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Abstract: Rehabilitation is the process of treating post-stroke consequences. Impaired limbs are
considered the common outcomes of stroke, which require a professional therapist to rehabilitate
the impaired limbs and restore fully or partially its function. Due to the shortage in the number
of therapists and other considerations, researchers have been working on developing robots that
have the ability to perform the rehabilitation process. During the last two decades, different robots
were invented to help in rehabilitation procedures. This paper explains the types of rehabilitation
treatments and robot classifications. In addition, a few examples of well-known rehabilitation robots
will be explained in terms of their efficiency and controlling mechanisms.
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1. Introduction

Stroke is considered one of the leading causes of death; it comes in the third place after heart
disease and cancer [1]. The World health organization (WHO) has defined stroke as a dysfunction
of the brain that continues for more than one day. It has been reported that up to 30% of stroke
patients suffer from permanent disabilities and up to 20% require intensive rehabilitation programs [2].
Stroke patients go through three stages starting directly after the stroke: firstly, the acute stage that
extends for one week; secondly, the subacute stage, which lasts for six months, followed by the third
stage, which is the chronic stage [2]. Impairment of the arm and the wrist forms the main consequence
resulted from stroke [3].

Stroke consequences can be treated or reduced by rehabilitation [4]. Rehabilitation requires
a professional therapist to perform repetitive movements of the impaired limb [2]. However,
the availability of therapists, the duration of the therapeutic session and the cost of rehabilitation tools are
all considered as factors that affect both the therapist and the patients [5]. Furthermore, rehabilitation
programs require one-on-one interactions between the therapist and the patient. Nevertheless,
interactive rehabilitation is a time-consuming and labor-intensive for both the therapist and the
patient [2]. These facts pushed researchers to invent rehabilitation robots that can be used as
assistive devices for therapists. Rehabilitation robots provide intensive, accurate, quantitative and safe
rehabilitation in addition to their ability to provide repeated motions for a patient’s limb [6,7].

This paper focuses on after-stroke rehabilitation and upper limb rehabilitation robots. The next
section lists the types of rehabilitation treatments and their differences. Section 3 defines the term
of rehabilitation robot and how it is classified. A few examples of rehabilitation robots and their
clinical results will be explained in Section 4. Section 5 explains the electromyogram (EMG)-driven
exoskeleton robots, and a comparison is given. A discussion and a conclusion are given in Sections 6
and 7, respectively.
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2. Rehabilitation Treatments

Once a limb’s motor control is compromised, a therapist has to look for the optimum procedure to
treat the impaired limb. Choosing the right treatment procedure is a crucial decision, which ultimately
affects the efficiency of the treatment [8]. Robot therapy has been intensively introduced to rehabilitation.
Robots have the ability to provide repetitive movements for impaired limbs [3]. There are three types
of robot therapies, as follows [9,10].

2.1. Passive Therapy

Passive therapy requires no effort from the patient and is usually applied at the early stages of
post-stroke symptoms, specifically when there is no response from the impaired limb [9]. Passive therapy
is usually prescribed for hemiplegia patients that are suffering from one-side paralysis [11]. It involves
moving the impaired limb in a specific trajectory for a number of times during the session, which is
usually performed by a rehabilitation robot (Figure 1) [12]. The trajectory of the movement is preplanned
carefully to avoid any harm that could affect the patient [13].

Figure 1. Shows an example of passive therapy, where the impaired limb is moved according to the
planned movement (flexion/extension of the upper limb at the elbow joint) by the rehabilitation robot.
Source: [10].

This kind of treatment focuses on stretching and contracting the impaired upper limb [12]. It is
also used to assess the range of motion of the limb [14]. Exoskeleton robots are used in this treatment
to provide repetitive motions according to the range of motion [3]. A clinical study was carried out on
passive therapy; three subjects were involved in the study and obtained a training session for 40 min.
Passive therapy showed an effectiveness in reducing the spasms and the stiffness of the impaired
limbs [15].

2.2. Active Therapy

This kind of treatment is prescribed for patients who are able to move their impaired limb to
some limit. The active term refers to the ability of moving the impaired limb but not efficiently [11].
Active therapy can be classified as active-assistive therapy or active-resistive therapy. Active-assistive
therapy involves applying an external force by a therapist or robot to help the patient fulfil the
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appointed task [16]. It is also used to improve the range of motion [17]. Active-assistive therapy was
applied to a patient with an impaired shoulder and elbow, where the patient was asked to reach a
specific target, and the attached robot helped the patient complete the task (Figure 2) [18]. The attached
robot intervened once the patient was not able to perform the full task correctly and efficiently [3].
Active-assistive therapy was performed on eight subjects to evaluate its efficiency; the evaluation
involved eighteen treatment sessions for six weeks and one hour for each session. The impaired limb
movement was significantly improved [9].

Active-resistive treatment, however, involves applying an opposing force on the impaired limbs.
The opposing force can be applied by a therapist or robot (Figure 2) [15]. Studies showed that
the performances of patients become better gradually where the opposing force can be increased
gradually [7,19]. The opposing force is determined by an algorithm according to the ability of the
patient [19].

Eight subjects obtained active-resistive therapy in 18 1-h sessions for six weeks [19]. This treatment
is dedicated to improving the long-term strength of the arm [3].

Weight represents the Robot

Figure 2. Represents patient trying to perform the abduction and the adduction of the upper
limb. The weight helps the patient to perform the abduction which represents the Active-Assistive
therapy. Also, the weight prevents the patient performing the adduction which represents
Active-Resistive therapy.

2.3. Bilateral Therapy

Bilateral therapy refers to the mirroring principle in performing rehabilitation [4]. Where the
impaired limb copies the movement of the functional limb (Figure 3), this gives the user whole control
of the affected limb [20,21].

Mirror image movement enabler (MIME) and a few other exoskeletons employ bilateral
therapy [22]. A clinical study on the bilateral therapy mode was performed by [23]; fourteen
subjects were involved in the study and obtained professional training of the therapy. The study
consisted of thirty-one sessions distributed over two months; nevertheless, the study was performed
in the first six months after a stroke. The results showed a significant improvement in the impaired
hemisphere and motor functions [9].

It was noticed that each therapy is dedicated to specific conditions and mainly depends on
the patient’s ability. Table 1 summarizes the therapy types in terms of targeted patients, therapy
procedure and limitations. In addition, Table 2 was added to summarize the therapy types in terms of
clinical results.



Appl. Sci. 2020, 10, 6976 40f18

Figure 3. Shows an example of bilateral therapy, where one of the limbs is functional, and the other is
impaired. The patient has the ability to freely move the functional limb, and the impaired one follows
this movement.

Table 1. Summary of the therapy types in terms of targeted patient, therapy procedure and limitations.

Type of Treatment Characteristics Targeted Patient Therapy Procedure Limitations

Flexing and extending Beneficial for upper
the impaired limb limb extremities

Passive Therapy hemiplegia patient

A force is provided to
help the patient
complete a task

Beneficial for shoulder

Active-assistive Therapy and elbow exercises

Patient with some
degree of moving

ili Af i li - .
. L. ability .0 rce 1s app 1 ed Beneficial for treating
Active-resistive Therapy against the desired impaired arms
movement P

Impaired limb copies
the trajectory of the
functional limb

Patient has one
functional limb

Beneficial for upper

Bilateral Therapy limb extremities

Table 2. Summary of the therapy types in terms of the clinical results.

Source Therapy Type Post-Stroke No. of No. of Improvements
Py 'yp Time Subjects Sessions P
. 1 session Reducing the spasm and the
[15] Passive <6 months 3 40 min stiffness of the impaired limb

18 sessions .
Results showed an improvement

[9] Active-Assistive  >6 months 8 6 weeks in the impaired joints
1 h/workday P J
18 sessions .
[19] Active-Resistive  >6 months 8 6 weeks Res?:iﬁgi)gﬁeizﬁfgg Z(r)\vi;n ent
1 h/workday & &
31 sessions Results showed an improvement
[23] Bilateral <6 months 14 8 weeks of the impaired hemisphere and

1 h/workday motor functions
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3. Rehabilitation Robots and Their Classifications

The World Health Organization reported that around 15 million people suffer from stroke yearly;
around six million of them become disabled. The disabilities vary form fully paralyzed limbs to
weakness [2,24].

Scientists have found that particular activities of the brain can be transferred to a different location
in the brain, and this is known as neuroplasticity [25]. Studies showed that repetitive motions for the
impaired limbs allow the brain to develop new neural pathways and, ultimately, restore full or partial
control of motor functions [24].

Impaired functions can be fully or partially restored by investigating neuroplasticity [18]. Using a
rehabilitation robot could trigger neuroplasticity by providing a repetitive exercise for the impaired
functions. In this respect, rehabilitation robots are defined as an operated machine that is designed to
perform specific movements [24].

The importance of using a rehabilitation robot comes from its ability to provide quantitative and
continuous monitoring for patient performances during the training, which allows us to understand
the recovery mechanism during the repeated tasks [7].

Rehabilitation robots are classified either by their treatment approaches or by their structures [8].
Each type is further classified into two types, as follows:

3.1. According to Robot Treatment Approaches

Rehabilitation robots can be classified into two types, according to their treatment approaches.
The first approach is continuous passive movement (CPM). CPM requires no volunteer effort performed
by the patient where the limb is controlled and moved by the robot [26]. CPM treatment reduces
muscle tone, which eventually improves the mobility of muscles, joints and tendons [7]. Furthermore,
CPM activates the cortical area that has the corresponding sensorimotor and leads to an action similar
to normal movement [7]. The second approach is active-assisted movement, where the robot requires
a signal from the patient to perform the movement. This signal could be an electromyogram (EMG)
and follows the patient’s intention to move the limb [27]. Rehabilitation robots with active-assisted
movement require voluntary effort from the patient and, consequently, provide significant motor
improvement when they are compared to CPM rehabilitation [7]. Therefore, most of the current
researchers focus on active-assisted rehabilitation using robots [7].

The EMG-driven robots use an EMG signal an as “on-off” controller, which means that, once
the patient voluntarily initiates the robot, the robot will repeat its action for a period of time. Then,
the patient will be allowed another voluntary signal [28].

3.2. According to the Robot Structures

Rehabilitation robots are also classified as end-effectors and exoskeleton robots [29]. End-effectors
are simple robots that have a distal movable handle, and the patient attaches his/her hand to this
handle and follows a specific trajectory [30]. This kind of robot is characterized by its ability to adapt
to different sizes and shapes of movements, as the rehabilitation process requires [31]. End-effector
robots have the disadvantage of not providing a rotation movement, which makes it not suitable for
pronation and supination movements [24]. End-effectors have been developed recently to provide
bilateral rehabilitation training, where the impaired limb copies the movement of the unimpaired limb
in a synchronized behavior [22]. Some researchers have reported that bilateral rehabilitation has the
feature of activating the impaired hemisphere by making the left side and the right side of the body
follow the same trajectory [21].

Exoskeleton robots are characterized by encapsulating the limb with a splint or bionic structure [32].
Exoskeleton robots calculate the required torque for each joint and control the limb movements [13].
In comparison with end-effector robots, exoskeletons require a smaller working environment.
Exoskeleton robots, however, comprise the limb joint axes as they provide a very specific movement [24].
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In addition, exoskeleton robots are not feasible for bilateral rehabilitation, as the right limb exoskeleton
cannot be used for the left limb, and eventually, it is expensive to design right and left exoskeleton
robots to perform bilateral rehabilitation training [22].

4. Examples of Rehabilitation Robots

Designing a rehabilitation robot faces a few challenges that have to be considered first [33].
Electromechanical implementation is one of these challenges, which refers to that the robot has
to be light, durable, flexible and have the mechanism to perform a normal muscle motion [20].
The interpretation of user intent is another challenge, where the human-robot interaction plays an
important role in the rehabilitation process [33]. A neural muscle signal is one of the tools that is
used to extract the user’s intent [3]. In addition, a robot’s degrees of freedom (DOF) and the safety
precautions should be taken into account in designing the rehabilitation robot; otherwise, the safety and
the efficiency of the robot will be compromised [3,34]. The following are some examples of well-known
rehabilitation robots [35]. Table 3 summarizes the characteristics of the rehabilitation robots.

Table 3. Characteristics of the rehabilitation robots. DOF: degrees of freedom, MIME: mirror image
movement enabler, ARM: Assisted Rehabilitation and Measurement, CADEN-7: cable actuated
dexterous exoskeleton for neuro-rehabilitation with seven degrees of freedom, T-Wrex: therapy
Wilmington exoskeleton and BONES: Biomimetic Orthosis for Neurorehabilitation.

s . Number
Characteristics Targeted I'mpalred of DOF Therfal?y . Security Precautions
Type of Robot Functions Provided Classification

e Therapy session has to be
monitored by a therapist.
e  Magnet safety lock is

MIT-MANUS Upper limb rehabilitation ~ Five DOF  Passive equipped to provide
further safety.
e  MANUS provides a low
torque to avoid
limb fatigue.
. The affected limb is
. R Passive strapped by a splint.
MIME Ugigﬁ?:; ;Er}\l:ial]j:llg;avt\;;m Six DOF Active e  The performance is
Bilateral guided by a PUMA robot.
ARM Guide Upper limb function One DOF Pass'lve One DQF that provides linear
Active constraints.
. Robot has no
sharp edges.
) . . Seven . e  Robot has several
ARMin Upper limb rehabilitation DOF Passive positions sensors.
. Unique software to
monitor the performance.
Seven Passive Three levels of safety:
CADEN-7 Upper limb rehabilitation . mechanical, electrical and
DOF Active
software.
. Maximum velocity is
. e . . 10 rpm.
L-EXOS Upper limb rehabilitation ~ Five DOF Active . .
e  Maximum torque is
120 Nm.
T-Wrex Upper limb rehabilitation ~ Five DOE  Active | 0sitions sensors and custom
grip sensors
Upper limb rehabilitation Three . Sensors to control and monitor
REHAROB (Shoulder and Elbow) DOF Passive the generated forces.
BONES Upper limb rehabilitation =~ Four DOF Active One extra actuator is added

for safety issues.
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4.1. MIT-MANUS

MIT-MANUS is a CPM robotic workstation developed by the Massachusetts Institute of Technology
that is used to rehabilitate upper limbs post-stroke [36]. MIT-MANUS is an interactive workstation
where the patient has to visually interact with a PC game to follow specific movements [20]. The MANUS
workstation provides five degrees of freedom, two translation degrees of freedom for the elbow and
the forearm, represented by flexion/extension and pronation/supination, respectively. In addition,
three degrees of freedom for the wrist, represented by flexion/extension, pronation/supination and
abduction/adduction [36]. A magnet safety lock is used to attach the patient’s hand to the device;
this technique provides an easy procedure to free the patient from the device [36]. Furthermore,
the MANUS workstation provides low torques [36]. Therapy sessions, however, have to be monitored by
a therapist to ensure the patient’s safety [3]. The MANUS workstation is characterized by its impedance
control, which provides a specific movement to the limbs [36]. The MANUS workstation records
the patient’s performance (specifically, the force, velocity and the position); then, the performance
data are sent to the control computer to adapt the robot according to the patient’s requirements [37].
The MANUS workstation has been experimentally proven to provide therapeutic effects for upper
limb impairment [28].

4.2. MIME

Mirror image movement enabler (MIME) is a CPM robotic system that consists of a wheelchair and
height-adjustable table [38], where the patient sits on the wheelchair and puts his/her affected limb on
the adjustable table. The affected limb is strapped into the forearm splint that restricts the movements
of the wrist and the hand [38]. A Puma 560 (Programmable Universal Machine for Assembly) robot
was used as the manipulator, where the robot attached to the splint and applied force to the affected
limb during its movements [39]. The Puma 560 robot provided six degrees of freedom, which provided
a large range of movement positions in a 3D space [40]. MIME, provides the three treatments modes
that are the passive, active-assistive/active-resistive and bilateral modes [20]. In addition, MIME is
commonly used in the passive and active-resistive modes [22]. In the passive mode, the robot moves
the limb in a specific trajectory towards the target. The active-resistive mode involves prohibiting the
limb’s movements in the identified trajectory by providing a viscous resistance, and the patient has to
provide maximal effort to reach the target [4]. MIME is used to strengthen the muscles and improve
the limb’s motions [28].

4.3. Assisted Rehabilitation and Measurement (ARM) Guide

The Assisted Rehabilitation and Measurement guide (ARM guide) is also an example of a CPM
rehabilitation robot and is used for the training and evaluating of upper limb functions [41]. The ARM
guide, shown in Figure 4, uses the reaching principle as a therapy technique, where the patient’s arm is
attached to a splint, and the patient is advised to reach for things [20]. The ARM guide provides one
degree of freedom on a linear constraint rather than multiple active degrees of freedom. Therefore,
the ARM guide is considered as an inexpensive and a simple rehabilitation robot [41]. The orientation
of the ARM guide can be changed vertically or horizontally [41].
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Figure 4. Assisted Rehabilitation and Measurement (ARM) guide robotic system. Source: [41].

4.4. ARMin

ARMin is an upper limb rehabilitation robot and is characterized by providing seven degrees
of freedom (DOF), allowing shoulder rotations in three dimensions, flexion/extension of the elbow,
supination/ pronation of the forearm and flexion/ extension of the wrist, in addition to supporting the
closing and opening of the hand [42]. ARMin consists of a chair and robotic arm, where the seated
patient attaches his/her hand to the robotic arm and adjusts its length to its optimum, as shown in
Figure 5 [43,44]. ARMin has three levels of safety, where the device is equipped by many sensors
that work as a system to detect any malfunction that could arise. Secondly, the ARMin has no sharp
edges, and no joint will move out of the range of a human limb [42]. Thirdly, a unique algorithm was
developed to monitor the repeated motions, and immediate shutdown happens in case of malware
being found [39].

Figure 5. ARMin rehabilitation robot. Source: [44].

The results showed an improvement in the limb’s motion, where the user was able to extend
his/her limb to further distances. In addition, the strength of the support was decreased gradually as
the patient recovered their motor sensory [3,44].
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4.5. Cable Actuated Dexterous Exoskeleton for Neuro-Rehabilitation with Seven Degrees of
Freedom (CADEN-7)

Cable actuated dexterous exoskeleton for neuro-rehabilitation (CADEN-7) provides seven degrees
of freedom [45]. CADEN-7 is considered an active-assisted robot that uses surface electromyography
to control the upper limb [46]. CADEN-7 is also equipped with three levels of safety, taking into
consideration the electrical aspects, mechanical aspects and software aspects [45]. The unique design
of CADEN-7 makes it suitable to avoid hyperextension and erratic motions. CADEN-7, however, has
to be fixed on external forms and cannot be portable due its size and weight [3].

4.6. L-EXOS

The Light Exoskeleton (L-EXOS) system focuses on providing repetitive movements and gives a
simultaneous measurement for the therapeutic progress [47]. L-EXOS, incorporates visual reality to
guide the patient to a specific trajectory [48]. In terms of safety concerns, L-EXOS provides a velocity
equal to 10 rpm, and the maximum torque cannot exceed 120 Nm. In addition, L-EXOS provides five
degrees of freedom, and each movement is equipped by a sensor [3].

4.7. Therapy Wilmington Exoskeleton (T-Wrex)

The therapy Wilmington exoskeleton (T-Wrex) is an active upper limb rehabilitation robot with five
degrees of freedom [49,50]. It is dedicated for individuals with significant arm weakness by providing
intensive training. The T-Wrex uses the feature of gravity compensation or antigravity for the entire
arm, where the patient experiences the sense of a floating arm in space [50]. In addition, the T-Wrex
is characterized by providing a large 3D movement that naturalizes the upper limb movements [49].
The T-Wrex consists of two links attached to the forearm and upper arm. In terms of safety, position
sensors and custom grip sensors are integrated to the robot, which provide movement measurements
for the upper limb [49].

4.8. REHAROB

The Rehabilitation Robot (REHAROB) therapeutic system is a passive rehabilitation robot with
three degrees of freedom dedicated for the shoulder and the elbow [50]. The movement trajectory
is preprogrammed by the therapist and followed by repetitive movement for the impaired limb.
The exercises performed by REHAROB are different than those performed by MIT-MANUS and
MIME by providing slow repetitive movements with a constant velocity [51]. These kinds of exercises
are efficient in reducing spasticity and increasing the range of mobility for the shoulder and elbow
joints [51]. The patient’s upper arm and forearm are attached to the robot’s arm [52]. The REHAROB is
equipped by sensors to control and monitor the generated forces [51].

4.9. Exoskeleton Biomimetic Orthosis for Neurorehabilitation (BONES)

The Biomimetic Orthosis for Neurorehabilitation (BONES) is an active rehabilitation robot with
four degrees of freedom [50]. The BONES is characterized by its ability to provide arm internal/external
rotations without the need to bring or use any bearing element. The unique design was inspired by
human biomechanics. In addition, the BONES occupies five actuators to provide a wide range of
motion for the upper limb and further measurements for safety issues [53].

5. EMG-Driven Exoskeleton Robots

An electromyograph (EMG) signal should be efficiently extracted in order to use it in rehabilitation
robots [32]. There are two ways to extract the EMG signal: invasive, which results in an intramuscular
electromyograph (iIEMG), and noninvasive, which results in a surface electromyograph (sEMG) [18].
The invasive technique involves placing the electrodes on the motor units of the muscle, while the
electrodes of the noninvasive technique are placed on the belly area of the muscle that provides
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maximum contraction [54]. Despite the fact that iEMGs provide accurate EMG signals, sSEMGs
are commonly used due to their acceptability by the patient, and they do not require any invasive
procedure [55]. Using the EMG signal as a control input for robots goes through several steps, starting
by choosing the right muscle to obtain the EMG, then amplifying the extracted EMG to be, finally,
processed and classified by a PC, as shown in Figure 6 [54,56].

Choosing the Obtaining the The extracted The EMG signal is
right muscle |=— EMG signal > EMG signal is =~ == processed and
through the placed amplified classified by a PC

electrodes

Figure 6. Block diagram of extracting and processing the surface electromyograph (sEMG) signal.

The EMG signal can be either processed in a time domain or frequency domain. Most of the
current research focused on time domain processing, as it does not require further transformation
and, eventually, provides low complex computations [57]. The root mean square (RMS), mean
absolute value (MAV), summation of the absolute value (IAV), zero-crossing (ZC), slope sign changes
(SSC) and waveform length are all features that can be extracted from the EMG in the time domain.
Feature extraction in the time domain are evaluated based on its amplitude versus time and, therefore,
its preferable in pattern recognition [57].

Processing the EMG in the frequency domain, however, requires more computing time when
compared to time domain processing. Consequently, processing the EMG in the frequency domain
is usually used to assess muscle fatigue over time. The mean frequency (MNF), median frequency
(MDF) and mean power frequency are features that can be extracted from the EMG in the frequency
domain [58].

The raw EMG data should be amplified, filtered and segmented before extracting its features.
In addition, the length of the segment was proven to have an effect on the accuracy of the EMG
classification. It was shown that increasing the segment length from 125 ms to 500 ms provided better
accuracy. The response time for a prosthetic limb should not be more than 300 ms in order to be
considered a real-time response [55,57].

This paper explains a few examples on how the EMG signal is used as a control input
for rehabilitation robots. EMG-based control methods are categorized into two terms: pattern
recognition-based and non-pattern recognition-based [54]. Both methods share the acquisitioning and
the segmenting of the obtained signal [54]. The pattern recognition-based method, however, requires
further processing to obtain an accurate EMG signal, where the acquired signal goes through three
further stages, which are data segmenting, feature extraction and classification. Consequently, many
assistive robots use the pattern recognition-based method, as it provides accurate information [55,59].

A few examples of EMG-driven upper limb robots and their control methods will be explained in
the following subsections. A robot comparison based on the input signal, features used and mechanism
of the controller will be also explained. Table 4 summarizes the EMG-driven rehabilitation robots and
their control methods.
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Table 4. Summary of electromyogram (EMG)-driven robots and their control methods.

Type of Input . . .
Source Exoskeleton Parameters Controlling Technique Characteristics
Hand Adding further degrees of
[60,61] Exoskeleton EMG signal Blind source separation freedom requires adding more
Sensors
. binary ° It is characterized by its
Hand ) controlling algorithm low weight.
[62,63] Exoskeleton EMG signal . Variable o More robust controlling
controlling algorithm algorithm is required to
obtain accurate movements.
Upper limb EMG signal and ~ . Mean absolute value (MAV) is
[64] Exoskeleton force signal Neuro-fuzzy controlling used as a controlling feature.
Combination of Impedance control is modified in
SUEFUL-7 . Muscle model oriented based  real time according to the
[65] EMG signal and . .
exoskeleton P . on neuro-fuzzy extracted EMG signal and limb
orce signal.
posture.
Two EMG signals are extracted
[66] NEUROExos EMG signal proportional control method from the biceps and triceps to
provide better control.
Elbow . Artificial Neural Network Seven EMG signals are extracted
[55] exoskeleton EMG signal (ANN) from seven muscles.
° RMS is used as a
U limb controlling feature.
pper lim . . .
[67] Exoskeleton EMG signal Genetic algorithm (GA) o Shoulder, upper arm, lower

arm muscles and joints
are involved.

5.1. Hand Exoskeleton

A hand exoskeleton was developed by researchers from the University of Berlin, Germany to
increase hand mobility [60]. This type of exoskeleton uses the principal of blind source separation
as a controlling algorithm, which provides an accurate motion for the finger joints [55]. Blind source
separation has its own limitations, where adding additional degrees of freedom requires additional
sensors, which ultimately increases the complexity of placing the electrodes [60,61].

An orthotic hand exoskeleton that was developed by a researcher from Carnegie Mellon University,
Pittsburgh, Pennsylvania, USA is characterized by its low weight [55]. Two controlling algorithms
were used in the orthotic exoskeleton [62]. Firstly, a binary controlling algorithm, which provides two
states: either “on” or “off”, which turn on and off the actuators [28]. This type of controlling algorithm
cannot predict the intermediate state between the on and off states [55]. Secondly, a variable controlling
algorithm that provides the information of the intermediate state in addition to the “on” and “off”
states [55]. A variable controlling algorithm is beneficial for patients with one impaired limb and the
other limb is functional. It was concluded that the controlling algorithm has to meet the requirements
needed by the patient to say it is efficient [55,63].

5.2. Exoskeleton Based on the Neuro-Fuzzy Control Method

EMG controlling based on the neuro-fuzzy method is characterized by providing a real-time
controlling and was efficiently used to control exoskeletons [64]. The physical condition and the
nonlinear behavior of the muscle contractions are factors that affect the strength of the EMG, which can
be eliminated by using the neuro-fuzzy controlling method. In addition, the EMG quality could be
compromised due to shifting of the SEMG electrodes from their positions during limb movements, and
ultimately, the neuro-fuzzy method can be used to reduce this shifting effect [64]. The mean absolute
value (MAV) feature is used as a control feature in the neuro-fuzzy control method. The MAYV feature
was chosen due to its efficiency in comparison to other features, such as the slope sign changes, slope
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mean absolute value, zero-crossing or wave form length [68]. The neuro-fuzzy control method is
characterized by its ability to adapt to any physical condition for different patients; training, however,
is required for an efficient adaption [55]. The neuro-fuzzy method is commonly used in robots that are
dedicated for improving the life quality of elderly and disabled people [69,70].

Reference [69] designed a one degree of freedom exoskeleton robot that is used at the elbow
complex. The proposed exoskeleton robot depends on the extracted EMG signal to perform the limb’s
motions. The fuzzy neural network controller was embedded into the controller [64]. The proposed
exoskeleton rehabilitates the impaired limb by providing different angular velocities in addition to
variations in impedance. The EMG signal extracted from the biceps and the wrist force were used
as inputs for the exoskeleton robot [62]. The study involved recruiting three subjects; the subjects
were asked to perform flexion/extension at the elbow joint with no weight at first; then, a weight of
seven kilograms was used. The system showed effectiveness in supporting the lower limb movements.
The proposed system, however, has its own limitations, such as its size and weight, in addition to its
poor attachment [69].

5.3. SUEFUL-7 Exoskeleton Based on the Muscle-Model-Oriented Control Method

SUEFUL-7 is an upper limb exoskeleton that is used to help patients with weak motions [27].
SUEFUL-7 uses a unique controlling method named muscle-model-oriented that also depends
on the fuzzy principal, where a high number of degrees of freedom require a high number of
fuzzy mathematical models [71]. SUEFUL-7 employs impedance control in combination with the
muscle-model-oriented method, and the parameters of the impedance are modified in real time,
according to the extracted EMG signal and limb posture [27]. The root mean square (RMS) is the
feature that is extracted from the EMG signal to control the SUEFUL-7 [55]. SUEFUL-7 is characterized
by a hybrid controlling nature, where other variables such as forearm force, forearm torque and hand
force are used as input signals in addition to the EMG signal [55]. The controller depends mainly
on the EMG signal when it is high and the RMS is accurate; otherwise, the controller uses all other
aforementioned variables [71].

5.4. NEUROExos Based on the Proportional Control Method

NEUROBOTICS Elbow Exoskeleton (NEUROEXxos) is also an EMG-driven rehabilitation robot
that uses the principal of proportional control method as a mechanism of control [14], where the linear
envelope (LE) is extracted from the processed EMG by means of a full wave rectifier and low pass
filtering, specifically the Butterworth filter [66]. The LE represents the waveforms of the muscle tension
during the force dynamic change [72].

NEUROEXxos uses two EMG signals extracted from the biceps and triceps; both signals are
amplified gradually until the user feels comfortable with the provided support [66]. NEUROExos
employs the neuro-fuzzy modifier to help the user obtain the required motion in the minimum time [65].

5.5. Exoskeleton Robots Based on the Artificial Neural Network Control Method

The artificial neural network (ANN) is mainly used to interpret the flexion/extension of the elbow
and the supination/pronation of the forearm [55]. EMG signals are amplified after being extracted from
seven muscles that are the brachialis, biceps, triceps, posterior deltoid, anterior deltoid, clavicular and
pectoralis major [55]. The mean absolute value, number of zero-crossing and waveform length are
features used in the ANN controlling algorithm. EMG signals are, firstly, filtered and windowed; then,
the features are extracted [73,74].

5.6. Arm Exoskeleton Employs a Genetic Algorithm as a Control Method

Reference [67] used the genetic algorithm (GA) to control an ARM exoskeleton. An EMG signal
was used as an input signal, and an optimization was performed using a GA [13]. A GA is characterized
by its ability in eliminating the local optimum solutions [67]. The GA algorithm also uses the RMS as
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a controlling feature, where the best output solution “which is usually named as a chromosome” is
the output that minimizes the RMS between the torque estimated by the EMG signal and the torque
estimated by the model [67]. The muscles of the shoulder, upper arm, lower arm and the joints are
involved to provide an accurate output solution [13].

6. Results and Discussion

It was clearly explained in previous sections that the rehabilitation robots are different in terms
of shape, structure, controlling mechanism and even in their specific dedicated treatments. Clinical
studies were performed on the rehabilitation robots to evaluate their efficacy. Table 5 summarizes the
rehabilitation robots and their clinical studies.

Table 5. Clinical results of the rehabilitation robots.

Post-Stroke  No. of No. of
Source Robot Therapy Type Time Subjects Sessions Improvements
25 sessions motor power of the shoulder
[20] MIT-MANUS Assistive <6 months 96 5 weeks and the elbow was
1 h/workday significantly improved
24 sessions the reach ability and the
[38] MIME Assistive >6 months 27 8 weeks proximal arm strength were
1 h/workday largely improved
24 sessions motion velocity and range of
[41] ARM Guide Assistive >6 months 3 8 weeks motion were greatly
1 h/workday improved
40 sessions significant improvement in
[29] ARMin Passive >6 months 3 8 weeks muscle strength, arm motion

1 h/workday and other functional tasks

Unverified No clinical study

[40] CADEN-7 Passive-Assistive - - - was carried out on CADEN-7

Results showed a relative
improvement in three tasks:
reaching task, motion task
and object manipulating

18 sessions
[48] L-EXOS Passive-Assistive  >6 months 9 6 weeks
1 h/workday

Estimating the accurate torque that is required to perform the limb movements should be taken
into account in designing the exoskeleton. Identifying the accurate torque required by each specific
movement is considered one of the drawbacks of exoskeleton robots [66]. In addition, the user’s
reaction to the extra torque has to be figured out by an accurate algorithm during the manufacturing of
the exoskeleton [66].

In order to have an accurate estimation of the torque, many parameters should be examined
intensively, which include joint positions, velocity and acceleration, as well as the dynamic model
of the impaired limb [12]. Furthermore, the interaction with the external environment, such as the
exoskeleton itself, should be calculated by force sensors [16,75]. All the aforementioned requirements
have to be satisfied to obtain the optimum torque, which makes this approach hard to obtain [12].

The importance of the EMG comes from its ability to estimate the required torque for each specific
movement [76]. An electromyograph (EMG) signal extracted from the muscles fibers is used to
estimate the required torque for each specific movement [77]. Using an EMG signal exhibits many
advantages. Firstly, there is no need to have a dynamic model for the impaired limb, and the user
can interact freely with the external environment. Secondly, the EMG signal is generated prior to a
muscle contraction by 20-30ms; this delay is very beneficial in compensating the limited bandwidth
of the actuator [66]. Finally, having the EMG signal prior to the muscle contraction is considered
a very important feature that provides the time required for calculating the accurate torque before
performing the movement. Consequently, the user will be assisted even if he/she is not able to initiate
the movement autonomously [66].
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The relationship between the EMG signal and the torque has been studied and explained by
many researchers. Reference [73] used a recurrent artificial neural network (RANN) to investigate
the relationship between the EMG signal and the required torque at the elbow joint under volunteer
efforts. The EMG signal and the kinematic data—specifically, the angle and angular velocity—were
used as inputs to expect the required torque. The role of the kinematic data was investigated to check
its effect on the predicted torque [78]. The EMG signal with kinematic joint inputs was firstly used
to predict the torque; then, only the EMG signal was used to predict the torque, and the comparison
between the two approaches was investigated. The study involved recruiting six healthy subjects with
three different loads (0 kg, 1 kg and 2 kg) held by the hand at two different positions: elbow flexion
(90°) and full elbow extension (0°). The approach was performed at two different angular velocities
(60°/s and 90°/s) [79]. The subjects were trained to perform the aforementioned procedure, and the
root mean square error (RMSE) was calculated between the expected and the predicted torques for
each procedure. The results showed that the RMSE when using the EMG signal and the kinematic
data was 0.17 + 0.03 Nm for the training dataset and 0.35 + 0.06 Nm for the test dataset. Furthermore,
the RMSE when using the EMG alone was 0.57 + 0.07 Nm for the training dataset and 0.73 = 0.11 Nm
for the test dataset [73]. Therefore, using the EMG and the kinematic data as inputs for estimating the
torque showed better performance [79]. To conclude, EMG-driven robots are considered the better
choice to rehabilitate impaired limbs when compared to normal robots [8].

7. Conclusions

The clinical results showed that rehabilitation robots play a crucial role in fully or partially
restoring motor functions. Using rehabilitation robots allows us to efficiently plan the rehabilitation
process in terms of cost, the duration of sessions, the required tools and the availability of a therapist.
Furthermore, EMG-driven rehabilitation robots showed better performances when compared to passive
rehabilitation robots. This paper explained the most common rehabilitation robots and their efficacy
depending on the available clinical studies. Further clinical studies on rehabilitation robots based on
their control mechanisms are required to accurately prove their efficiency.
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