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Featured Application: The results of this research have been followed for the use of recycled
concrete at the ARTEPREF precast plant (Spain).

Abstract: The research presented in this article analysed the influence of incorporating precast
concrete waste as an alternative to coarse aggregate in self-compacting concrete to generate new
precast elements. The experimental study involved the characterization of recycled aggregate and the
design of the mix of the new self-compacting concrete (SCC). The experimental study evaluates the
physical processes that affect the durability of concrete with percentages of incorporation such as
20%, 50% and 100% of recycled aggregate. Two types of SCC were manufactured with minimum
compressive strength of 30 MPa and 45 MPa. The properties analysed were density of hardened
SCC, shrinkage cracking, freeze-thaw resistance, resistance to ageing by thermal shock and abrasion
resistance. The results obtained were compared with those of the control concrete, observing great
capacity of the SCC under physical aggressions that affect durability. The results of this research show
that it is possible to use the recycled aggregate coming from precast pieces in order to the manufacture
of self-compacting recycled concrete in the same precast industry. However, high loss of proprieties
occurs for a 100% substitution, while for 20% and 50%, the variations with respect to control concrete
are smaller. In addition, taking advantage of this waste to incorporate it back into the production
chain contributes to more sustainable construction.

Keywords: recycled; precast; recycled concrete; recycled aggregate; durability; physical

1. Introduction

Although construction has existed since the origin of civilization (Greek and Roman temples serve
as an example), construction with structural elements of precast concrete is more recent. The origins of
these precast elements date back to the early nineteenth century when, in Chicago, the first blocks
based on lime cements and limestone aggregates were used in masonry walls, as an alternative to
natural stone. Prefabrication is the industrialized version for construction and its many advantages
include greater reliability (quality), dimensional precision, speed of execution, optimization of sections,
greater work safety and longer useful life. Hence, in recent decades, many countries, such as the USA,
Japan or The Netherlands, are promoting the prefabrication industry, consolidating the use of precast
elements. However, and as with other activities related to construction, the precast sector requires
a large amount of natural resources, since almost 80% of the total volume of concrete is aggregates.
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This is leading to a progressive depletion of natural resources, forcing all countries to adopt more
sustainable construction. In this regard, it is worth highlighting the “Precast Sustainability Strategy and
Charter” of the British Precast Concrete Federation [1] where measures to reduce energy consumption,
eliminate waste and implement environmental and sustainable management systems were introduced.
Furthermore, they have recently approved new targets in line with the Sustainable Concrete industry
Strategy targets and the construction industry Low Carbon Route map to 2050.

Therefore, taking into account that construction and all activities related to cement consume a large
amount of natural resources, the recovery of concrete and its subsequent treatment to re-incorporate
as a substitute for natural aggregate has taken on great importance. Since 2011, all precast sector
companies in the European Union, complying with EU Regulation 305/2011 [2] have had to use natural
resources sustainably.

The use of recycled aggregates (RA) from concrete can be an alternative to natural aggregates
for the manufacture of different types of concrete, which has a positive impact on the environment
by reducing the continuous exploitation of natural aggregate quarries that produce an important
environmental impact and also has a favourable impact on the economy. Numerous investigations
have been carried out to find ways to use this type of RA in the manufacture of concrete [3–9], generally
observing a decrease in the properties and durability of concrete. A possible cause of this reduction
may be a consequence of the greater absorption of the recycled aggregate with respect to the natural
aggregate, producing a reduction in the water/cement ( w/c) ratio, which reduces the workability of
the concrete and, therefore, its fresh properties. As has been shown in different studies, the use of
superplasticizer additives can be an alternative to correct the workability and can be beneficial in terms
of durability and mechanical resistance since it optimizes the w/c ratio [6]. In this regard, Sainz-Aja [10]
analysed the optimal amount of superplasticizer additive in the manufacture for self-compacting
concrete. Regarding the use of RA, Thomas et al. [8,11] analysed the possibility of incorporating
multi-recycled aggregate for the manufacture of a multi-recycled concrete. The results showed that it
was possible to incorporate this type of RA, but limiting recycling to a 3rd generation aggregate.

Regarding the mechanical properties, it has been shown that the quality of the recycled aggregate
influences the compressive strength, especially when it is desired to obtain strengths greater than
30 MPa. Sami and Tabsh [12] showed that when using high quality RA, the results obtained can be
better than those obtained for control concrete. The results obtained by Pérez Benedicto when replacing
100% of the aggregate with waste from precast parts were in the same line [13]. Likewise, Sainz-Aja [14]
demonstrated the viability of using recycled aggregate from out-of-service railway superstructure
wastes for the manufacture of a more ecological SCC that also fulfils the mechanical requirements of
slab tracks.

Another property that is usually affected by the incorporation of RA is the durability of
concrete. In general, the incorporation of RA reduces the durability of concrete [15,16], although
López-Gayarre [17] considers that the influence of RA is not significant since the durability is more
dependent on the w/c ratio. Thomas [18] investigated the influence of the curing conditions of concrete
with RA on its durability, observing a decrease in terms of permeability when the concrete is exposed
to an aggressive environment.

The use of recycled aggregate causes a greater shrinkage in concrete compared to natural
aggregate [19–21]. However, the greater or lesser variation in shrinkage can be influenced by other
factors such as the dosage method, manufacturing procedure and curing conditions. For example,
for a 100% substitution, Limbachiya [19] and Ravindraraja [20], found an increase of between 10–35%,
while the results obtained by Domingo [21] showed increases greater than 70% with respect to the
control concrete. The results obtained in different studies have shown that the incorporation of AR,
can affect other physical processes related to the durability of concrete, such as resistance to frost [22–24]
or resistance to erosion [19,25].

It can be seen that numerous studies have examined the use of concrete waste in the manufacture
of new concrete, however, few studies relate to the use waste from the precast sector [6,13,26,27].
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These studies are mainly focused on examining the influence of these wastes on the physical and
mechanical properties of concrete [5,26]. Taking these data into account, the objective of this work was
to analyse the influence that the use of RA from precast elements has on the durability of SCC under
physical actions such as shrinkage, freeze-thaw cycles, thermal shock cycles and abrasion. This study
can be considered innovative since, as mentioned above, the studies carried out to date have mainly
focused on analysing the influence of these RAs on the mechanical properties of concrete. A SCC has
been manufactured with a minimum compressive strength of 30 and 45 MPa for use in precast elements.
The degrees of substitution analysed were 20%, 50%, 100% of the natural aggregate. The results of this
research show that it is possible to use the recycled aggregate coming from precast pieces in order to
the manufacture of self-compacting recycled concrete in the same precast industry.

2. Materials and Methods

2.1. Materials

CEM I- 52.5 R, according to the UNE-EN 197-1 Standard [28], was used. Cement was supplied by
Grupo Cementos Portland Valderrivas (Mataporquera, Spain). Limestone filler (Artepref, Aranda de
Duero, Spain) was used, complying with the ISO 9001 certificate. Two types of silica aggregates were
used, with grain size fractions of 0/2 mm, for the finest aggregate, and 2/12.5 mm for the coarsest one.
To achieve a workable SCC two superplasticizers were used: Sika ViscoCrete®-5920 HE (Sika, Madrid,
Spain) and Sika ViscoCrete®-20 HE (Sika). These are two superplasticizers belonging to the group of
polycarboxylates: Sika ViscoCrete®-5920 HE is a high-performance superplasticizer usually used in
concrete with low water content and Sika ViscoCrete®-20 HE is a superplasticizer especially suitable
for the preparation of concretes with great need for water reduction, with high initial strength and
excellent fluidity.

Finally, recycled aggregate (RA) was used as an alternative to the coarsest aggregate, from crushed
precast concrete waste with a size of 4/12.5 mm. This RA was obtained after crushing and grinding
different unusable precast pieces [27], such as those shown in Figure 1. RA was used as an alternative
to silica gravel.
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2.2. Mix Design

To carry out this study, two control mixtures were used to ensure a fresh, self-compacting concrete.
Furthermore, control mixtures guaranteeing a minimum compressive strength of 30 MPa (HR-30)
and 45 MPa (HR-45) were designed. The control mix proportions are intended to meet the standards
of precast concrete plants and to cover the widest range of precast products. From the control SCC,
the experimental program was done replacing 20%, 50% and 100% of the silica gravel with the same
volume of RA. Table 1 shows the mix proportions for manufactured SCCs, in kg/m3.
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Table 1. Mix proportions of self-compacting concrete (SCC) (kg/m3).

Material HR-30-0% Control HR-30-20% HR-30-50% HR-30-100% HR-45 0%
Control HR-45-20% HR-45-50% HR-45-100%

RA 4/12.5 0 250 540 1040 0 250 540 1040
Sand 2/12.5 1150 920 540 0 1150 920 540 0

Sand 0/2 650 650 670 720 650 650 670 720
Limestone filler 320 320 320 320 280 280 280 280

CEM I-52.5 R 250 250 250 250 320 320 320 320
Water 112 112 112 112 112 112 112 112

Sika 20HE 0.50 0.50 0.65 0.85 0.50 0.50 0.65 0.85
Sika 5920 1.30 1.30 1.60 2.00 1.50 1.50 1.80 2.20

w/ceff 0.40 0.39 0.35 0.32 0.31 0.30 0.28 0.25

Due to the high-water absorption coefficient of the RA, its incorporation as a substitute for
aggregate 2/12.5 influences the effective water/cement ratio (w/c). In order to adequately compare the
properties analysed in this study, the effective water/cement ratios (w/c)eff of each mix proportions used
were calculated. The calculation of the effective water/cement ratios are obtained from Equation (1),
where it has been estimated that the recycled aggregate reaches approximately 70% water saturation
capacity [29]. Table 1 shows the (w/c)eff for each mixture:

{w
c

}
e f f

=
W −

0.7
100

∑
i(PiAi)

c
(1)

where,
{

w
c

}
e f f

is effective water/cement ratio; W is the total amount of water incorporated in the mix;

Pi is the weight of the components incorporated during mixing; Ai is the absorption of the components
incorporated during mixing.

A total of eight mixes made up the experimental program. The HR-30-0% and HR-45-0% mixes
correspond to the control SCC. The remaining six mixtures correspond to the SCC with RA (Table 2).

Table 2. Results of compressive strength and standard deviation σ.

SCC HR-30 [MPa] σ [MPa] SCC HR-45 [MPa] σ [MPa]
HR-30-0% 49.09 12.00 HR-45-0% 63.36 5.28
HR-30-20% 49.98 7.50 HR-45-20% 64.13 4.47
HR-30-50% 55.34 10.35 HR-45-50% 66.82 7.04

HR-30-100% 56.75 3.27 HR-45-100% 72.81 8.22

In view of the results, there is a significant decrease in the (w/c)eff in recycled concretes, ranging from
a ratio of 0.45 to 0.32, for HR-30 and from 0.35 to 0.25 in the HR-45.

2.3. Experimental Programme

The SCC is mixed in a vertical shaft concrete mixer, following the procedure described in ASTM
C192 [30]. The mix procedure is as follows: first, the mixer is wetted, the coarse aggregates are added
and half the water of the mixture is poured in. Next, the finest materials, cement and filler, and the
other half of the water are introduced. A first mixing of 3 min is carried out and the mixture is left to
rest for 3 min. Finally, a mixing of 2 more minutes is carried out. After this time, the mixing process
is finished.

The specimens were manufactured according to the specifications of the UNE-EN 12350-1
standard [31]. The dimensions of the specimens are cubic specimens of 10 × 10 × 10 cm3 and prismatic
specimens of 7.5 × 7.5 × 27.5 cm3. After demoulding, all the specimens were transferred to a humidity
chamber where they were cured at a temperature of 20 ± 2 ◦C and a relative humidity of 95% for
28 days, following the recommendations of the UNE-EN 12390-2 standard [32].
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2.4. Consistency of Fresh SCC

The consistency of the fresh SCC was determined according to the slump-flow test described in the
UNE-EN 12350-8 [33] standard and using a cone similar to that described in the UNE-EN 12350-2 [34]
standard for the slump-flow test. The fresh concrete is poured into the cone and once filled it is removed
with an upward movement. Next, the time it takes for the concrete flow to reach a diameter of 500 mm
is measured, this being the time t500. Finally, the largest diameter of the extended self-compacting
concrete and the perpendicular diameter to it are measured, the mean is the slump-flow. The same w/c
has been used in all mix proportions. However, due to the higher absorption of the RA, the effective
w/c ratio is reduced with the increase of the RA percentage. In order to maintain a similar fluidity,
the amount of superplasticizer additive has been increased.

2.5. Physical Properties

2.5.1. Density of Hardened SCC

To determine the density of hardened SCC, the UNE-EN 12390-7 standard [35] was used.
The relative density of SCC was determined after having the specimens curing in a humidity chamber
for 28 days. The density of hardened SCC was determined in 3 cubic specimens of 10 × 10 × 10 cm3

for each mixing ratio and calculating the relationship between the weight of the dry specimen and
its volume.

2.5.2. Shrinkage Cracking

For the shrinkage test and in compliance with the UNE 83,318 [36] standard, laterally drilled
7.5 × 7.5 × 27.5 cm3 prismatic moulds, to which metal parts have been attached internally, were used,
fastened with a screw from the outside of the mould. The concrete specimens were compacted
according to the method set forth in standard UNE 83,313 [37] and taking care not to touch the metal
parts during the compaction of each of the specimens.

The first measurement was made 30 min after demoulding and after curing the specimens in water
at 20 ◦C for 28 days. Subsequently, the specimens were cured under conditions of direct exposure to the
weather. Figure 2. shows the curing conditions of concrete exposed outdoors. Three specimens were
used for each mix and the lengths of the samples were measured at 2, 7, 14, 28, 98, 198 and 360 days.
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Figure 2. Graph of temperatures and humidity of the specimens during the shrinkage test.
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2.5.3. Freeze-Thaw Resistance

The freeze-thaw tests were done in cubic specimens of 10 × 10 × 10 cm3 and according to
the UNE-EN 12390-9 [38] standard, which describes the procedure to subject the test specimens to
freeze-thaw cycles. The specimens were subjected for a period of 16 h to a temperature of between
−13 ◦C to −15 ◦C in a freezer chest. To control the temperature inside the specimens during the test,
a thermal probe was drilled and was housed inside one specimen of each series. Taking the weight of
the test specimens 24 h after immersion in water as a reference, the loss of mass at 7, 14, 28, 42 and
56 cycles was determined. Tests were performed on two specimens for each mix of SCC. Figure 3 show
the freeze-thaw testing equipment with temperature of the sample and the water control.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 16 
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2.5.4. Resistance to Ageing by Thermal Shock

Regarding ageing by thermal shock and in the absence of standards, it was determined by adapting
the test of the UNE-EN 14,066 standard [39]. The specimens were subjected to cycles of 16 h in an
oven at 70 ◦C and a period of 8 h immersed in water at a temperature of 20 ◦C for a total of 20 cycles.
For each mixture, 3 cubic specimens of 10 × 10 × 10 cm3 have been manufactured.

2.5.5. Abrasion Resistance

Regarding abrasion resistance, there is no UNE standard method to test concretes, so the procedure
to evaluate the behavior slabs of natural stone that is described in the UNE-EN-1341 standard [40] was
adapted. The measurement of the width of the footprint was carried out with a calliper on two of the
faces of 2 cubic specimens of 10 × 10 × 10 cm3, for the different SCC and replacement percentages.

2.6. Mechanical Properties

Regarding mechanical properties, the compressive strength of SCC was determined according to
the specifications of UNE-EN 12390-3 [41]. The compressive strength tests were carried out to obtain
reference data for the different mixtures with which to compare the results obtained after carrying
out certain durability tests. Table 2 shows the average results obtained from 3 cubic specimens of
10 × 10 × 10 cm3 for each mix proportions. Tests were performed at 28 days.

2.7. Statistical Analysis

The statistical analysis of the results obtained in this study was performed by calculating the
standard deviations. The standard deviation was calculated according to Equation (2), taking into
account the results obtained in each property and percentage of substitution. Typically, a total of three
trials were performed for each percent RA:
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y =

√∑
(x − x)2

(n − 1)
, (2)

where x is the average value and n is the sample size.

3. Results and Analysis

3.1. Characterization of Aggregates

The apparent density and water absorption of the natural aggregates are shown in Table 3,
while the particle size curves are shown in Figure 3. The determination of the particle size distribution
of the aggregates was carried out according with the UNE-EN 933-1 standard [42]. The results of the
RA are also shown in Table 3 and Figure 4.

Table 3. Density and water absorption of the natural aggregates and RA.

Natural Aggregates Sand 0/2 Gravel 2/12.5 RA Standard

Apparent density (g/cm3) 2.64 2.68 2.41 UNE-EN 1097-6 [43]
Water absorption (% wt.) 0.26 1.16 4.15 UNE-EN 1097-6 [43]
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3.2. Consistency of Fresh SCC

Table 4 shows the fresh concrete consistency results obtained for the different SCC. It can be seen
that when replacing the natural aggregate 2/12.5 mm with RA there is a reduction in workability.
This decrease occurs for all replacement percentages. Although the amount of additive was increased
for the 50% and 100% substitutions, the values for the diameter of the extended SCC are still lower.
This may be due to the higher water absorption by the RA, of 4.15%, with respect to the aggregate
2/12.5 mm, of 1.16%. This leads to a reduction in the effective w/c ratios and, therefore, in the workability
of the SCC.



Appl. Sci. 2020, 10, 7348 8 of 16

Table 4. Results of fresh concrete consistency.

SCC HR-30 Diameter (mm) SCC HR-45 Diameter (mm)
HR-30-0% 680 HR-45-0% 750

HR-30-20% 600 HR-45-20% 710
HR-30-50% 580 HR-45-50% 600

HR-30-100% 550 HR-45-100% 650

3.3. Density of Hardened SCC

Figure 5 shows the values obtained for the different dosages as a function of the effective w/c ratio.
Consistent with other studies [29,44] and according to Equation (3) it can be seen how the density
decreases linearly as the w/c ratio increases:

y = Ax − B, (3)

where, y is density; x is the effective water/cement ratio; A and B are parameters to be calculated.
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Figure 5. Results of relative density of hardened SCC as a function of the w/c ratio.

The results show a decrease in the SCC density as the percentage of RA in the mixture increases.
Likewise, all degrees of substitution evolve in parallel. These results are in agreement with the results
obtained by other authors, when using different types of precast concrete waste as substitutes for
natural aggregate [17,26]. This is attributed to the higher particle density of natural aggregate compared
to RA.

3.4. Shrinkage Cracking

3.4.1. Shrinkage as Function of Time

In this study, the influence of incorporation of RA on the shrinkage of the SCC has been analysed.
Figures 6 and 7 show the evolution of the shrinkage as function of time for the two types of concrete,
HR-30 and HR-45, obtaining a logarithmic fit as in Equation (4):

y = A Ln(x) + B, (4)
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Figure 6. Evolution of the shrinkage vs. time of the HR-30 concrete.
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Figure 7. Evolution of the shrinkage vs. time of the HR-45 concrete.

In general, the shrinkage of recycled concrete is greater than the control concrete. However,
the results do not show a clear trend for a ratio of 50% RA in the HR-45 concrete. HR-30% concrete
with 100 days age show variations in shrinkage smaller than HR-20% and HR-50% concretes. Also,
comparing with the control SCC, the HR-100% shows an increase of 37%. Both graphs also show that
during the first 90 days the slopes of the logarithmic adjustment are quite steep, regardless of the
percentage of RA. R. Loser [45] has shown that the greater shrinkage of self-compacting concretes,
compared to conventional concretes, is due to the greater amount of paste.



Appl. Sci. 2020, 10, 7348 10 of 16

These results are in line with those obtained in other studies, where a greater shrinkage of the
concrete is observed when including different percentages of recycled aggregates as an alternative to
natural aggregate [19–21]. This increase in shrinkage may be consequence of the greater absorption
of water by the RA, which causes greater porosity of the concrete as the percentage of substitution
increases and, therefore, an increase in shrinkage. Furthermore, Ravindrarajha et al. [20] suggest that
recycled concrete made with high-quality aggregates, as in this study, presents greater shrinkage
compared to those made with poorer quality aggregates.

3.4.2. Shrinkage as a Function of Effective Water/Cement Ratio

Figure 8 shows the relationship between the shrinkage of SCC, at 28 days, as a function of the
effective w/c ratio. In the absence of specific literature linking these two parameters, the optimal
effective fit was adapted to an increasing logarithmic curve with Equation (3).
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Figure 8. Shrinkage of SCC as a function of effective w/c ratio.

As in Figures 6 and 7, an increase in shrinkage with increasing RA percentage is observed.
However, the variations are less for each degree of substitution. The control concrete curves and those
of concrete with a ratio of 20% RA are similar. There is some variation for the ratio of 50% curve and
the greatest difference occurs in the curve of 100%, the increase of which represents approximately 28%
for the same effective w/c ratio.

3.4.3. Correlation between Compressive Strength and Shrinkage

According to the studies consulted [44], the relationship between compressive strength and
shrinkage of concrete can be represented by a linear graph. In Figure 9 the relationship between
compressive strength and SCC shrinkage with RA at 28 days can be seen. The results obtained show a
decrease in shrinkage as the compressive strength increases for each type of SCC. For substitutions of
up to 50%, it can be seen that the slope of the graphs hardly changes. However, for the ratio of 100% of
RA, a more marked increase in shrinkage as the strength decreases is observed. These results show the
influence of recycled aggregate in the paste at 28 days’ ageing.
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Figure 9. Correlation between shrinkage and compressive strength at 28 days’ ageing.

3.5. Freeze-Thaw Cycle

Table 5 shows the weight loss results in the corresponding freeze-thaw cycles applied for the
different SCCs. Weight loss at 7, 14, 28, 42, and 56 cycles was determined. The results show two
different behaviors depending on the strength of the SCC, HR-30 and HR-45. For concretes with a
higher w/c ratio (0.45), corresponding to HR-30, the weight loss as the cycles progress is significantly
greater. For the dosage of lower ratio w/c (0.35), corresponding to the strength of HR-45, although
weight loss is also seen, it is not greater than 10% of the initial weight. This greatest weight loss for the
dosages with a higher w/c ratio of the concrete with RA is in line with the results obtained in other
studies [46].

Table 5. Weight loss results in freeze-thaw tests.

Type SCC 7 Days 18 Days 28 Days 42 Days 56 Days
HR-30-0% 1.49 2.91 4.52 8.37 11.42

HR-30-20% 0.41 0.83 1.55 2.60 4.74
HR-30-50% 0.51 0.89 1.22 8.95 12.57
HR-30-100% 2.1 4.63 9.56 12.30 15.87

HR-45-0% 0.61 0.74 1.54 3.08 4.68
HR-45-20% 0.28 0.67 0.86 1.86 3.16
HR-45-50% 0.71 1.99 2.58 4.51 8.14
HR-45-100% 0.79 2.18 3.47 5.23 9.50

Figure 10 specifies the compressive strength results before and after freeze-thaw cycles as a
function of the effective w/c ratio.

Decreases in strength for concretes with higher w/c ratios are observed, while for lower
water/cement ratios, the tendency is toward increasing strength. For the higher w/c ratio (HR-30),
strength losses were observed between 8% for the ratio of 20%, and 30% for the substitution of 100%
RA with respect to the specimens taken as reference. However, for the dosages of HR-45, there is
a slight increase in strength, between 5% and 7%, compared to the reference SCCs. In this regard,
there are studies that reflect this better behavior [47,48]. Mulheron and Omahony [48] observed that
the durability of concrete made with crushed concrete and clean recycled aggregate is better or similar
to the durability of concrete with natural aggregates, when subjected to freeze-thaw cycles.
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Figure 10. Compressive strength results (blue) of the specimens after the freeze-thaw test compared to
reference (red) specimens, as a function of the effective w/c ratio.

The behavior under the freeze-thaw cycles was more favorable for the concrete with a lower
w/c ratio, even achieving resistance values significantly higher than those of the control concrete and
reference specimens. For the higher w/c ratio, in general, the results reflect a trend of poorer behavior
as we increase the degree of substitution.

3.6. Abrasion Resistance

The average results of the footprint, in mm, of the abrasion test for the different types of SCC and
percentages of RA can be seen in Table 6.

Table 6. Abrasion test results and standard deviation σ.

SCC HR-30 Footprint (mm) σ [mm] SCC HR-45 Footprint (mm) σ [mm]
HR-30-0% 19.32 0.11 HR-45-0% 19.22 0.18

HR-30-20% 19.33 0.09 HR-45-20% 19.51 0.44
HR-30-50% 19.95 1.13 HR-45-50% 19.92 0.38
HR-30-100% 20.58 0.05 HR-45-100% 19.97 0.59

Knowing that the lower the footprint values, the greater the abrasion resistance, it can be said that
the use of RAs produces a loss in abrasion resistance of the SCC. The results also show that the smaller
the w/c ratio is, the smaller is the width of the footprint and, therefore, the stronger is the concrete.
For the replacement of 100% of the HR-30 concrete, a significant increase in the depth of the footprint
is observed with respect to the same percentage of HR-45 concrete, approximately between 3% and 5%
compared to the reference concrete. These values are below those obtained by other authors [25,49].
It can be seen that the results converge for low w/c ratios, close to 0.25, indicating that the highest
resistance to abrasion occurs for the highest quality paste. However, the footprint values obtained for
the different replacement percentages are below the maximums required by Spanish regulations for
outdoor environments [50,51].

3.7. Resistance to Ageing by Thermal Shock

Table 7 shows the variation in mass of the specimens, in grams, after having subjected them to
24 h cycles with a stage of immersion in water (8 h) and another stage of drying in a stove (16 h).
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The results do not show notable modifications for the different SCCs, even a certain weight gain is
observed, certainly produced by some water retained in its pores. Thus, it can be concluded that that
deterioration does not occur in the samples due to alteration in the concrete surface layer.

Table 7. Accelerated ageing by thermal shock: Pn mass variation.

Type SCC Pn (g) Starting Pn (g) Ending ∆ Weight (%)
HR-30 0% 2433.0 2438.0 +0.21
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3% and 5% compared to the reference concrete. These values are below those obtained by other 
authors [25,49]. It can be seen that the results converge for low w/c ratios, close to 0.25, indicating that 
the highest resistance to abrasion occurs for the highest quality paste. However, the footprint values 
obtained for the different replacement percentages are below the maximums required by Spanish 
regulations for outdoor environments [50,51]. 

3.7. Resistance to Ageing by Thermal Shock 

Table 7 shows the variation in mass of the specimens, in grams, after having subjected them to 
24 h cycles with a stage of immersion in water (8 h) and another stage of drying in a stove (16 h). The 
results do not show notable modifications for the different SCCs, even a certain weight gain is 
observed, certainly produced by some water retained in its pores. Thus, it can be concluded that that 
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smaller the w/c ratio is, the smaller is the width of the footprint and, therefore, the stronger is the 
concrete. For the replacement of 100% of the HR-30 concrete, a significant increase in the depth of the 
footprint is observed with respect to the same percentage of HR-45 concrete, approximately between 
3% and 5% compared to the reference concrete. These values are below those obtained by other 
authors [25,49]. It can be seen that the results converge for low w/c ratios, close to 0.25, indicating that 
the highest resistance to abrasion occurs for the highest quality paste. However, the footprint values 
obtained for the different replacement percentages are below the maximums required by Spanish 
regulations for outdoor environments [50,51]. 

3.7. Resistance to Ageing by Thermal Shock 

Table 7 shows the variation in mass of the specimens, in grams, after having subjected them to 
24 h cycles with a stage of immersion in water (8 h) and another stage of drying in a stove (16 h). The 
results do not show notable modifications for the different SCCs, even a certain weight gain is 
observed, certainly produced by some water retained in its pores. Thus, it can be concluded that that 
deterioration does not occur in the samples due to alteration in the concrete surface layer. 

Table 7. Accelerated ageing by thermal shock: Pn mass variation. 

Type SCC Pn (g) Starting Pn (g) Ending ∆ weight (%) 
HR-30 0%  2433.0 2438.0 +0.21 
HR-30 20% 2325.0 2329.0 +0.17 
HR-30 50% 2399.5 2401.8 +0.10 
HR-30 100% 2323.9 2338.2 +0.61 
HR-45-0%  2427.0 2433.0 +0.25 
HR-45-20% 2390.0 2395.0 +0.21 
HR-45-50% 2404.6 2409.9 +0.22 

HR-45-100% 2372.3 2378.8 +0.27 

Figure 11 shows the results of the compressive strengths obtained as a function of their effective
water/cement ratio, carried out before and after the thermal shock test. Although a slight increase
in strength is observed, for control SCCs and 50% and 100% substitutions, there is no clear trend in
the results.
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Figure 11. Comparison of compressive strength results after thermal shock cycles (blue) with the
reference (red) specimens as a function of their effective w/c ratio.

4. Conclusions

Once the results obtained in this study had been analyzed, it could be concluded that:

• The results obtained, when analyzing the physical and chemical properties of RA, are within the
limits of the current Spanish Specification EHE-08. Therefore, it can be said that the properties of
RAs are adequate for the manufacture of a new concrete resulting in a good material with good
strength, resistance, uniformity and little contamination.

• As expected, the densities of hardened SCCs are decreased as the percentage of RA present in the
mixture increases.
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• The incorporation of RAs produces an increase in the shrinkage of SCCs. The greatest variation
occurs for a 100% substitution, while for 20% and 50%, the variations with respect to control
concrete are smaller.

• The shrinkage values obtained show that during the first 90 days the variation is more pronounced
regardless of the percentage of RA.

• The results obtained show a decrease in shrinkage as the compressive strength increases. For a
ratio of 100% a more marked increase in shrinkage is observed, which shows the influence of the
recycled aggregate on the concrete paste.

• The use of RAs has little influence on physical actions such as thermal shock or abrasion, since the
values are similar to those of the control concrete. In addition, in the case of the abrasion test,
the results are below the maximums required by Spanish regulations.

• The behavior of concrete under freeze-thaw cycles was more favorable for concrete with a lower
w/c ratio, even achieving resistance values significantly higher than those of control concrete and
reference specimens. For higher w/c ratios, in general, the results reflect a trend towards poorer
behavior, as also occurs and as we increase the degree of substitution.

The results obtained in this study show a favorable response of recycled SCC to physical actions
that affect durability. Ultimately, we can conclude that it is feasible to manufacture a concrete with
high strength and performance with aggregates recycled from precast elements, obtaining satisfactory
results even with a 100% replacement.

Author Contributions: Conceptualization: F.F., C.T., J.M.M.; Data curation: F.F., J.M.M.; Formal analysis: F.F.,
C.T., J.M.M.; Funding acquisition: F.F., J.M.M.; Project administration: C.T., J.M.M.; Resources: F.F., J.M.M.;
Supervision: C.T., J.M.M. Validation: F.F., I.L.; Visualization: F.F., C.T., J.M.M.; Writing—original draft: F.F.,
I.L.; Writing—review & editing F.F., C.T., J.M.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Junta de Castilla y León (Regional Government) for funding UIC-231 through
project BU119P17; MINECO for funding through project BIA2014-55576-C2-1-R; FEDER (European Regional
Development Funds) and LADICIM.

Acknowledgments: We are grateful to the precast concrete company Artepref for having collaborated with the
present research work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. BPCA. Precast Sustainability Strategy and Charter; British Precast Concrete Association: Leicester, UK, 2013.
2. EU. Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011. Off. J.

Eur. Commun. 2000, 269, 1–15.
3. Etxeberria, M.; Vázquez, E.; Marí, A.; Barra, M. Influence of amount of recycled coarse aggregates and

production process on properties of recycled aggregate concrete. Cem. Concr. Res. 2007, 37, 735–742. [CrossRef]
4. Evangelista, L.M.F.D.R.; De Brito, J.M.C.L. Concrete with fine recycled aggregates: A review. Eur. J. Environ.

Civ. Eng. 2013, 18, 129–172. [CrossRef]
5. Pérez-Benedicto, J.A.; Del Río-Merino, M.; Peralta-Canudo, J.L.; Mata, M.D.L.R.-L. Características mecánicas

de hormigones con áridos reciclados procedentes de los rechazos en prefabricación. Materiales de Construcción
2011, 62, 25–37. [CrossRef]

6. Soares, D.; De Brito, J.; Ferreira, J.; Pacheco, J. Use of coarse recycled aggregates from precast concrete rejects:
Mechanical and durability performance. Constr. Build. Mater. 2014, 71, 263–272. [CrossRef]

7. Gonzalez-Corominas, A.; Etxeberria, M. Properties of high performance concrete made with recycled fine
ceramic and coarse mixed aggregates. Constr. Build. Mater. 2014, 68, 618–626. [CrossRef]

8. Thomas, C.; De Brito, J.; Gil, V.; Sainz-Aja, J.; Cimentada, A. Multiple recycled aggregate properties analysed
by X-ray microtomography. Constr. Build. Mater. 2018, 166, 171–180. [CrossRef]

9. Thomas, C.; Setién, J.; Polanco, J.; De Brito, J.; Fiol, F. Micro- and macro-porosity of dry- and saturated-state
recycled aggregate concrete. J. Clean. Prod. 2019, 211, 932–940. [CrossRef]

http://dx.doi.org/10.1016/j.cemconres.2007.02.002
http://dx.doi.org/10.1080/19648189.2013.851038
http://dx.doi.org/10.3989/mc.2011.62110
http://dx.doi.org/10.1016/j.conbuildmat.2014.08.034
http://dx.doi.org/10.1016/j.conbuildmat.2014.07.016
http://dx.doi.org/10.1016/j.conbuildmat.2018.01.130
http://dx.doi.org/10.1016/j.jclepro.2018.11.243


Appl. Sci. 2020, 10, 7348 15 of 16

10. Sainz-Aja, J.A.; Carrascal, I.; Polanco, J.A.; Sosa, I.; Thomas, C.; Casado, J.; Diego, S. Determination of the
Optimum Amount of Superplasticizer Additive for Self-Compacting Concrete. Appl. Sci. 2020, 10, 3096.
[CrossRef]

11. Thomas, C.; De Brito, J.; Cimentada, A.; Sainz-Aja, J. Macro- and micro- properties of multi-recycled aggregate
concrete. J. Clean. Prod. 2020, 245, 118843. [CrossRef]

12. Tabsh, S.W.; Abdelfatah, A.S. Influence of recycled concrete aggregates on strength properties of concrete.
Constr. Build. Mater. 2009, 23, 1163–1167. [CrossRef]

13. Pérez Benedicto, J.Á. Estudio Experimental sobre Propiedades Mecánicas del Hormigón Reciclado con Áridos
Procedentes de la No Calidad. Ph.D. Thesis, E.U. de Arquitectura Técnica (UPM), Madrid, Spain, 2011.

14. Sainz-Aja, J.; Carrascal, I.; Polanco, J.A.; Thomas, C.; Sosa, I.; Casado, J.; Diego, S. Self-compacting recycled
aggregate concrete using out-of-service railway superstructure wastes. J. Clean. Prod. 2019, 230, 945–955.
[CrossRef]

15. El-Hawary, M.M.; Al-Otaibib, S.F. On the Durability of Recycled Aggregates Concrete. Int. J. Struct. Civ.
Eng. Res. 2017, 40, 1054–1065. [CrossRef]

16. Bravo, M.; De Brito, J.; Pontes, J.; Evangelista, L. Durability performance of concrete with recycled aggregates
from construction and demolition waste plants. Constr. Build. Mater. 2015, 77, 357–369. [CrossRef]

17. Lopez-Gayarre, F. Influencia en la Variación de los Parámetros de Dosificación y Fabricación de Hormigón
Reciclado Estructural sobre las Propiedades Fisico Mecánicas. Ph.D. Thesis, Universidad Oviedo, Asturias,
Spain, 2008.

18. Thomas, C.; Setién, J.; Polanco, J.A.; Cimentada, A.I.; Medina, C. Influence of curing conditions on recycled
aggregate concrete. Constr. Build. Mater. 2018, 172, 618–625. [CrossRef]

19. Limbachiya, M.; Leelawat, T.; Dhir, R. Use of recycled concrete aggregate in high-strength concrete.
Mater. Struct. Constr. 2000, 33, 574–580. [CrossRef]

20. Ravindrarajah, R.S.; Tam, C.T. Properties of concrete made with crushed concrete as coarse aggregate.
Mag. Concr. Res. 1985, 37, 29–38. [CrossRef]

21. Domingo, A.; Lázaro, C.; Gayarre, F.L.; Serrano-López, M.; López-Colina, C. Long term deformations by
creep and shrinkage in recycled aggregate concrete. Mater. Struct. 2009, 43, 1147–1160. [CrossRef]

22. Lauritzen, E.K. Demolition and Reuse of Concrete and Masonry. In Proceedings of the 3rd International
RILEM Symposium, Odense, Denmark, 24–27 October 1993.

23. Fernandez Cánovas, M. Hormigón; Colegio de Ingenieros de Caminos, Canales y Puertos: Madrid, Spain, 2013.
24. González Fonteboa, B. Hormigones con Áridos Reciclados Procedentes de Demoliciones: Dosificaciones, Propiedades

Mecánicas y Comportamiento Estructural a Cortante; Universidade da Coruña: Coruña, Spain, 2002.
25. Leelawat, T.; Dhir, R.K.; Limbachiya, M.C. Suitability of Recycled Concrete Aggregate for Use in BS 5328

Designated Mixes. Proc. Inst. Civil Eng. Struct. Build. 1999, 134, 257–274.
26. Fiol, F.; Thomas, C.; Muñoz, C.; Ortega-López, V.; Manso, J. The influence of recycled aggregates from precast

elements on the mechanical properties of structural self-compacting concrete. Constr. Build. Mater. 2018, 182,
309–323. [CrossRef]

27. Olivan Fiol, F. Estudio Experimental sobre Propiedades Mecánicas y de Durabilidad de Hormigones Estructurales
Autocompactantes con Áridos Reciclados y su Aplicación a la Prefabricación; University of Burgos: Burgos,
Spain, 2016.

28. AENOR. UNE-EN 197-1. Cemento. Parte 1: Composición, Especificaciones y Criterios de Conformidad de los
Cemento Comunes; AENOR: Madrid, Spain, 2000; Volume UNE-EN 197.

29. Thomas, C. Hormigón Reciclado de Aplicación Estructural: Durabilidad en Ambiente Marino y Comportamiento a
Fatiga; Universidad de Cantabria: Cantabria, Spain, 2010.

30. ASTM International. ASTM C192/C192M-18. Standard Practice for Making and Curing Concrete Test Specimens
in the Laboratory; ASTM: West Conshohocken, PA, USA, 2018.

31. AENOR. Testing Fresh Concrete—Part 1: Sampling; UNE-EN 12350-1:2009; AENOR: Madrid, Spain, 2009.
32. AENOR. UNE-EN 12390-2: Ensayos de Hormigón Endurecido. Parte 2: Fabricación y Curado de Probetas para

Ensayos de Resistencia; AENOR: Madrid, Spain, 2001; Volume UNE-EN 123.
33. AENOR. Testing Fresh Concrete—Part 8: Self-Compacting Concrete-Slump-flow Test; UNE-EN 12350-8:2011;

AENOR: Madrid, Spain, 2011.
34. AENOR. Testing Fresh Concrete—Part 2: Slump-Test; UNE-EN 12350-2:2009; AENOR: Madrid, Spain, 2009.

http://dx.doi.org/10.3390/app10093096
http://dx.doi.org/10.1016/j.jclepro.2019.118843
http://dx.doi.org/10.1016/j.conbuildmat.2008.06.007
http://dx.doi.org/10.1016/j.jclepro.2019.04.386
http://dx.doi.org/10.18178/ijscer.6.1.1-4
http://dx.doi.org/10.1016/j.conbuildmat.2014.12.103
http://dx.doi.org/10.1016/j.conbuildmat.2018.04.009
http://dx.doi.org/10.1007/BF02480538
http://dx.doi.org/10.1680/macr.1985.37.130.29
http://dx.doi.org/10.1617/s11527-009-9573-0
http://dx.doi.org/10.1016/j.conbuildmat.2018.06.132


Appl. Sci. 2020, 10, 7348 16 of 16

35. AENOR. UNE-EN 12390-7. Ensayos de Hormigón Endurecido. Parte 7: Densidad del Hormigón Endurecido;
AENOR: Madrid, Spain, 2005; Volume UNE-EN 123.

36. AENOR. Concrete Tests. Determination of the Length Changes; UNE 83318:1994; AENOR: Madrid, Spain, 1994.
37. AENOR. Concrete Tests. Determination of the Consistency of Fresh Concrete. Slump Method; UNE 83313:1990;

AENOR: Madrid, Spain, 1990.
38. AENOR. Testing Hardened Concrete—Part 9: Freeze-Thaw Resistance-Scaling; UNE-EN 12390-9; AENOR:

Madrid, Spain, 2008.
39. AENOR. Natural Stone Test Methods—Determination of Resistance to Ageing by Thermal Shock; UNE-EN 14066;

AENOR: Madrid, Spain, 2014.
40. AENOR. Slabs of Natural Stone for External Paving—Requirements and Test Methods; UNE-EN 1341; AENOR:

Madrid, Spain, 2013.
41. AENOR. UNE-EN 12390-3. Ensayos de Hormigón Endurecido. Parte 3: Determinación de la Resistencia a

Compresión de Probetas; AENOR: Madrid, Spain, 2003; Volume UNE-En 123.
42. AENOR. UNE-EN 933-1. Ensayos Para Determinar las Propiedades Geométricas de los Áridos. Parte 1: Determinación

de la Granulometría de las Partículas; AENOR: Madrid, Spain, 1998; Volume UNE-EN 933.
43. AENOR. UNE-EN 1097-6. Ensayos para Determinar las Propiedades Mecánicas y Físicas de los Áridos.

Parte 6: Determinación de la Densidad de Partículas y la Absorción de Agua; AENOR: Madrid, Spain, 2014;
Volume UNE-EN 109.

44. Sánchez, M.; Alaejos, P. Estudio sobre las Propiedades del Hormigón Fabricado con Áridos Reciclados, Monografía;
CEDEX: Madrid, Spain, 2012.

45. Loser, R.; Leemann, A. Shrinkage and restrained shrinkage cracking of self-compacting concrete compared
to conventionally vibrated concrete. Mater. Struct. Constr. 2009, 42, 71–82. [CrossRef]

46. Zaharieva, R.; Buyle-Bodin, F.; Wirquin, E. Frost resistance of recycled aggregate concrete. Cem. Concr. Res.
2004, 34, 1927–1932. [CrossRef]

47. Forster, S. Recyclate concrete aggregate. Concr. Int. 1986, 8, 34–40.
48. Mulheron, M.; O’Mahony, M. The durability of recycled aggregates and recycled aggregate concrete.

In Demolition and Reuse of Concrete and Masonry: Proceedigns of the 2nd International RILEM Symposium;
CRC Press: Boca Raton, FL, USA, 1988.

49. Brito, J. Abrasion resistance of concrete made with recycled aggregates. Int. J. Sustain. Eng. 2010, 3, 58–64.
[CrossRef]

50. AENOR. Requirements and Delivery and Reception Conditions of Concrete Paving Flags; UNE 127339; AENOR:
Madrid, Spain, 2012.

51. AENOR. Concrete Paving Flags–Requirements and Test Methods; UNE-EN-1339; AENOR: Madrid, Spain, 2004.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1617/s11527-008-9367-9
http://dx.doi.org/10.1016/j.cemconres.2004.02.025
http://dx.doi.org/10.1080/19397030903254710
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Materials 
	Mix Design 
	Experimental Programme 
	Consistency of Fresh SCC 
	Physical Properties 
	Density of Hardened SCC 
	Shrinkage Cracking 
	Freeze-Thaw Resistance 
	Resistance to Ageing by Thermal Shock 
	Abrasion Resistance 

	Mechanical Properties 
	Statistical Analysis 

	Results and Analysis 
	Characterization of Aggregates 
	Consistency of Fresh SCC 
	Density of Hardened SCC 
	Shrinkage Cracking 
	Shrinkage as Function of Time 
	Shrinkage as a Function of Effective Water/Cement Ratio 
	Correlation between Compressive Strength and Shrinkage 

	Freeze-Thaw Cycle 
	Abrasion Resistance 
	Resistance to Ageing by Thermal Shock 

	Conclusions 
	References

