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Abstract: Rating systems play an important part in professional sports, for example, as a source
of entertainment for fans, by influencing decisions regarding tournament seedings, by acting as
qualification criteria, or as decision support for bookmakers and gamblers. Creating good ratings
at a team level is challenging, but even more so is the task of creating ratings for individual
players of a team. This paper considers a plus–minus rating for individual players in soccer,
where a mathematical model is used to distribute credit for the performance of a team as a whole onto
the individual players appearing for the team. The main aim of the work is to examine whether the
individual ratings obtained can be split into offensive and defensive contributions, thereby addressing
the lack of defensive metrics for soccer players. As a result, insights are gained into how elements
such as the effect of player age, the effect of player dismissals, and the home field advantage can be
broken down into offensive and defensive consequences.
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1. Introduction

Soccer has become a large global business, and significant amounts of capital are at stake when
the competitions at the highest level are played. While soccer is a team sport, the attention of media
and fans is often directed towards individual players. An understanding of the game therefore also
involves an ability to dissect the contributions of individual players to the team as a whole.

Plus–minus ratings are a family of player ratings for team sports where the performance of the
team as a whole is distributed to individual players. Such ratings have been successfully used by media
for sports such as ice hockey and basketball, and creators of such rating systems work as analysts for
National Basketball Association (NBA) teams, influencing their decisions on trades and free-agent
signings [1]. There has recently been several academic contributions towards plus–minus ratings for
soccer [2], although the influence of these ratings has not yet reached the same levels as in basketball.

The most trivial form of plus–minus, which originated in ice hockey during the 1950s [1], is to
count the number of goals scored minus the number of goals conceded when a given player is in
the game. This form, however, fails to take into account the effects of teammates and the opposition.
Therefore, in the context of basketball, Winston [3] used linear regression to create adjusted plus–minus
ratings, where the plus–minus score of each player is adjusted for the effects of the other players on
the court. The main drawback of this approach is that individuals that always play together cannot
be discerned, and rating estimates become extremely unreliable. Sill [4] solved this by introducing
a regularized adjusted plus–minus rating for basketball, where the linear regression model is estimated
using ridge regression, introducing a bias and reducing the variance of the rating estimates.

Most often, plus–minus ratings are taken as an overall performance measure. However,
some research has been done where the ratings are split into an offensive and a defensive contribution.
This paper presents a new plus–minus rating for soccer, where each player is given an offensive
and a defensive rating, based on how the player contributes towards creating and preventing goals,
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respectively. The motivation for this work is to see whether splitting the player ratings into offensive
and defensive components can lead to additional insights about the contributions of individual players,
teams, and leagues. If successful, this could be useful for an initial phase of data-driven scouting
at clubs, to better identify a list of prospective players for recruitment. The urgency of properly
identifying both offensive and defensive contributions was illustrated in the context of basketball by
Ehrlich et al. [5]. They provided an analysis, based on offensive and defensive plus–minus ratings,
to show that win-maximizing teams in the NBA can reduce their expenses by hiring defensively
strong players.

The new rating system is evaluated on a data set containing more than 52 thousand matches
played from 2008 to 2017. The rating model is used to evaluate the effect of age on player performance,
the home field advantage, the relative quality of different leagues, and the difference in performance of
players in different positions on the field. Each of these are examined from the perspective of offensive
and defensive contributions. Furthermore, rankings of players and teams as of July 2017 are presented
and discussed, illustrating how the offensive and defensive ratings can be used to indicate interesting
differences between players. The new offensive–defensive plus–minus rating appears to be the most
complete rating of this type for soccer provided in the academic literature as of yet.

The remainder of this paper is structured as follows. Section 2 summarizes the current literature
on plus–minus ratings. The new offensive–defensive plus–minus rating for soccer is then described in
Section 3. This is followed by an explanation of how the ratings are tested and evaluated in Section 4.
Then, Section 5 presents the detailed results, after which concluding remarks are given in Section 6.

2. Literature Review

The first academic work on plus–minus ratings in soccer was published by Sæbø and Hvattum [6].
They presented a regularized adjusted plus–minus rating, in which ridge regression is used in the
estimation of a multiple linear regression model, with variables representing the presence of players on
each team, the home field advantage, and player dismissals. Observations in the model were generated
from maximal segments of matches where the set of players on the pitch remained unchanged. In other
words, new segments are started at the beginning of a match, for every substitution made and for
every red card given. The dependent variable is taken as the difference between the number of goals
scored by the home team and the away team within the segment.

Sæbø and Hvattum [7] suggested an improvement of the regression model, adding variables
representing the current league and division of the players, allowing player ratings to better reflect
the differences in strength between league systems and league divisions. Kharrat et al. [8] presented
a similar model, but experimented with three different dependent variables: the difference in goals
scored, the difference in scoring probabilities for shots (expected goals), and the change in the difference
in expected points.

Around this time, Hvattum [2] provided a thorough review of the literature on plus–minus
ratings for team sports. Early non-academic discussions of such ratings for soccer include the writings
of Bohrmann [9] and Hamilton [10]. In addition, similar player ratings were developed by Sittl and
Warnke [11], Vilain and Kolkovsky [12], and Schultze and Wellbrock [13]. Matano et al. [14] followed
the main structure of Sæbø and Hvattum [7] and Kharrat et al. [8], but used computer game ratings
as a Bayesian prior for the plus–minus ratings, avoiding the problem of ridge regression driving all
player ratings towards zero. Volckaert [15] implemented a plus–minus rating similar to that of Sæbø
and Hvattum [7] which was tested on data from the Belgium top division. The ratings obtained were
shown to be a significant predictor of players’ market values, despite being based on a relatively small
data set. In addition to ratings based on a regularized multiple linear regression, Volckaert [15] also
tested ratings calculated from a regularized Poisson model. The latter resulted in seemingly different
rankings, but was not analyzed further.

Pantuso and Hvattum [16] continued the work of Sæbø and Hvattum [7], improving several
aspects of the model, including a better handling of red cards and the home field advantage. However,
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the two most important enhancements were in adding an age component to the players’ ratings, as well
as replacing the regularization of player ratings with a penalty that moves the rating of a player towards
the average rating of the player’s teammates. The resulting ratings were analyzed by Gelade and
Hvattum [17] and Arntzen and Hvattum [18]. The former found that simple key performance metrics
for players were reasonably related to the plus–minus ratings, while the latter showed that plus–minus
player ratings could add important information to team ratings when predicting match outcomes.

The line of work culminating with the ratings of Pantuso and Hvattum [16] only considered the
goal difference of a segment as the dependent variable, and only created a single overall rating for
each player. Vilain and Kolkovsky [12], however, considered both offensive and defensive plus–minus
ratings for soccer. Their ratings are based on an ordered probit regression, where two observations are
generated for each match: one considering the goals scored by the home team, and one considering
the goals scored by the away team. The latent variable is assumed to depend linearly on variables
representing the offensive ratings of players on the focal team and the defensive ratings of the opposing
team. Their calculations explicitly prevented defenders from having an offensive rating, forwards from
having a defensive rating, and goalkeepers from having any rating. The work is also described in [19].

In plus–minus ratings for other team sports, it is more common to consider both offensive
and defensive ratings for each player. For basketball, Rosenbaum [20] made the first mention
of splitting plus–minus ratings into offensive and defensive components. Witus [21] suggested
that this was done by first estimating total plus–minus ratings, and then running a second
regression to determine the proportion of each player’s value to come from their offense and their
defense. Ilardi and Barzilai [22] presented an alternative where offensive and defensive ratings were
estimated directly, with observations for each possession. Fearnhead and Taylor [23] considered
observations consisting of intervals without substitutions. Their model includes both offensive and
defensive ratings, and has separate home advantage parameters for the offensive and defensive
contributions, with the dependent variable being the number of points scored per possession.
Ratings are assumed to be drawn from Gaussian distributions, and the hyperparameters estimated by
maximum likelihood indicates that players are more similar in terms of defensive ability than offensive
ability. Kang [24] proposed to use penalized logistic regression to estimate offensive and defensive
ratings for NBA players. With observations based on single possessions, the logistic regression
estimates the probabilities of scoring, given the players appearing and an offensive home field
advantage, while using L2 (ridge) regularization.

For ice hockey, the first contribution towards offensive and defensive plus–minus ratings was
made by Macdonald [25], who considered both a single model to estimate offensive and defensive
ratings directly as well as the approach of first calculating a single plus–minus rating that is split into
offensive and defensive ratings by a second model. In either case, multiple linear regression is used,
estimated by the method of ordinary least squares. The work was extended in [26] to cover power
play situations, while Macdonald [27] used ridge regression and alternative dependent variables.
The latter was extended further in [28]. Thomas et al. [29] defined hazard functions for the scoring
rates of each team, yielding offensive and defensive player ratings. The model was applied only to
full-strength situations.

3. New Offensive–Defensive Plus–Minus Ratings

The new rating model aims to estimate offensive and defensive ratings for each player.
These ratings are entirely data driven, and are defined so that the sum of the offensive ratings of the
home team minus the sum of the defensive ratings of the away team should approximately equal the
number of goals scored by the home team. Similarly, the number of goals scored by the away team
should be approximately equal to the sum of the offensive ratings of the away team minus the sum
of the defensive ratings of the home team. However, the goals scored and conceded by the home
team are also expected to vary depending on the home field advantage and the number of player
dismissals. The ratings of players are not assumed to be constant over time, but rather to be a function
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of the player’s age: young players tend to be improving over time, while the playing strength of older
players tend to decline.

Considering a part of a match where the players are fixed, ratings are determined by minimizing
the squared difference between the actual number of goals scored and the number of goals expected
based on the players’ ratings, other effects such as the home field advantage, and the duration of
a segment. Hence, the numerical values of the ratings obtained are interpreted as the contribution of
a player towards goals scored per 90 min. To calculate ratings, data must be available regarding the
starting line-ups of both teams, the time of goals, red cards, and substitutions, as well as the players
involved in red cards and substitutions. Furthermore, the new ratings require knowledge about the
birth date of players and their playing position.

3.1. Rating Model

Following Pantuso and Hvattum [16], the new offensive–defensive plus–minus ratings for soccer
are calculated by solving an unconstrained quadratic program. Let M be a set of matches, with each
match m ∈ M divided into segments s ∈ Sm, defined as a maximal period of time without changes to
the players appearing on the pitch. The duration of segment s is d(m, s) minutes.

Let h = h(m) and a = a(m) be the two teams involved in match m, where h is the home team.
In the case that the match is played on neutral ground, one of the two teams is arbitrarily assigned
as h and the other as a. Let g(m, s, h) be the number of goals scored by team h in segment s of match
m, whereas the number of goals scored by a is g(m, s, a). Past plus–minus rating models have used
g(m, s) = g(m, s, h)− g(m, s, a) as the dependent variable of the observation associated to the segment.
Here, to facilitate both offensive and defensive ratings, each segment corresponds to two observations.
One observation is from the perspective of team h, and has g(m, s, h) as the dependent variable,
whereas the other is from the perspective of a, with g(m, s, a) as the dependent variable.

In addition, define gS(m, s) as the goal difference in favour of h at the beginning of the segment,
and gE(m, s) as the goal difference at the end of the segment. The change of the goal difference in favour
of h in segment s of match m then becomes g(m, s) = gE(m, s)− gS(m, s). Let tMATCH(m) denote the
time that match m is played, and let T be the time at which ratings are calculated, as illustrated
in Figure 1.

Let P be the set of all players. The set of players for team t that appears on the pitch for a given
segment s are denoted by Pmst. The set of players that are involved in offensive contributions is denoted
by PO

mst, and the set of players involved in defensive contributions is denoted by PD
mst. For n = 1, . . . , 4,

define r(m, s, n) = 1 if team h has received n or more red cards before the beginning of segment s
and team a has not, r(m, s, n) = −1 if team a has received n or more red cards and team h has not,
and r(m, s, n) = 0 otherwise. If a team has made all its available substitutions and a player on the team
becomes injured and must leave the pitch, the situation is modelled in the same way as a red card.

Each match m belongs to a competition organized by an association. Let cA(m) be the association
organizing the match. This could be a national organization, a continental federation such as UEFA,
or FIFA. The model allows the home field advantage of match m to depend on cA(m). Furthermore,
a set of domestic league competitions C is considered, with Cp being the subset of such competitions
in which player p has participated. For example, a given player could have appeared in the French
Ligue 2, the English Championship, and the English Premier League, resulting in these three leagues
being members of Cp.

Each player p is associated to a set PSIM
p of players that are considered to be similar. This set is

based on which players have appeared together on the same team for the most minutes of playing
time. The time of the last match where players p and p′ appeared together is denoted by tSIM(p, p′)
(see Figure 1).
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time
(. . .) T

current time

tMATCH(m)

time of match m

tSIM(p, p′)

last appearance of p and
p′ together

tBIRTH(p)

birth of player p

∆AGE(m, p) = tMATCH(m)− tBIRTH(p)

Figure 1. Illustration of the parameters referring to the time of events.

The quality of players is assumed to depend on their age, allowing the model to capture their
typical improvement in early years as well as their decline when getting older. Let tBIRTH(p)
be the time of birth for player p. The age of player p at the time of match m is then
∆AGE(m, p) = tMATCH(m)− tBIRTH(p), as illustrated in Figure 1. The average effect of age on the
ratings of players is modelled as a piecewise linear function. To this end, an ordered set of k age
values Y = {y1 = yMIN , y2, . . . , yk = yMAX} is defined. For a given match and player, the exact age
of the player is expressed as a convex combination of the nearest two ages in Y. Thus, weights ui(t),
i = 1, . . . , k, are defined as

ui(t) = 1 if yi = yMIN and t ≤ yMIN ,

ui(t) = 1 if yi = yMAX and t ≥ yMAX ,

ui(t) = (t− yi)/(yi+1 − yi) if yi−1 ≤ t ≤ yi,

ui(t) = (yi+1 − t)/(yi+1 − yi) if yi ≤ t ≤ yi+1,

ui(t) = 0 otherwise.

Thus, after censoring ∆AGE(m, p) so that it lies within [yMIN , yMAX ], it holds that
∆AGE(m, p) = ∑yi∈Y ui

(
∆AGE(m, p)

)
yi. In addition, at most two of the values ui

(
∆AGE(m, p)

)
are non-zero, and any two non-zero values are for consecutive values of i. As a concrete example,
assuming that ∆AGE(m, p) = 21.5, y4 = 20, and y5 = 22, then u4 = 0.25 and u5 = 0.75 uniquely
identifies the age of player p at the time of match m.

To improve the calculations of offensive and defensive ratings, a set of positional roles is
considered: V = {GK, D, M, F}, where the elements refer to goalkeeper, defender, midfielder,
and forward, respectively. Let Vp be the subset of positions covered by player p. This notation is
used to improve the distribution of a player’s overall rating into offensive and defensive components,
in particular for players with few minutes played.

The following parameters are defined to control the behavior of the model: λ, λAGE, and λOD.REG

are regularization factors, with λ being the main regularization factor, and the others being adjustments
made for specific regularization terms. The parameter ρ1 is a discount factor for older observations,
ρ2 and ρ3 are parameters regarding the importance of the duration of a segment, while ρ4 is a parameter
for the importance of a segment based on the goal difference at the start and end of the segment.
To balance the importance of the age factors when considering similarity of players, the weight wAGE

is introduced. Finally, wSIM is a weight that controls the extent to which overall ratings of players with
few minutes played are shrunk towards zero or towards the overall ratings of similar players.

The variables used in the quadratic program can be stated as follows: the offensive base rating
of player p is denoted by βO

p , and the defensive base rating is βD
p ; the value of the home advantage

in competitions organized by cA(m) is represented by βO.HFA
cA(m)

and βD.HFA
cA(m)

—the former measures the
home field advantage in terms of goals scored, and the latter in terms of goals conceded for the
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home team; for a given age yi ∈ Y, the age effect is denoted by βO.AGE
i and βD.AGE

i for, respectively,
the offensive and defensive contribution of a player.

The influence of red cards is also split into an offensive and a defensive contribution, as captured by
the variables βO.H.RED

n and βD.H.RED
n for missing players of the home team, and βO.A.RED

n and βD.A.RED
n

for missing players of the away team. These variables are defined for n = 1, . . . , 4. A potential
adjustment for player ratings based on the participation in a domestic league competition c ∈ C
is given by the variables βO.COMP

c and βD.COMP
c . Moreover, βO.D.DIFF

v is introduced to indicate the
average difference between offensive and defensive ratings for players in position v ∈ V.

The model to calculate offensive and defensive plus–minus ratings can now be stated as

min
β

Z = ∑
m∈M

∑
s∈Sm

(
w(m, s)

(
f H.LHS(m, s)− f H.RHS(m, s)

))2
(1)

+ ∑
m∈M

∑
s∈Sm

(
w(m, s)

(
f A.LHS(m, s)− f A.RHS(m, s)

))2
(2)

+ λ ∑
p∈P

(
f REG.PLAYER(p)

)2
(3)

+ λ · λOD.DIFF ∑
p∈P

(
f REG.O.D.PLAYER(p)

)2
(4)

+ λ · λAGE ∑
yi∈Y

(
f REG.O.AGE.SMOOTH(yi)

)2
(5)

+ λ · λAGE ∑
yi∈Y

(
f REG.D.AGE.SMOOTH(yi)

)2
(6)

+ λ ∑
yi∈Y

(
f REG.O.AGE(yi)

)2
(7)

+ λ ∑
yi∈Y

(
f REG.D.AGE(yi)

)2
. (8)

The complete model (1)–(8) consists of two main parts: expressions that link the observed number
of goals scored and conceded in each segment of each match with the player ratings to be estimated,
and regularization terms that are used to guide the estimation of player ratings, in particular for players
that are involved in few observations or whose appearances are highly correlated with appearances of
other players.

The observations are based on segments that are weighted using w(m, s). The weights depend on
the time since the segment was played, the duration of the segment, and on the goal difference at the
start and the end of the segment:

w(m, s) =wTIME(m, s)wDURATION(m, s)wGOALS(m, s),

wTIME(m, s) = exp
(

ρ1

(
T − tMATCH(m)

))
,

wDURATION(m, s) =
d(m, s) + ρ2

ρ3
,

wGOALS(m, s) =

{
ρ4 if |gS(m, s)| ≥ 2 and |gE(m, s)| ≥ 2
1 otherwise.

The two observations based on each segment can now be specified in more detail. The quadratic
terms in (1) and (2) arise in an attempt to minimize the squared error between a right-hand side
consisting of the observed number of goals scored or conceded, and a left-hand side comprising
explanatory terms corresponding to players involved in the segment, to attributes of the particular
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segment, and to attributes of the match to which the segment is associated. The factor d(m, s)/90 is
used to scale the explanatory terms so that they can be interpreted as contributions per 90 min of play:

f H.RHS(m, s) =g(m, s, h),

f A.RHS(m, s) =g(m, s, a),

f H.LHS(m, s) =
d(m, s)

90

 11
|PO

msh|
∑

p∈PO
msh

f O.PLAYER(m, s, p)

− 11
|PD

msa|
∑

p∈PD
msa

f D.PLAYER(m, s, p) + f H.SEGMENT(m, s) + f H.MATCH(m)

 ,

f A.LHS(m, s) =
d(m, s)

90

 11
|PO

msa|
∑

p∈PO
msa

f O.PLAYER(m, s, p)

− 11
|PD

msh|
∑

p∈PD
msh

f D.PLAYER(m, s, p) + f A.SEGMENT(m, s) + f A.MATCH(m)

 .

Attributes specific to a segment involve compensating for missing players following red cards and
injured platers who are not replaced. For segments of matches where there is a home field advantage
present, this is expressed as follows:

f H.SEGMENT(m, s) =

{
−∑4

n=1 r(m, s, n)βO.HRED
n if ∑4

n=1 r(m, s, n) ≥ 0
−∑4

n=1 r(m, s, n)βD.ARED
n if ∑4

n=1 r(m, s, n) < 0,

f A.SEGMENT(m, s) =

{
∑4

n=1 r(m, s, n)βD.HRED
n if ∑4

n=1 r(m, s, n) ≥ 0
∑4

n=1 r(m, s, n)βO.ARED
n if ∑4

n=1 r(m, s, n) < 0.

However, for matches played on neutral ground, the effect of missing players is modelled as:

f H.SEGMENT(m, s) =

{
−∑4

n=1 r(m, s, n)(βO.HRED
n + βO.ARED

n )/2 if ∑4
n=1 r(m, s, n) ≥ 0

−∑4
n=1 r(m, s, n)(βD.ARED

n + βD.HRED
n )/2 if ∑4

n=1 r(m, s, n) < 0,

f A.SEGMENT(m, s) =

{
∑4

n=1 r(m, s, n)(βD.HRED
n + βD.ARED

n )/2 if ∑4
n=1 r(m, s, n) ≥ 0

∑4
n=1 r(m, s, n)(βO.ARED

n + βO.HRED
n )/2 if ∑4

n=1 r(m, s, n) < 0.

Regarding a specific match, the relevant contribution to explain the observed number of goals
comes from the home field advantage, which is modelled as being specific to a given association
organizing the match:

f H.MATCH(m) =

{
βO.HFA

cA(m)
if team h(m) has home advantage

0 otherwise,

f A.MATCH(m) =

{
−βD.HFA

cA(m)
if team h(m) has home advantage

0 otherwise.

The remaining terms to explain the observed goals represent the ratings of players at the time of
the match. These ratings consist of a base rating plus adjustments based on the age of the player and
based on the domestic league competitions where the player has appeared:
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f O.PLAYER(m, s, p) =βO
p + ∑

yi∈Y
ui(∆AGE(m, p))βO.AGE

i +
1
|Cp| ∑

c∈Cp

βO.COMP
c ,

f D.PLAYER(m, s, p) =βD
p + ∑

yi∈Y
ui(∆AGE(m, p))βD.AGE

i +
1
|Cp| ∑

c∈Cp

βD.COMP
c .

The model then includes a set of quadratic terms (3)–(8) known as regularization terms.
The purpose of these is to dampen the ratings and other estimated effects, so that very high or very
low ratings are avoided for players with few observations in the data set. First, a regularization term
ensures that the overall rating of a player is not too different from the overall ratings of similar players:

f REG.PLAYER(p) =

 f AUX(p, T, 1)− wSIM

|PSIM
p | ∑

p′∈PSIM
p

f AUX
(

p′, tSIM(p, p′), wAGE
) ,

f AUX(p, t, w) =

{
f O.AUX(p, t, w) if Vp = {GK}
f O.AUX(p, t, w) + f D.AUX(p, t, w) otherwise,

f O.AUX(p, t, w) =βO
p + w ∑

yi∈Y
ui(t)βO.AGE

i +
1
|Cp| ∑

c∈Cp

βO.COMP
c ,

f D.AUX(p, t, w) =βD
p + w ∑

yi∈Y
ui(t)βD.AGE

i +
1
|Cp| ∑

c∈Cp

βD.COMP
c .

Second, the following ensures that the difference between the offensive and the defensive rating
of a player is not too different from the typical difference for players in similar positions:

f REG.O.D.PLAYER(p) =

{
0 if Vp = {GK}
βO

p − βD
p − 1

|Vp | ∑v∈Vp βOD.DIFF
v otherwise.

The two types of regularization applied above aim to control the player ratings directly.
Regularization is not applied to all the other estimates made by the model, such as the home field
advantages and the effects of red cards. However, the age effects are subject to regularization, partly to
ensure model identifiability, and partly to make sure the age effects are smoothed out when applied to
smaller data sets:

f REG.O.AGE.SMOOTH(yi) =

{ (
βO.AGE

i − (βO.AGE
i−1 + βO.AGE

i+1 )/2
)

if yi ∈ Y \ {yMIN , yMAX}
0 if yi ∈ {yMIN , yMAX},

f REG.D.AGE.SMOOTH(yi) =

{ (
βD.AGE

i − (βD.AGE
i−1 + βD.AGE

i+1 )/2
)

if yi ∈ Y \ {yMIN , yMAX}
0 if yi ∈ {yMIN , yMAX},

f REG.O.AGE(yi) =βO.AGE
i ,

f REG.D.AGE(yi) =βD.AGE
i .

The model (1)–(8) constitutes an unconstrained quadratic program. Due to the large dimensions
of the problem, a gradient descent search is used to determine its solution. This is coded in C++,
and several calculations, such as finding the gradient at a given step, are parallelized over several
threads. Once the model has been estimated, the offensive rating of player p at time T corresponds to
f O.AUX(p, T, 1), while the defensive rating is f D.AUX(p, T, 1). The overall rating for player p becomes
f AUX(p, T, 1).

3.2. Example Segment

To illustrate the model, a segment is selected from a match played between Barcelona and Athletic
Bilbao in the Spanish Primera División on 17 January 2016. The selected segment of the match
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started after a substitution in minute 6 and ended with a new substitution in minute 46. Before this,
the goalkeeper of the away team had been shown a red card, and the home team had been awarded
a penalty shot, which would be taken by Lionel Messi in minute 7. The match was tied when the
segment started. The following assumes that the ratings are being estimated on 21 June 2017, and the
notation is simplified by dropping references to the match m and the segment s.

The duration of the selected segment is d = 40 min, and the home team scored twice and the away
team zero times during these minutes. The rating model contains two quadratic terms tied directly to
this segment, having, respectively, f H.RHS = 2 and f A.RHS = 0 as the constant terms, representing the
goals scored by each team. The weights of the segment become wTIME = 0.867, wDURATION = 1.133,
and wGOALS = 1, resulting in w = 0.983.

The number of non-zero linear terms of f H.LHS and f A.LHS, as appearing in the objective
function terms (1) and (2), is 44 and 45, respectively. As there is one player sent off for the
away team, the segment specific terms are f H.SEGMENT = βD.ARED

1 and f A.SEGMENT = −βO.ARED
1 .

The match specific terms represent the home field advantage, with f H.MATCH = βO.HFA
2 and

f A.MATCH = −βD.HFA
2 , with the Spanish league represented by cA = 2.

As goalkeepers do not have offensive ratings, and since the away team has one player missing,
the number of players contributing offensively is |PO

h | = 10 and |PO
a | = 9 for the two teams, while the

number of players contributing defensively is |PD
h | = 11 and |PD

a | = 10. These numbers are used
to normalize the sum of contributions from player ratings, f O.PLAYER and f D.PLAYER, to f H.LHS

and f A.LHS.
Table 1 shows the coefficients for the age variables in the selected segment, before scaling by d/90

and multiplying by the segment weight w. These coefficients arise from summing over the players
appearing in the segment. Based on the coefficients, one can see that the home team has one player
aged between 23 and 24, and two players aged between 31 and 32, excluding the goalkeeper: the sum
of coefficients for offensive contributions related to age sum up to 1.1 for ages 23 and 24 and to 2.2 for
ages 31 and 32, corresponding to the fact that these coefficients have been scaled by 11 and divided by
the number of offensive players.

Table 1. Coefficients for βO.AGE and βD.AGE in a selected segment, scaled by 11/|PO| and 11/|PD|,
but not by segment weights w or segment duration d/90.

H.LHS A.LHS

Age O.AGE D.AGE O.AGE D.AGE

21 −0.836 0.929
22 −1.364 1.516
23 0.055 −0.050
24 1.045 −0.950
25 −0.190 0.211
26 0.836 −1.556 1.728 −0.760
27 2.058 −2.698 2.974 −1.871
28 2.044 −3.116 2.264 −1.858
29 2.762 −1.241 1.379 −2.511
30
31 0.766 −0.697
32 1.434 −1.537
33 −0.767

The coefficients of the league components, βO.COMP and βD.COMP are given in Table 2. The players
involved in the match had previously appeared in five different league competitions, most commonly
being the Spanish Primera División. The away team had six players previously appearing in the
Spanish Segunda División, each contributing with 11

|Cp ||PD
a |

and 11
|Cp ||PO

a |
to the given coefficients,

with |Cp| = 2, as these players only appeared in two different league competitions.
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Table 2. Coefficients for βO.COMP and βD.COMP in a selected segment, scaled by 11/|PO| and 11/|PD|,
but not by segment weights w or segment duration d/90.

H.LHS A.LHS

League O.COMP D.COMP O.COMP D.COMP

Spain Primera División 8.617 −7.700 7.944 −8.167
Spain Segunda División 0.550 −3.300 3.056 −0.833
England Premier League 0.917 −1.167
Germany Bundesliga 0.550 −0.500
Netherlands Eredivisie 0.367 −0.333

Finally, both f H.LHS and f A.LHS have, in total, twenty occurrences of βO
p and βD

p , representing
the main player rating components. With the proposed model, each match is, on average, divided
into around 6.3 segments, each of which provides two squared expressions for the objective function.
Less than half of the terms in these expression relate directly to player ratings, whereas the rest are
used to estimate home field advantages, age effects, and league effects. Taking again the example
segment, and focusing on the observation of goals scored by the home team, after factoring in all the
weights, the corresponding objective function expression can be stated as

(
0.437βO.HFA

2 + 0.437βO.ARED
1 +

10 player components for home team︷ ︸︸ ︷
0.481βO

Bravo + . . . + 0.481βO
Messi −

10 player components for away team︷ ︸︸ ︷
0.481βD

Herrerin − . . .− 0.481βD
Williams

+

8 offensive age components︷ ︸︸ ︷
0.024βO.AGE

23 + . . . + 0.626βO.AGE
32 −

7 defensive age components︷ ︸︸ ︷
0.365βO.AGE

21 − . . .− 0.542βO.AGE
29

+

5 offensive league components︷ ︸︸ ︷
3.764βO.COMP

PrimeraDivision + . . . + 0.160βO.COMP
Eredivisie−3.364βO.COMP

PrimeraDivision − 1.442βO.COMP
SegundaDivision − 1.966

)2

4. Experimental Setup

The data set used to evaluate the rating system and to analyze the values for the estimated
parameters, including player ratings, contains 52,083 matches in total, dating from August 2008
to June 2017. This includes 16,339 matches from the four divisions of the English league system
and 566 matches from the English League Cup. The two top divisions of Spain, France, Germany,
and Italy, covering 24,206 matches in total, are also included. Moreover, top divisions from the
Netherlands and Portugal are included as well, with 4574 matches. A number of matches (5142) from
the UEFA Champions League and Europa League are present, as well as 1256 matches from the Euro
2012, Euro 2016, World Cup 2010, and World Cup 2014 competitions. The latter also encompasses
qualification matches for the Euros and the European qualification for both World Cups.

When tuning the hyperparameters of the offensive–defensive plus–minus ratings, a subset of the
aforementioned data set is used, consisting of 38,126 matches. This subset is formed by discarding
matches from Portugal and the Netherlands, as well as matches from the two lowest levels of
the English league system and the English League Cup. The two data sets contain, respectively,
30,673 and 26,619 unique players. Estimating the rating model on the full data set is done by solving
an unconstrained quadratic program with 61,466 variables and 711,453 squared expressions in the
objective function (1)–(8).

To evaluate the new ratings, two measures are used. The first aims to express the validity of the
ratings, that is, how well they represent the true abilities of the players. To this end, the ratings are
used in a prediction model that outputs probabilities for the outcomes of matches. The process follows
a sliding window approach, where, first, all matches up to a given point in time are used to calculate
player ratings. For the next match, a covariate xPM is calculated based on the average total rating of
the players in the starting line-up of the home team, minus the average total rating of the players in
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the starting line-up of the away team. The value for the covariate together with the observed match
outcome (home win, draw, away win) forms an observation.

When a sufficient number of observations have been collected, an ordered logit regression
model [30] is built with the aim of predicting outcomes of future matches when only the covariate
value is known. This prediction is evaluated by calculating its quadratic loss [31], also known as
thr Brier score, and the average quadratic loss over a large number of matches is used to indicate
validity: better ratings should make it easier to predict future match outcomes, leading to a lower
quadratic loss. The quadratic loss is a proper score and, like alternatives such as the rank probability
score [32], is a commonly used measure to evaluate match outcome predictions in soccer [33]. Let the
outcomes of a match be numbered 1, 2, and 3; let p1, p2, and p3 be the probabilities for the three
outcomes; use dj = 1 to indicate that match outcome j ∈ {1, 2, 3}was observed, with dj = 0 otherwise.
The quadratic loss for a single match then becomes:

LQ =
3

∑
j=1

(dj − pj)
2.

Matches up to July 2011 are used only in the calculation of player ratings, whereas matches
between July 2011 and July 2014 are used both to calculate ratings and to create initial observations for
the prediction model. Matches played after July 2014 are used both to evaluate predictions, to provide
additional observations for the prediction model, and to calculate updated player ratings. A sliding
window of thirty days is used, where player ratings are updated every thirty days, based on all matches
played up to a given point in time. The prediction model is estimated based on observations created
between July 2011 and a given point in time, where each observation consists of the covariate xPM
using the most recent player ratings, as well as the actual match outcome. The matches in the following
thirty days are then predicted using the most recent ratings and prediction model, before the sliding
window is moved forward thirty days and the process is repeated. Figure 2 provides a schematic
illustration of this process for the two first prediction steps. The total number of matches for which
predictions are made, and for which the average loss is calculated, is 19,346.

(. . .)August 2008 July 2011 July 2014

data for calculating ratings

data for prediction model

predictions

sliding window

(. . .)August 2008 July 2011 July 2014

data for calculating ratings

data for prediction model

loss, LQ predictions

Figure 2. Illustration of how the validity of ratings are evaluated based on the prediction loss,
using a sliding window technique: the top showing the initial step where predictions are made,
and the bottom showing the subsequent step.
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The second measure aims to express the reliability of the ratings, that is, how well the rating
estimates can be replicated on different data sets. This is accomplished by randomly splitting the
matches of the data set into two equally large halves, calculating ratings for each half separately,
and then calculating Pearson’s correlation coefficient over those players that appear in both halves
of the data set. Repeating this process 20 times and taking the average of the coefficients obtained
provides a measure of reliability between zero and one, with higher values being better.

To provide benchmarks for the measures of validity and reliability, the new offensive–defensive
plus–minus rating is compared to three previous plus–minus ratings, presented by Sæbø and Hvattum [6],
Sæbø and Hvattum [7], and Pantuso and Hvattum [16]. An additional benchmark is the assignment
of random ratings to each player. This provides the worst possible value of zero for the correlation
coefficient. It also provides a bound on the prediction loss, where the only useful information for the
prediction method consists of the historical distribution of match outcomes and the fact that one team
has a home field advantage. Following this, an ablation study is also performed using the same metrics
for evaluation, with the aim of analyzing the importance of several selected components of the new
rating system.

To provide an analysis of the model parameters not directly related to the ratings of players,
a bootstrapping technique is applied. Segments from the data set are sampled with replacement until
reaching the same number of sampled segments as in the original data set. The rating model is then
estimated based on the sampled segments, and the parameter values are recorded. This process is
repeated 500 times, after which the values of each parameter are sorted, and the median value is
output, together with the values that form a 95% confidence interval for the parameter.

Finally, the face validity of the ratings is assessed by calculating ratings on the whole data set and
presenting the top ranked players and teams. In the ranking lists produced, a player must have played
in at least one match in the data set during the last year up to July 2017 in order to be included. For the
data set in question, this means that a total of 10,369 players are ranked. To rank teams, the players
that have appeared for the team during the last year, and who have not played for any other teams
since, are considered. Out of these, the 15 highest rated players are extracted for each team, and their
average total rating is calculated as a measure of team strength.

5. Results

This section presents results from the tuning of hyperparameters, the testing of validity and
reliability of the ratings, an ablation study, a bootstrap analysis of the estimated parameters of the
rating model, and ranking lists for soccer players and teams.

5.1. Tuning of Hyperparameters

The values of the hyperparameters were initially set as those used by Pantuso and Hvattum [16],
and then additional fine tuning was attempted. The latter did not result in significant changes, and the
final values of the hyperparameters are λ = 12.0, ρ1 = 0.1, ρ2 = 300.0, ρ3 = 300.0, ρ4 = 2.5, wAGE = 0.3,
and wSIM = 0.85. The set of similar players is limited in size to |PSIM

p | ≤ 35, and players’ ages are
confined by yMIN = 16 and yMAX = 42. The main difference from the parameters used by Pantuso and
Hvattum [16] is that λ is reduced from 16 to 12. In addition, λAGE = 2 is an additional regularization
factor for age curves, whereas λOD.REG = 0.5 is an additional factor for the regularization of the
difference in the offensive and defensive ratings of a player.

5.2. Validity and Reliability Testing

The validity and reliability measures for the new offensive–defensive plus–minus ratings are
illustrated in Figure 3. It is clear that the new ratings (represented by a gray dot) perform almost
exactly the same as the previous installment of plus–minus ratings by Pantuso and Hvattum [16]
(represented by a black dot just below the new rating) . This is perhaps explained by the fact that the
regularization terms for the overall player ratings are very similar. In fact, the correlation coefficient
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between the final ratings calculated for the whole data set using either the new offensive–defensive
ratings or the existing ratings from [16] is 0.99. This means that, effectively, the overall ratings are
almost identical, and the only contribution from the new rating system is that the overall rating can be
split into a defensive rating and an offensive rating.

Prediction
loss

Correlation

0.0

0.2

0.4

0.6

0.8

1.0

0.6000.6100.6200.6300.6400.650

Random

Sæbø and Hvattum [6]

Sæbø and Hvattum [7] Pantuso and Hvattum [16]

OD-PM

Figure 3. Evaluation of rating methods based on reliability, measured as the correlation of ratings
calculated on a data set randomly split in two halves, and validity, measured as the prediction loss for
rating-based match outcome predictions.

5.3. Ablation Study

The new rating model has several components, and it is not immediately clear how each of them
contributes to the rating system as a whole. To shed some light on this, an ablation study is conducted,
where six different model variations are created by eliminating certain components from the full
model. These model variations are then evaluated in the same framework as the full model, so that the
importance of each eliminated component can be measured. The following variations of the model
are considered:

(A) Removing segment weights, that is, setting w(m, s) = 1.
(B) Removing the effect of player age, by setting ui(t) = 0.
(C) Ignoring home field advantages, by setting f H.MATCH(m) = f A.MATCH(m) = 0.
(D) Not considering red cards, by ignoring segments with missing players, i.e., removing all s from

Sm where r(m, s, n) 6= 0 for any n.
(E) Removing the regularization terms for the difference between offensive and defensive ratings,

by setting f REG.O.D.PLAYER(p) = 0.
(F) Not skipping offensive ratings for goal keepers, by enforcing PO

mst = PD
mst and adjusting

f AUX(p, t, w) and f REG.O.D.PLAYER(p) by removing the exceptions for Vp = {GK}.

The results of the ablation study are illustrated in Figure 4, based on the validity and reliability
of the resulting ratings. The differences between the model variations are very small, and the figure
is only showing a small portion of the values for prediction loss and correlation given in Figure 3.
The overall conclusion is that none of the model variations outperform the full model, but that
the relative degradation in performance is small when modifying only a single model component.
When ignoring home field advantages, the prediction loss of the method improves, but with a reduction
in the reliability of ratings. On the other hand, when removing the additional regularization term
for the difference between the offensive and defensive ratings of each player, the reliability increases
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at the expense of worse prediction loss values. However, in both of these cases, the deviations are
very small.

prediction
loss

correlation

0.900

0.925

0.950

0.6050.6060.607

(A)

(B)

(C)(D)

(E)

(F)

Pantuso and Hvattum [16]

OD-PM

Figure 4. Ablation study for the new rating system, with evaluation metrics as in Figure 3.

5.4. Bootstrap Results

While the overall ratings produced from the new rating model is strongly correlated with the
ratings produced by earlier versions of plus–minus ratings, it remains to be seen whether additional
insights can be gained by splitting the overall rating into a defensive and an offensive component.
To examine the effects of the coefficients of the model not directly related to the player ratings,
a bootstrap procedure was applied, and its results are discussed in the following.

First, Figure 5 shows the effect of a player’s age on their offensive rating, whereas Figure 6 shows
the effect of age on the defensive rating. There are few observations of players at the extreme ends
of the age spectrum, so the regularization makes the age effects closer to zero for those. In general,
the confidence intervals are narrower in the middle of the age range, which makes sense since there are
more players in the data set with such ages, so the estimation is more reliable. The effect of age is much
more pronounced for the defensive ratings, compared to the offensive ratings. In particular, younger
players are relatively worse when it comes to defensive ratings. This could indicate that it is more
important to use peak age players in defense, and less important to avoid young players up front.

Table 3 provides bootstrap estimates for the home field advantage parameters. The first
observation is that overall, the home field advantage is in line with previous studies, for example Sæbø
and Hvattum [7] who found an overall advantage of 0.388 goals per 90 min for the home team.
However, the offensive–defensive rating model uses the home field advantage to shift the baseline for
goals scored by both teams—that is, the positive numbers for offensive advantages indicate that home
teams score more goals than the baseline, whereas the negative numbers for defensive advantages
indicate that away teams score more goals than the baseline.

The last column in Table 3 indicates the difference of the median in favor of the home team.
This implies that certain leagues behave differently in terms of the total number of goals: While the
overall home field advantage is similar for Italy and Portugal, with 0.33 goals in favor of the home team
per 90 min, in Portugal, both teams score 0.27 goals more per 90 min than in Italy, all else being equal.
Although the confidence intervals are wide, this is in line with the reputation that Italian football is
defensively oriented. However, factors such as the distribution of playing strength between teams in
a league may also contribute towards how the home field advantage is estimated by the model.
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Figure 5. Effect of age on offensive ratings, showing median effect (black line) and 95% confidence
interval (gray area) from bootstrap tests.
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Figure 6. Effect of age on defensive ratings, showing median effect (black line) and 95% confidence
interval (gray area) from bootstrap tests.

The overall home field advantage also seems to differ between competitions. It is highest
for the UEFA Champions League (UCL) and Europa League (UEL), with 0.44 goals per 90 min.
These competitions are special, since many of the rounds are played as two matches, one at home and
one away, leading to the elimination of the overall losing team. The matches are also associated to
longer travel distances than the domestic leagues, which may be another factor in explaining the larger
home field advantage.

There could potentially be an additional change in the home field advantage when either team
has players being sent off. However, the bootstrap estimation suggests that this change is very minor:
when the home team has one player sent off, it scores 0.38 (with a 95% confidence interval [0.32, 0.44])
goals less and concedes 1.07 ([0.97, 1.18]) goals more per 90 min; on the other hand, when the away
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team has one player sent off, it scores 0.30 ([0.25, 0.36]) goals less and concedes 1.14 ([1.03, 1.22]) goals
more per 90 min.

Table 3. Bootstrap estimates of home field advantages. The positive numbers for offensive advantages
indicate that home teams score more goals than the baseline, whereas the negative numbers for
defensive advantages indicate that away teams score more goals than the baseline. The last column
indicates the difference of the median in favor of the home team.

Offensive Defensive

Median 95% CI Median 95% CI Sum

UCL/UEL 0.60 [0.48, 0.70] −0.15 [−0.25, −0.04] 0.44
Spain 0.65 [0.50, 0.79] −0.24 [−0.38, −0.10] 0.41
Netherlands 0.72 [0.56, 0.87] −0.35 [−0.51, −0.18] 0.37
Italy 0.46 [0.32, 0.62] −0.13 [−0.27, 0.03] 0.33
Portugal 0.73 [0.58, 0.89] −0.40 [−0.55, −0.25] 0.33
Germany 0.55 [0.42, 0.68] −0.24 [−0.36, −0.12] 0.31
France 0.57 [0.41, 0.71] −0.26 [−0.41, −0.10] 0.31
WC/Euro 0.55 [0.42, 0.67] −0.25 [−0.37, −0.13] 0.29
England 0.50 [0.38, 0.61] −0.23 [−0.34, −0.10] 0.27

These estimates are also close to what was observed in previous studies in terms of their overall
effect. For example, Sæbø and Hvattum [7] found that a single red card was worth 1.53 goals per
90 min. They found, however, that additional dismissals were given a much smaller value, indicating
that the first red card is more significant than the second red card to the same team. On this point the
new model differs, indicating that, with a second red card for the home team, it scores 0.51 goals less
and concedes 1.37 goals more per 90 min. Similarly, a second red card for the away team results in it
scoring 0.27 goals less and conceding 1.55 goals more. Only for the third card to either team do the
estimates become quite noisy, due to this being quite a rare event.

Table 4 shows bootstrap estimates for the league component of the player ratings. In general,
these should provide an indication of the average quality of players in a given league. While these
values only form a part of the rating of each player, they do contribute to the ratings of all players
having appeared in the respective leagues. Even though the individual component of a player’s rating
may contribute to shift the rating away from the league average, when taken across all players in
a league, these individual differences may be expected to cancel out.

Some of the league component estimates seem to counter the effects of the home field advantage
estimates. For example, the home field advantage in Italy indicates that relatively fewer goals are scored
compared to other leagues, such as Portugal, as shown in Table 3. However, the league component of
the player ratings indicate that the players in Italy contribute to both scoring and conceding more than
players in Portugal. Although these two aspects seem to negate each other, it may also be that there is
indeed a difference between how players contribute to scoring and conceding based on the league in
which a match is played, and that this difference comes in addition to the innate abilities of the players
appearing in the same league. In any case, the effect of the league components in the player ratings is
much smaller than the effect of the home field advantage on the scoring rates.

Table 5 shows estimates for the parameter that is used in regularization of the difference between
offensive and defensive ratings. Goalkeepers only have a defensive ratings, but for the other three
positions, the parameters have the expected behavior, that is, defenders have, on average, a lower
offensive rating than a defensive rating, and forwards have a higher offensive rating than defensive
rating. For midfielders, the difference between the offensive and defensive ratings due to regularization
is not significant.

In summary, the coefficients of the model not directly related to player ratings behave as expected,
and can be used to identify how the age of players, the home field advantage, and players being sent
off influences the outcome of a soccer match, both with respect to the number of goals scored and
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the number of goals conceded for each team. It is observed that, on average, players registered as
defenders are relatively more important when it comes to reducing the number of goals conceded,
whereas players registered as forwards are more important when it comes to increasing the number of
goals scored.

Table 4. Bootstrap estimates for the league component of the player ratings.

Offensive Defensive

Median 95% CI Median 95% CI Sum

England Premier League 0.11 [0.10, 0.13] 0.01 [0.00, 0.02] 0.12
Spain Primera División 0.08 [0.07, 0.09] 0.00 [−0.01, 0.01] 0.08
France Ligue 1 0.06 [0.05, 0.08] 0.01 [0.00, 0.02] 0.07
Germany Bundesliga 0.08 [0.07, 0.09] −0.01 [−0.02, 0.01] 0.07
Italy Serie A 0.07 [0.05, 0.08] −0.03 [−0.05, −0.02] 0.03
Netherlands Eredivisie 0.05 [0.04, 0.07] −0.02 [−0.03, −0.01] 0.03
England Championship 0.05 [0.04, 0.06] −0.03 [−0.04, −0.02] 0.02
Germany 2. Bundesliga 0.04 [0.03, 0.05] −0.03 [−0.04, −0.02] 0.02
Portugal Primeira Liga 0.03 [0.02, 0.04] −0.01 [−0.03, −0.01] 0.01
Italy Serie B 0.04 [0.02, 0.05] −0.03 [−0.04, −0.02] 0.00
France Ligue 2 0.03 [0.02, 0.04] −0.03 [−0.04, −0.02] 0.00
Spain Segunda División 0.03 [0.02, 0.04] −0.03 [−0.04, −0.02] 0.00
England League One 0.03 [0.02, 0.04] −0.03 [−0.05, −0.02] 0.00
England League Two 0.02 [0.01, 0.03] −0.06 [−0.07, −0.05] −0.04

Table 5. Bootstrap estimates for the differences in offensive and defensive ratings for players of
different positions.

Difference

Position Median 95% CI

Goalkeeper NA NA
Defender −0.05 [−0.06, −0.04]
Midfielder 0.00 [−0.01, 0.01]
Forward 0.07 [0.05, 0.08]

5.5. Rankings

The final step of the evaluation of the new rating system is to look at the ratings produced and
whether they are reasonable. To this end, lists of the top ten ranked players in different categories are
presented below. In total 10,369 players are present in the full data set and have at least one appearance
over the last year, and these are considered as eligible for the lists. Table 6 lists the players with the
highest overall rating as of July 2017. Out of the 10,369 players, the model identifies Lionel Messi
of Barcelona as having the highest overall rating. The other players at the top of the rating list are
also well known players, and as for the model of [16], the new model does appear to identify playing
strength in line with expectations.

At this point, though, it is more interesting to look at how the overall rating is split into offensive
and defensive ratings. Of the players in the overall top 10, many have a high offensive rating and
a lower defensive rating. As the number of goals scored by a team is non-negative, and since the model
approximates this by taking the difference of offensive ratings of the scoring team and the defensive
ratings of the conceding team, it is understandable that on average, offensive ratings are higher than
defensive ratings. Considering all the 10,369 players, the average offensive rating is 0.091, while the
average defensive rating is 0.014.

While the top list has players of different positions present, even the players in defensive positions
have relatively high offensive ratings. It could be that the model does not successfully identify all
defensive players as such, but it may also be that in some cases even defensive players contribute
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in a way that allows their teams to score more goals, rather than just to prevent goals from being
conceded. Table 7, listing the ten players with highest offensive ratings, also includes some players
that have appeared as defenders. The highest rated offensive player registered as a defender in the
data set is Jerome Boateng of Bayern München, ranked as number 20 according to his offensive rating.
While an aging Cristiano Ronaldo is still top three in terms of offensive rating, his age means that his
defensive rating starts to drop (see Figure 6), and his overall rank is number 26.

Table 6. Top 10 rated players, estimated using the full data set from August 2008 to July 2017.

Rank Name Nationality Position Age Minutes Offensive Defensive Total

1 Lionel Messi Argentina F 30 31,132 0.382 0.015 0.397
2 R. Lewandowski Poland F 28 26,419 0.340 0.052 0.393
3 Mesut Özil Germany M, F 28 29,568 0.327 0.064 0.391
4 Thiago Alcantara Spain M, F 26 13,101 0.280 0.106 0.386
5 Luis Suarez Uruguay F 30 27,223 0.387 −0.004 0.382
6 Marcelo Brazil D, M 29 24,966 0.323 0.058 0.382
7 Sergio Busquets Spain D, M 28 30,423 0.303 0.067 0.371
8 David Alaba Austria D, M 25 21,988 0.248 0.118 0.367
9 Thomas Müller Germany F 27 30,459 0.282 0.084 0.366

10 T. Alderweireld Belgium D 28 27,454 0.216 0.148 0.365

Table 7. Top 10 players based on offensive ratings, estimated using the full data set from August 2008
to July 2017.

Rank Name Nationality Position Age Minutes Offensive Defensive Total

1 Luis Suarez Uruguay F 30 27,223 0.387 −0.004 0.382
2 Lionel Messi Argentina F 30 31,132 0.382 0.015 0.397
3 Cristiano Ronaldo Portugal F 32 34,880 0.341 −0.015 0.325
4 R. Lewandowski Poland F 28 26,419 0.340 0.052 0.393
5 D. Sturridge England F 27 12,901 0.333 −0.007 0.325
6 Mesut Özil Germany M, F 28 29,568 0.327 0.064 0.391
7 Marcelo Brazil D, M 29 24,966 0.323 0.058 0.382
8 J. Rodriguez Colombia M, F 25 15,494 0.312 0.047 0.360
9 Alvaro Morata Spain F 24 8665 0.305 0.015 0.320

10 Sergio Busquets Spain D, M 28 30,423 0.303 0.067 0.371

Table 8 shows the highest rated players according to their defensive rating. As goalkeepers do not
have any offensive rating, the model typically assigns them a high defensive rating, and the top list is
dominated by goalkeepers. The first non-goalkeeper to appear on the list is Daniel Carvajal Ramos of
Real Madrid at number 30, with a defensive rating of 0.188.

When looking at the top lists, it is apparent that the difference between offensive and defensive
ratings is much larger for these players than the value indicated by the position difference in the
regularization. Thus, the model is attempting to pick up whether each player’s contribution is mostly
in terms of increasing the goals scored or reducing the goals conceded for the team. However, it is not
clear from the top lists inspected whether the model is successfully doing so for all players.

Table 9 presents the top ten ranked teams, where the rank is determined based on the average
overall rating for the 15 highest rated players in the squad. Player ratings are based on the full data set,
representing the playing strength as of July 2017, and a player must have appeared at least once for the
team in the last year to qualify for inclusion. While the following analysis considers the 15 highest rated
players, selected to represent a starting line-up plus substitutes, the rankings of top teams typically do
not change much if either reducing or increasing this number. The ratings illustrate that some teams
are more defensively oriented than others. Real Madrid was the highest ranked team in July 2017.
They had just won the UEFA Champions League twice in a row, and would go on to win again in
the following season. The model suggests that they achieved this through having an effective attack,
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having a higher scoring ability than all other teams except Barcelona. Defensively, Real Madrid was
less impressive, and the model ranks them as number 12 out of 316 club teams. The highest rated team
in terms of defensive ratings is Atlético Madrid, with a defensive rating of 0.111, which corresponds
well with how the team was perceived at the time.

Table 8. Top 10 players based on defensive ratings, estimated using the full data set from August 2008
to July 2017.

Rank Name Nationality Position Age Minutes Offensive Defensive Total

1 Manuel Neuer Germany G 31 35,738 NA 0.300 0.300
2 Thibaut Courtois Belgium G 25 24,392 NA 0.284 0.284
3 M.-A. ter Stegen Germany G 25 17,301 NA 0.271 0.271
4 Keylor Navas Costa Rica G 30 17,128 NA 0.270 0.270
5 Jan Oblak Slovenia G 24 15,423 NA 0.253 0.253
6 Roman Burki Switzerland G 26 10,155 NA 0.251 0.251
7 W. Szczesny Poland G 27 25,620 NA 0.248 0.248
8 Petr Cech Czech G 35 33,171 NA 0.237 0.237
9 Kevin Trapp Germany G 26 17,620 NA 0.228 0.228

10 Fraser Forster England G 29 15,686 NA 0.227 0.227

Table 9. Top 10 teams in July 2017 based on the average rating of the best 15 players of the team,
estimated using the full data set from August 2008 to July 2017.

Rank Team League Age Offensive Defensive Total

1 Real Madrid Spain 27.5 0.250 0.080 0.331
2 Bayern München Germany 29.2 0.232 0.105 0.322
3 Barcelona Spain 27.3 0.253 0.075 0.311
4 Borussia Dortmund Germany 27.4 0.205 0.085 0.277
5 Chelsea England 27.6 0.196 0.091 0.275
6 Juventus Italy 29.3 0.175 0.097 0.273
7 Arsenal England 27.5 0.192 0.089 0.268
8 Tottenham Hotspur England 26.1 0.184 0.094 0.265
9 Manchester City England 29.4 0.194 0.070 0.264

10 Manchester United England 27.8 0.159 0.102 0.262

The 15 highest ranked players of Bayern München are listed in Table 10. This table also indicates
the peak ratings of each player, which are calculated based on the age effect curves as illustrated
in Figures 5 and 6. The three players with the highest peak ratings are Lewandowski, Robben,
and Ribery. However, since the two latter are approaching the mid-30s, their current ratings are
adjusted downwards accordingly. Some of the general impressions of the ratings in the list are
reasonable: forwards tend to have lower defensive ratings, the defensive ratings of defenders are
relatively high compared to their offensive ratings. However, there are some exceptions, such as the
defender Boateng, who has a very high offensive rating, indicating that he is on the pitch when Bayern
scores many of their goals. His defensive rating is not very high, indicating that his presence does not
appear to prevent Bayern from conceding more goals than when other players take his place.

Finally, Table 11 lists all domestic leagues in the data set, sorted according to the average
overall rating of the players with at least one appearance in the league during the 2016/2017 season.
The ranking is similar to that indicated by the league component in Table 4. Among the minor
differences, we see that the teams in ranks two to five have been scrambled, and that the Dutch
Eredivisie is somewhat lower than indicated by the league component. While Table 9 showed that the
best teams come from Spain and Germany, Table 11 shows that the top division of England has the
best players on average.
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Table 10. Top 15 rated players of Bayern München in July 2017, estimated using the full data set from
August 2008 to July 2017.

Offensive Defensive Total

Rank Name Position Age Current Peak Current Peak Current Peak

1 R. Lewandowski F 28 0.340 0.349 0.052 0.065 0.393 0.410
2 Thiago Alcantara M 26 0.280 0.286 0.106 0.108 0.386 0.390
3 David Alaba D, M 25 0.248 0.260 0.118 0.134 0.367 0.389
4 Thomas Muller F 27 0.282 0.302 0.084 0.091 0.366 0.389
5 Jerome Boateng D 28 0.286 0.296 0.075 0.087 0.362 0.379
6 Mats Hummels D, M 28 0.211 0.225 0.114 0.124 0.326 0.345
7 Douglas Costa M, F 26 0.251 0.260 0.058 0.069 0.309 0.325
8 Javi Martinez D, M 28 0.200 0.209 0.107 0.119 0.307 0.324
9 Arjen Robben F 33 0.288 0.348 0.016 0.076 0.305 0.420
10 Manuel Neuer G 31 NA NA 0.300 0.330 0.300 0.330
11 Philipp Lahm D, M 33 0.186 0.248 0.104 0.169 0.291 0.413
12 Arturo Vidal M 30 0.121 0.153 0.165 0.185 0.286 0.334
13 Juan Velasco D, M, F 24 0.162 0.166 0.120 0.139 0.283 0.301
14 Rafinha D, M 31 0.134 0.180 0.143 0.175 0.277 0.351
15 Franck Ribery F 34 0.257 0.323 0.011 0.087 0.268 0.406

Table 11. List of domestic league competitions, sorted by average rating of players appearing in at
least one match of the 2016/2017 season.

Rank Country Competition Players Offensive Defensive Total

1 England Premier League 524 0.138 0.049 0.177
2 Germany Bundesliga 470 0.130 0.043 0.165
3 Spain Primera División 541 0.123 0.043 0.156
4 Italy Serie A 560 0.119 0.031 0.141
5 France Ligue 1 559 0.100 0.032 0.124
6 England Championship 706 0.098 0.016 0.107
7 Germany 2. Bundesliga 497 0.091 0.020 0.106
8 Portugal Primeira Liga 523 0.076 0.025 0.095
9 Spain Segunda División 614 0.079 0.021 0.094

10 Netherlands Eredivisie 477 0.085 0.004 0.085
11 Italy Serie B 641 0.076 0.013 0.082
12 France Ligue 2 528 0.074 0.009 0.077
13 England League One 728 0.073 −0.009 0.058
14 England League Two 713 0.061 −0.020 0.036

6. Concluding Remarks

This paper provided a new plus–minus rating for individual players in soccer, where the
contributions of the players are split into offensive and defensive contributions. The offensive rating
indicates to what extent a player is contributing to the team scoring more goals, whereas the defensive
rating indicates whether a player is contributing to the team conceding fewer goals.

Testing the ratings on a data set of more than 52 thousand matches, with more than 30 thousand
unique players, demonstrates that it is feasible to split the plus–minus ratings into offensive and
defensive ratings. Looking into the estimated parameters of the rating model, the split seems to
make sense: defenders have higher defensive ratings and forwards have higher offensive ratings,
compared to players of other positions. Furthermore, the age of a player influences offensive and
defensive contributions differently, with defensive ratings being more sensitive to the player’s age.
The home field advantage and the effect of player dismissals have an influence on both the number of
goals scored and the number of goals conceded for the teams in a match. As an example, a red card
has a negative effect both on the number of goals scored and conceded, but the effect on the number of
goals conceded is stronger.

Although the new rating appears reasonable from an eagle eye perspective, when studying
individual players, the ratings may be harder to reconcile with established opinion. As an example,
a strong defender may be assigned a relatively low defensive rating and a high offensive rating.
This could simply mean that the defender is more important to the team building up an attack,
and comparably less important for the direct prevention of goals conceded. As such, offensive or
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defensive ratings that are in opposition to current perceptions of players can be useful triggers for
discussions. However, it remains an open question as to whether the split in offensive and defensive
ratings lead to a noisy and seemingly arbitrarily set defensive ratings, or whether the new ratings are
able to detect patterns that are not common knowledge.

The reported experiments have some limitations. For one, they are based on a single data
set, which, although large, may still be of insufficient size to calculate the best version of the
offensive–defensive plus–minus ratings. In particular, it may be that additional seasons of data would
lead to more stable results, and facilitate more robust settings for the hyperparameters of the rating
model. In addition, there are few benchmarks to which the ratings can be compared. While this is true
in general for overall player ratings, it is perhaps even more pronounced for defensive ratings. It may
be that access to more granular data, such as event data, could facilitate improved defensive ratings.

In conclusion, the new ratings perform on par with previous ratings when it comes to predicting
future match outcomes. The offensive–defensive ratings allow additional insights into the game,
by assessing the importance of the home field advantage and red cards on the individual scoring rates
of the teams.

For future research, generalizations of the model may be used to analyse additional elements,
such as the effects of the playing schedule and player fatigue, or the effects of defensively or offensively
oriented head coaches. The new rating model exploits information about player positions. It may be
interesting to investigate whether more specific player position data could be used to improve the split
into defensive and offensive ratings, for example, by taking into account the difference between center
backs and full backs or wing backs.
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