which helps to design a suitable implementation.

We also show in Figure 10 the load identification interface which shows the needed parameters
including mode truncation order, model node number, observation node number and excitation point
position. Other parameters such as the natural frequencies and damping can be loaded from a saved
file. Also, here we validate the implementation using the same two previous cases, namely multiple
impacts at fixed intervals and constant frequency sinusoidal load. Figure 11 shows a schematic diagram
for both experiments. In Figure 12 we show the experimental settings. The used exciter is JZT-2 while
as an excitation source either the power amplifier (HEAS-50) or the force hammer (PCB 086C03) are
used. The acceleration sensor (PCB 356A33) and acquisition board (NI USB 4431) are used to collect the
response requested by the online dynamic load identification software developed to identify the load
acting on the beam. It should be noted that the weight of the acceleration sensor is negligible relative
to the weight of the beam. The experimental modal analysis is curried out using a force hammer to
excite the beam at several points. Then the modal information such as natural frequency and modal
damping are obtained automatically by the modal analyzer (M + P Smart Office).

Figure 10. Software main interface (left) and the load identification setting interface (right)

Figure 11. Schematic diagram for the online identification of impact load (top) and sinusoidal load
(bottom).
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Figure 12. Experimental photo for the online identification.

4.1. Multiple Impacts at Fixed Intervals

Now we aim to validate the proposed algorithm implementation using an experimental approach.
Again, we consider a simply supported beam of the lab. In this work the beam length, width and
thickness are a = 0.695 m, b = 0.04 m and h = 0.008 m, respectively. The model beam has a rectangular
cross section w = b× h = 0.00032 m2. The material properties are: density ρ = 7900 kg/m3, modulus of
elasticity E = 2.06× 1011 Pa and Poisson’s ratio ν = 0.30. The time interval is δt = 0.001 s. The sampling
rate is 1024 Hz. It should note that the length and the width of the considered beam has no impact
on the algorithm performance i.e., we expect the same conclusions when repeating the experiment
with beams of other dimensions. The first seven mode shapes and their properties are evaluated
experimentally and listed in Table 3.

Table 3. The modal test results of the beam.

Mode Shape Number Frequency (Hz) Damping Ratio
1 38.82 2.90%
2 150.95 0.54%
3 341.46 0.92%
4 612.10 0.48%
5 936.24 1.90%
6 1328.78 2.52%
7 1809.64 2.75%

To verify the implementation, we impose an impact load and try to identify it in real time using
the data collected by the accelerator sensor. The load identification parameters in the software are
shown in Figure 13. The actual load is then compared to the identified load in real time. The load
identification results of the first and second impacts are plotted in Figure 13. The plots zoom on the
results within 0.1 s of the impact. The algorithm recovers with good accuracy the peak value of the
first impact. In general the identified load matches the actual load up to the peak value of the impact.
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Thereafter the identification results start to fluctuate due to the observation noise and model error
before it is stable again within 0.02 s. Similar observation can also be made for the second impact also
plotted in the figure. Again, the peak value is recovered with good accuracy and some fluctuations
are observed beyond the peak value. The errors with the PREM and the ACM are, respectively, 4.15%
and 0.5839. The relatively large global error can be attributed to the fluctuations in the recovered load.
Furthermore, the error in the measured damping compared to the actual damping can also contribute
to these oscillations.

Figure 13. Parameter setting of load identification(top) and Load identification of the first impact
(middle) and second impact (bottom).

4.2. Constant Frequency Sinusoidal Load

In the last experiment we aim to validate the proposed implementation when recovering a
multi-frequency sinusoidal load. This loading case will activate fewer mode shapes compared to
the previous case. The same beam is considered again, and all the parameters are kept unchanged
from the last experiment with only replacing the load. The input parameters are shown in Figure 14.
Also in the same figure we plot the identified load compared to the actual load. The plots also show
the acceleration recovered by the sensor and used as an input for the algorithm. In the initial stage we
can observe a small drift in the amplitude and the phase between the identified and the actual. This is
stabilized in around 0.5s and soon after two cycles of loading. The errors obtained in this case are 2.64%
and 0.9381 with the PREM and the ACM, respectively. This reflects the accuracy in identifying the load.
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Figure 14. Parameter setting of load identification (top), initial stage of harmonic frequency excitation
online identification (middle) and stable stage of harmonic frequency excitation online identification
(bottom).

5. Comparison with Newmark Method

After validating the approach using both numerical and experimental tests we now want to
evaluate the approach performance relative to a standard inverse method. We choose Newmark
method which is often considered to be an industrial standard method that is used to evaluate the
dynamic loads offline. For the comparison purpose we consider a simply supported beam with l = 1 m
length and w = 0.05 m×d = 0.01 m2 cross section and the material properties: elasticity modulus
E = 2.1× 1011 Pa, Poisson’s ratio ν = 0.3 and density ρ = 7800 Kg/m3. The beam is meshed using 10
uniform 8-noded hexahedron elements. The applied excitation is F(t) = 20 sin(80πt) which is located
at the bottom node between elements 3 and 4 while the beam response is measured at node A all of
which are indicated in Figure 15. The remaining parameters are kept unchanged from previous tests.
The computations were run on Windows PC with an Intel Core(TM)i7 3.6 GHz CPU and 32 GB of
RAM. It should be noted that a similar example is also published in [50].
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Figure 15. Patran model of the simply supported beam used for the comparison with Newmark method.

For the comparisons we again consider the input data without any noise. We then add a Gaussian
noise with zero-mean and signal-to-noise ratio of 5%. We consider a third case where a 5% deviation
is added to all the modal parameters and a fourth case where both the noise and the deviation
are considered together. The contaminated data will help to compare the stability of the proposed
algorithm compared to Newmark method. Figure 16a–d show the results of the proposed algorithm
plotted against the exact dynamic load as well as those obtained with Newmark method. The PREM
and ACM errors for all these cases are listed in Table 4.

Table 4. Errors obtained with the proposed algorithm compared to Newmark method.

No Noise Gaussian White 5% Modal 5% Modal Error
Noise Error and Gaussian White

PREM Proposed 0.56% 17.99% 6.7% 19.12%
Newmark 0.84% 329% 8.08% 227%

ACM Proposed 0.9797 0.9585 0.9721 0.9613
Newmark 0.9621 0.7407 0.9613 0.5213

The results show that both methods can recover the dynamic load with good accuracy when
using clean data. Furthermore, the proposed algorithm has an improved accuracy compared to
Newmark method. This is true for the global error PREM as well as the error in the peak value ACM.
However, the proposed algorithm was able to evaluate each time step within 0.4 ms compared to 8ms
with Newmark. This is equivalent to a 95% reduction in the CPU time with the proposed algorithm.
Moreover, since the considered time step is 1ms it is possible to evaluate each time step in real time
as soon as the input data is measured whereas the CPU time with Newmark method is eight times
longer than the time step. The results in Figure 16b shows that the accuracy of Newmark method is
significantly affected by adding the Gaussian noise where the results become meaningless as can be
seen in both PREM and ACM errors. However, the proposed method still produces meaningful results
and despite the relatively high PREM error, the peak value is still measured with good accuracy as
reflected by the ACM error. The Newmark method seems to be less sensitive when using inaccurate
modal properties, but the proposed method remains to be more accurate. Again when considering a
combination of polluted data with inaccurate modal properties the proposed method still produce
meaningful results which is reflected in the errors as well as Figure 16d while Newmark method again
fail to produce useful results. This results suggest that the proposed algorithm is more precise and
more stable against noise data when compared with Newmark method. This improved performance is
achieved with a major reduction in the CPU.
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(a) Load identification without noise (b) Load identification with Gaussian white noise

(c) Load identification with 5% modal error (d) Load identification with 5% modal error and
Gaussian white noise

Figure 16. The identification results of constant frequency sinusoidal load.

6. Conclusions

In this paper, we propose an algorithm to identify in real time the dynamic forces acting
on a vibrating structure. The algorithm that is based on Kalman filter, consists of three steps.
First, the system and the control matrices are built for the vibrating structure using the vibration
differential equation for a discrete system or the mode truncation method for a continuous system.
Next, the weighted least square method is used to minimize covariance unbiased estimation. Then a
state vector is updated based on acceleration measurements. By minimizing the prior estimate error
covariance, the excitation force is estimated. This is repeated at a fixed time interval where the applied
load is updated in the time domain. As an application the proposed algorithm is used to identify
the dynamic load applied on a simply supported beam. The performed numerical simulations show
that the proposed method can be used to find accurate estimate for the applied force even when the
measured data or the model parameters are not very accurate. To validate the proposed algorithm
experimentally, a LabVIEW (National Instruments Ltd.) implementation is presented and discussed.
The proposed algorithm is verified through two different types of dynamic loads. The experimental
results show a good potential for the proposed approach in identifying the dynamic load applied on
a structure in real time. Moreover, when compared to a standard method the proposed algorithm is
more accurate and significantly more stable. The results show 95% reduction in the CPU time required
with the standard method. The work presents one of the first attempts in real time dynamic load
identification the and can have several future applications.
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Appendix A

The code used for the computations is available for the interested readers by emailing the
corresponding authors.

Figure A1. LabVIEW (National Instruments Ltd.) source code.
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