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Abstract: Mahalanobis distance (MD) is a well-known metric in multivariate analysis to separate
groups or populations. In the context of the Mahalanobis-Taguchi system (MTS), a set of normal
observations are used to obtain their MD values and construct a reference Mahalanobis distance
space, for which a suitable classification threshold can then be introduced to classify new observations
as normal/abnormal. Aiming at enhancing the performance of feature screening and threshold
determination in MTS, the authors have recently proposed an integrated Mahalanobis classification
system (IMCS) algorithm with robust classification performance. However, the reference MD space
considered in either MTS or IMCS is only based on normal samples. In this paper, an investigation on
the influence of the reference MD space based on a set of (i) normal samples, (ii) abnormal samples,
and (iii) both normal and abnormal samples for classification is performed. The potential of using an
alternative MD space is evaluated for sorting complex metallic parts, i.e., good/bad structural quality,
based on their broadband vibrational spectra. Results are discussed for a sparse and imbalanced
experimental case study of complex-shaped metallic turbine blades with various damage types; a
rich and balanced numerical case study of dogbone-cylinders is also considered.

Keywords: Mahalanobis–Taguchi system (MTS); integrated Mahalanobis classification system (IMCS);
Mahalanobis distance space; feature selection; classification; binary particle swarm optimization;
nondestructive testing; vibrations

1. Introduction

The Mahalanobis–Taguchi system (MTS) is a powerful tool for studying multidimensional systems
developed by Genichi Taguchi [1–3]. MD and Taguchi robust engineering are effectively integrated
and applied to the diagnosis and prediction of multivariate data. Due to its effectiveness and easy
operation without any underlying statistical assumptions, this method has been widely used in
various applications such as product quality testing systems, mechanical fault diagnoses, financial
early-warnings, medical diagnoses, and other fields [4–7].

MTS is a pattern recognition system that employs the concepts of orthogonal arrays (OAs) and
signal-to-noise ratios (SNRs) to screen useful features. The feature selection process, however, is seen as
not optimal by several scholars [8–10]. Therefore, some scholars have carried out in-depth and extensive
research and have achieved promising results, making important contributions to the development of
MTS [11–17]. The majority of those methodologies are based on metaheuristic algorithms such as the
genetic algorithm (GA), binary particle swarm optimization (BPSO), binary ant colony optimization
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(BACO), and the binary gravitational search algorithm (BGSA), effectively improving the feature
selection strategy.

Another challenge to implementing MTS in practice is the determination of a suitable threshold
for distinguishing between normal and abnormal observations. Taguchi [18] proposed a quadratic loss
function (QLF) to determine the classification threshold, but this is unrealistic because it is difficult to
estimate the relative cost or loss in reality. A simpler and more practical approach using the Chebyshev
theorem, called the “probability threshold method”, has been proposed [19]. There is also a substantial
body of qualitative research in developing threshold determination methods [20–22].

A novel two-stage Mahalanobis classification system (MCS), as well as its integrated version
(IMCS), has been recently proposed by the current authors [16,17]. IMCS integrates the decision
boundary searching process, which is based on the particle swarm optimizer algorithm, directly into the
feature selection phase (based on BPSO or BGSA) for constructing the MD space. Compared to classical
MTS, both MCS and IMCS showed improved classification performance for sorting (i.e., good/bad
structural quality) complex metal parts based on their vibrational response [17].

The primary objective of this paper is to investigate the influence of the reference MD space
on the classification performance of the recently proposed IMCS classifier [17]. The reference MD
space is constructed by considering (i) normal samples, (ii) abnormal samples, and (iii) both normal
and abnormal samples. In addition, the impact of an imbalanced dataset on classification accuracy
is also discussed. This paper is organized into five sections. Section 2 presents the concept of
multidimensional MD space. The procedure of IMCS with three different reference MD spaces is
demonstrated in Section 3, followed by an experimental case study on complex-shaped metallic turbine
blades and a numerical study on dogbone cylinders in Section 4. Section 5 gives the conclusions of
this paper.

2. Multidimensional Mahalanobis Distance

The M-dimensional (M ≥ 1) multivariate system is considered. Samples from normal observations
(healthy samples) are defined as xk

i j, indicating the jth variable of the ith normal observation in the kth
dimension (i = 1, 2, . . . , n; j = 1, 2, . . . , p; k = 1, 2, . . . , M).

The samples are firstly standardized as

zk
i j =

xk
i j − xk

j

sk
j

(1)

In Equation (1), xk
j and sk

j represent the mean and standard deviation of the jth variable in the
kth dimension.

Then, M-dimensional MD values can be obtained as
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Thereby, MD values for abnormal observations (defective samples) can then be calculated based
on the obtained outcomes of Rk from Equation (2).
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3. Methodology

3.1. Integrated Mahalanobis Classification System (IMCS)

The current authors have recently proposed the IMCS algorithm [17], which is an extension
of the earlier proposed two-stage MCS approach [16] for improving classification performance.
The IMCS approach incorporates the decision-making process directly into the feature selection process,
thus avoiding the need for extra user-dependent inputs and enhancing classification performance.
The framework of IMCS is presented in Figure 1.
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Figure 1. The schematic of the integrated Mahalanobis classification system (IMCS) algorithm.

The procedure of IMCS can be briefly summarized as follows. The original dataset, comprising
n samples with p variables, is firstly randomly split into training and testing sets. In the training
stage, the optimal feature subset can be screened out under the objective to maximize the classification
accuracy max( TP+TN

TP+FP+TN+FN ) (TP: true positive; TN: true negative; FP: false positive; FN: false negative)
in MD space in the training dataset using the binary particle swarm optimizer (BPSO) algorithm [23,24].
A PSO-based classifier is introduced to accomplish classification decision threshold optimization,
updating itself simultaneously with the BPSO-based feature selection process at each iteration. In the
case of multidimensional MD space, alternative decision boundary searching algorithms such as
support vector machine (SVM) [25,26], random forest [27,28], and neural network (NN) [29,30]
can be easily considered in the IMCS algorithm. Finally, the optimal features and classification
threshold extracted from the training dataset are used to make predictions on the testing dataset.
In order to avoid overfitting for sparse training datasets, the cross-validation of k-folders is considered.
The downside of this fully integrated MCS approach is the higher computational effort needed
compared to two-stage MCS [16].
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3.2. Construction of Reference MD Space

MD space is essentially the distance between an unknown data point and a given population,
indicating the similarity between them. The construction of a good reference MD space is crucial
in order to obtain good classification performance. For instance, the reference MD space in MTS is
constructed on the basis of a supervised learning process, using a given set of normal observations.
A threshold to distinguish the two classes is then properly defined and used to classify the unknown
samples. If the observed MD is less than the threshold, the unknown sample has statistically similar
characteristics to the normal population of the samples.

The main objective of this paper is to investigate the potential of constructing the reference MD
space not only by considering normal samples but also abnormal samples, as well as a combination
of them. Three different thresholds will be introduced based on three different reference MD spaces.
Classification performance on the testing dataset is then compared and evaluated for these three
different MD spaces.

The three different classification scenarios are schematically presented in Figure 2.
Figure 2a illustrates MD values based on a reference MD space that is constructed by considering only
normal observations. The green triangles and red circles represent normal and abnormal observations,
respectively. By introducing a suitable decision threshold, indicated as a blue dashed line, the two
categories (normal/abnormal) of the given samples can be differentiated. Figure 2b presents the
classification scenario by employing a reference MD space that considers only abnormal observations.
Scenario 3, shown in Figure 2c, employs a reference MD space that is constructed by using both normal
and abnormal observations. As such, this approach enables us to introduce a two-dimensional linear
decision boundary.
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Figure 2. Three different classification scenarios, listed as (a) reference MD space based on MDnormal;
(b) reference MD space based on MDabnormal; (c) reference MD space based on both MDnormal

and MDabnormal.

In the following context, MDnormal and MDabnormal stand for the Mahalanobis distance based on
normal and abnormal observations, respectively.

4. Case Studies

The behavior of the IMCS classifier based on the three different reference MD spaces is evaluated for
two different case studies in the field of quality assessment of complex metal parts based on vibrations.

In this paper, symbolic conventions are adopted to represent the structure of the classification
procedure: IMCSX

Y→ IMCS indicates the integrated Mahalanobis classification system that employs
optimizer X to screen the key features and approach Y to search for the optimal threshold boundary.
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4.1. An Experimental Case Study on Complex-Shaped Metallic Turbine Blades

A case study of first-stage turbine blades with complex geometry and internal cooling
channels, consisting of 193 healthy and 39 defective blades (see Figure 3), is presented in this
section. The blades have been labeled as good/bad using alternative inspection procedures
(e.g., X-ray Computed Tomography, ultrasonic, penetrant testing, microscopic sectioning, operational
performance, and operator experience). For more details on the turbine blades, readers are
referred to [16].Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 18 
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Figure 3. (a) Generic model of the turbine blade; (b) sectional drawing of the turbine blade.

The frequency response functions (FRFs) of these blades are measured by Vibrant Corporation
(link: www.vibrantndt.com) using the process-compensated resonant test (PCRT) technique in the
frequency range of 3–38 kHz. PCRT is a nondestructive testing technology for the vibrational testing of
parts. A schematic of the PCRT procedure is displayed in Figure 4. The test part (a turbine blade in this
case) is supported by three piezoelectric transducers that are positioned in a fixture. One transducer
acts as an actuator and excites a broadband sweep sine signal. The remaining two transducers are
used to monitor the vibrational response signal. In this regard, PCRT is implemented as a single input
multiple output (SIMO) test. Based on the measured FRFs, important features such as resonance
frequencies and their associated damping ratios and amplitudes can then be estimated. These features
are used in a classification algorithm, which is based on a learning process, in order to discriminate
between good and bad parts.
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Figure 5 displays FRFs from two healthy samples and one defective sample. A significant
difference can be observed between them. Based on the measured FRFs, 15 stable resonance frequencies
have been extracted, which serve as the feature set for the IMCSBPSO

PSO algorithm.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 18 
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Figure 5. Frequency response functions (FRFs) of two healthy samples and one defective sample.

A training pool comprises 60% of the original dataset. The training pool itself consists of a 60%
training dataset and a 40% validation dataset, randomly selected from healthy and defective samples
in equal proportions. The remaining 40% of the original dataset is the testing dataset (blind parts)
and is used to evaluate the classification performance of the trained algorithm. Thus, the numbers
of the training dataset, the validation dataset, and the testing dataset are 87, 52, and 93, respectively.
For BPSO, the maximum iteration number is T = 100, and the number of particles in the BPSO is set to
N = 10. A 5-folder cross-validation is considered.

All programs are implemented in the platform MATLAB2018b® (laptop with Intel® Core™
i7-8650U processor (4 cores) up to 4.20 GHz and RAM 32GB).

4.1.1. Reference MD Space Based on Healthy Samples

First, the turbine blades are classified with the IMCS algorithm by considering a reference MD
space that is constructed based on the healthy samples.

Among the initial 15 features (resonance frequencies extracted from FRFs), only 6 out of 15 features
are screened: f2, f4, f5, f8, f14, f15 ≈ (5.9, 9.6, 10.7, 19.8, 25.9, 36.0) kHz.

The classification results are shown in Figure 6, where the misclassifications are marked with black
blocks. SMD (scaled Mahalanobis distance) in Figure 6 stands for the scaled Mahalanobis distance,
which is obtained by considering a logarithmic normalization, as follows:

SMD_training =
log

(
MDtraining

)
−min

(
log

(
MDtraining

))
max

(
log

(
MDtraining

))
−min

(
log

(
MDtraining

)) (3)

SMD_testing =
log

(
MDtesting

)
−min

(
log

(
MDtraining

))
max

(
log

(
MDtraining

))
−min

(
log

(
MDtraining

)) (4)

The procedure was run 20 times, independently, and the average accuracy and standard deviation
of classification results are summarized in Table 1. IMCS achieved accuracies of 96.40% and 96.77%
for the training pool dataset and testing dataset, respectively. Note that a small value of standard
deviation and a relatively large standard deviation can be observed in training and testing accuracy,
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respectively, reflecting the discrepancy between the populations of the training and testing samples
due to the sparse dataset.
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Table 1. Classification performance of the algorithm over 20 independent runs using a reference MD
space based on healthy samples.

Training Accuracy
(%)

Testing Accuracy
(%)

Number of Features
(–)

IMCSBPSO
PSO 98.81 ± 0.39 97.06 ± 1.35 5.50 ± 0.73

4.1.2. Reference MD Space Based on Defective Samples

Another perspective in classification is to construct a reference MD space based on defective
samples. The same configuration as the dataset allocation in Section 4.1.1 is adopted here.
The classification criteria, in essence, are to differentiate between the healthy and defective samples
by evaluating their similarity to the defective population (rather than to the healthy population,
as in Section 4.1).

The classification results are shown in Figure 7 for the training and testing datasets.
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The IMCS algorithm shows 82.73% and 62.37% classification accuracies for training and testing
datasets, respectively. There are seven screened features f1, f3, f5, f7, f12, f13, f14 ≈ (3.9, 7.0, 10.7, 19.1,
24.5, 25.5, 25.9) kHz. The results clearly indicate that constructing an MD space based on defective
samples deteriorates the classification performance significantly. The immediate reason behind this
observation is found in the high sensitivity of MD to even slight variations [31]. Furthermore, there are
various kinds of defects in the first-stage turbine blades, such as (i) microstructure changes due to
overheating, (ii) airfoiled cracking, and (iii) intergranular erosion (corrosion) [16]. Additionally, each of
these defect types may vary at different MD levels and, as such, different distributions. This obviously
makes it difficult to construct a good reference MD space in which the MD population is well clustered.
A further challenge arises from the fact that the number of defective samples is too sparse in the feature
space to construct a good reference MD space.

Classification performance using IMCS over 20 independent runs is summarized in Table 2.
Apart from the low mean values of accuracies, the standard deviation increased significantly, indicating
poor classification performance.

Table 2. Classification performance of the algorithm over 20 independent runs using a reference MD
space based on defective samples.

Training Accuracy
(%)

Testing Accuracy
(%)

Number of Features
(–)

IMCSBPSO
PSO 87.20 ± 9.29 79.46 ± 10.11 5.33 ± 2.90

4.1.3. Reference MD Space Based on Healthy and Defective Samples

From the above results, it may be concluded that the use of defective samples to construct
MD space has to be avoided. In this section, a two-dimensional reference MD space is constructed
on the basis of both healthy and defective samples, partitioning the MD space into four regions of
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interest by two linear thresholds, threshold 1 and threshold 2. These two thresholds are learned from
the IMCS classifier based on a reference MD space constructed from healthy samples and defective
samples, respectively. The classification results of training and testing datasets are shown in Figure 6,
where SMD-R1 and SMD-R2 stand for SMD based on the reference MD space constructed by healthy
samples and defective samples, respectively.

The four areas are referred to as A1, A2, A3, and A4 in Figure 8, providing insight into the
reliability of the classification. Areas A1 and A2 indicate “high” reliability, and areas A3 and A4 indicate
“low” reliability. Notably, the samples located in area A1 are all correctly classified as healthy samples.
Moreover, most of the misclassifications appear in the areas with “low” reliability. Although there is no
specific contribution in terms of classification accuracy by considering a two-dimensional MD space,
further insight into the classified samples can be gained from the divided areas with different credibility.
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Figure 8. (a) Classification on the training dataset; (b) classification on the testing dataset.

A significant drop in classification accuracy observed in both training and testing datasets from
Table 3 is associated with the two introduced linear thresholds, partitioning the two-dimensional MD
space into healthy (A1) and defective (A2, A3, A4) regions.

Table 3. Classification performance of IMCSBPSO
PSO over 20 independent runs using a reference MD

space based on both healthy and defective samples.

Training Accuracy
(%)

Testing Accuracy
(%)

Number of Features
(–)

IMCSBPSO
PSO 90.12 ± 1.22 80.58 ± 2.81 SMD-R1: 5.50 ± 0.73

SMD-R2: 5.33 ± 2.90

From a more technical point of view, the linear thresholds may pose a strict restriction in
classification accuracy. Instead of using linear threshold boundaries, a nonlinear classification
boundary is considered to reach maximal discrimination between classes. Random forest (RF) is
employed, which is an ensemble classifier composed of multiple decision trees [32]. RF consists of a set
of simple tree predictors, in which each predictor can respond to a set of predicted scores. By combining
multiple weak classifiers, the final classification scores are voted or averaged. Because of this, RF can
yield good classification performance, with high generalization capability; at the same time, it is less
sensitive to overfitting issues. In this study, the RF model was built and trained by generating an
ensemble of 20 bagged classification trees. The training process was implemented in MATLAB@ by
using the Statistics and Machine Learning toolbox. The training and prediction outcomes, considering
the RF approach for threshold determination, are displayed in Figure 9.
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Classification accuracies of 98.56% and 97.85% were obtained for the training data and testing
data, respectively. Compared to the results using the reference MD space based on healthy samples
in Section 4.1.1, a classification accuracy quantifies the same percentage of samples being correctly
identified in the testing dataset. However, this is referred to as the result of a single trial and cannot be
generalized. Thus, statistical classification results of 20 independent runs based on the RF technique
are summarized in Table 4.

Table 4. Classification performance of the random forest (RF) technique over 20 independent runs.

Training Accuracy
(%)

Testing Accuracy
(%)

Number of Features
(–)

IMCSBPSO
RF 99.93 ± 0.22 97.31 ± 0.81 SMD-R1: 5.50 ± 0.73

SMD-R2: 5.33 ± 2.90

A clear enhancement can be found for IMCSBPSO
RF (SMD-R1+SMD-R2), compared to IMCSBPSO

PSO
(SMD-R1+SMD-R2), due to the use of nonlinear decision boundaries. However, comparing IMCSBPSO

RF
(SMD-R1+SMD-R2) with the classifier constructed with a reference MD space based on healthy
samples only (i.e., IMCSBPSO

PSO (SMD-R1)) indicates only a marginal enhancement in training and
testing accuracy.

4.2. A Numerical Case Study on a Synthetic Dataset of Cylinders

Due to the sparsity and imbalance of the experimental dataset in Section 4.1, the active role of
alternating the reference MD space may not be manifested sufficiently. Another case study based
on a rich synthetic dataset of dogbone cylinders, composed of 3562 samples, is provided by Vibrant
Corporation (link: www.vibrantndt.com) and further discussed in this section. They are modeled as
nickel, single-crystal, cylindrical (tapered to gauge section) dogbones (see Figure 10) using the finite
element method.
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Two key determinants of the physical conditions of these cylinders are creep (inelastic deformation)
and θ (crystal orientation, relative to the long axis of the dogbone). The variations of creep and θ are
simulated in the ranges 0–9.9% and 0–37.9, respectively. Moreover, the feature database is generated
by extracting the resonance frequencies in the bandwidth 3–190 kHz.

Damaged parts are defined as creep >0.5%; θ > 10, resulting in a balanced dataset of 1857 healthy
samples and 1750 defective samples.

First, the whole dataset is split into a training pool and a testing set with the proportion 3:7,
where the training pool is further composed of training and validation sets with the proportion 6:4.
In the IMCSBPSO

PSO procedure, the maximum iteration number T for the BPSO algorithm is set as 200
and the number of particles is set to N = 20. A 5-folder validation is used to train the classifier.

4.2.1. Reference MD Space Based on Healthy Samples

Figure 11 presents the classification results of IMCSBPSO
PSO for the training pool dataset and testing

dataset, with an accuracy of 99.06% and 98.68%, respectively.
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It is worth remembering that the feature dimension has been significantly reduced from 44 to only
9, which is conducive to the processing of big data. The screened features are listed in Table 5.
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Table 5. Classification performance of the algorithms based on difference MD spaces over 20
independent runs.

Training Accuracy
(%)

Testing Accuracy
(%)

Number of Features
(–)

IMCSBPSO
PSO

(SMD-R1)
99.43 ± 0.14 98.81 ± 0.24 8.00 ± 1.63

IMCSBPSO
PSO

(SMD-R2)
92.58 ± 0.46 92.35 ± 0.91 2.10 ± 0.32

IMCSBPSO
PSO

(SMD-R1+SMD-R2)
98.23 ± 0.36 98.15 ± 0.51 SMD-R1: 8.00 ± 1.63

SMD-R2: 2.10 ± 0.32
IMCSBPSO

RF
(SMD-R1+SMD-R2)

99.93 ± 0.07 99.02 ± 0.20 SMD-R1: 8.00 ± 1.63
SMD-R2: 2.10 ± 0.32

4.2.2. Reference MD Space Based on Defective Samples

This subsection offers an additional perspective on the classification performance of the synthetic
dataset based on a reference MD space constructed by defective samples only.

Classification results of the training and testing datasets, shown in Figure 12, are inferior to the
results obtained in Section 4.2.1, with an accuracy of 93.10% and 92.33%, respectively.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 18 

 
(a) 

 
(b) 

Figure 12. (a) Classification on the training dataset; (b) classification on the testing dataset. 

As it can be observed from Figure 12, the SMD values of the defective samples are spatially 

dispersed in the entire SMD space [0,1]. Alternatively, the SMD values of healthy samples are highly 

concentrated in the range of 0.6–0.7. It can be interpreted by the fact that the resonance frequencies 

in defective samples vary greatly, thus yielding a large variation in MD as well. This also offers a 

good understanding of the obtained concentrated SMD values for healthy samples due to the small 

variations in resonance frequencies among healthy samples. Although the presented classification 

results are not completely satisfactory compared to the results in Section 4.2.1, it further provides an 

additional opportunity to explore the in-depth study by constructing a two-dimensional SMD space 

in which both reference MD spaces can be examined. 

4.2.3. Reference MD Space Based on Healthy and Defective Samples 

A two-dimensional MD space is constructed using the reference MD space based on both healthy 

and defective samples. Similar to Section 4.1.3, the constructed MD space is divided into four regions 

in terms of reliability by two linear thresholds. 

The two overlapping areas covered by the two thresholds are A1 and A2 as healthy area and 

defective area, respectively. Therefore, the identified points located within the areas A1 and A2 are 

considered highly reliable. As can be seen from the classification results presented in Figure 13, 

almost all the samples in the areas A1 and A2 are correctly identified. Thus, enhancing the 

classification accuracy in the less reliable areas of A3 and A4 by considering the use of a nonlinear 

boundary is of great significance. 

Figure 12. (a) Classification on the training dataset; (b) classification on the testing dataset.

As it can be observed from Figure 12, the SMD values of the defective samples are spatially
dispersed in the entire SMD space [0,1]. Alternatively, the SMD values of healthy samples are highly
concentrated in the range of 0.6–0.7. It can be interpreted by the fact that the resonance frequencies
in defective samples vary greatly, thus yielding a large variation in MD as well. This also offers a
good understanding of the obtained concentrated SMD values for healthy samples due to the small



Appl. Sci. 2020, 10, 8620 13 of 18

variations in resonance frequencies among healthy samples. Although the presented classification
results are not completely satisfactory compared to the results in Section 4.2.1, it further provides an
additional opportunity to explore the in-depth study by constructing a two-dimensional SMD space in
which both reference MD spaces can be examined.

4.2.3. Reference MD Space Based on Healthy and Defective Samples

A two-dimensional MD space is constructed using the reference MD space based on both healthy
and defective samples. Similar to Section 4.1.3, the constructed MD space is divided into four regions
in terms of reliability by two linear thresholds.

The two overlapping areas covered by the two thresholds are A1 and A2 as healthy area and
defective area, respectively. Therefore, the identified points located within the areas A1 and A2 are
considered highly reliable. As can be seen from the classification results presented in Figure 13,
almost all the samples in the areas A1 and A2 are correctly identified. Thus, enhancing the classification
accuracy in the less reliable areas of A3 and A4 by considering the use of a nonlinear boundary is of
great significance.
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Figure 13. (a) Classification on the training dataset; (b) classification on the testing dataset.

Combining the obtained two-dimensional SMDs (SMD-R1 and SMD-R2) in an RF-based classifier
further increases the classification accuracies to 99.63% and 99.16% for the training and testing datasets,
respectively. The classification results of training and testing samples are presented in Figure 14. It is
worth noting that the entire two-dimensional MD space is clearly divided into two areas based on a
nonlinear boundary—Green (healthy) and Blue (defective)—instead of the four areas in Figure 13.

To obtain an average classification result for the three different scenarios, 20 independent runs for
each were performed. The mean values and standard deviations for training accuracy, testing accuracy,
and the number of screened features are summarized in Table 4 below. Interestingly, only an average
value of two features is filtered for SMD-R2, implying the significant impact induced by the change of
reference MD space. A slight decline of accuracy can be found using IMCSBPSO

PSO (SMD-R1+SMD-R2)
compared to IMCSBPSO

PSO (SMD-R1); this is due to the weak identifiability of the two areas of A3 and A4.
Thus, the introduction of a two-dimensional nonlinear boundary enables us to maximize classification
performance. A mean value of 99.02% ± 0.20 on the testing samples was obtained using IMCSBPSO

RF
(SMD-R1+SMD-R2).
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4.3. Additional Investigations on the Synthetic Dataset

Benefiting from the substantial amount of synthetic dogbone cylinders, it was possible to further
explore the robustness and ability of the proposed IMCS algorithm to handle an imbalanced dataset.

4.3.1. The Robustness of the IMCS Algorithm

To evaluate the robustness of the proposed IMCS algorithm, classification accuracy is obtained
through a dynamic feature selection scheme. The basic idea is to run the IMCS process for several
rounds and exclude the features that were selected in the previous round from the next round in order
to observe the impact of different feature subsets on classification performance.

In this subsection, the training and testing datasets used in Section 4.2 are adopted. A total of five
rounds was run. In each round, IMCS classifiers based on the reference MD space constructed from
healthy samples (SMD-R1), defective samples (SMD-R2), and both SMD-R1 and SMD-R2 are considered.

The classification accuracies of the testing dataset, based on the reference MD space constructed
from healthy samples, defective samples, and both healthy and defective samples, are reported in
Figure 15 for the five consecutive rounds. Considering that the most promising features are selected
first, it is clear that subsequent rounds will yield lower classification accuracies. This can be clearly
seen in Figure 15.Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 18 
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Furthermore, the result indicates that the IMCSBPSO
RF classifier with the reference MD space of

both healthy and defected parts (SMD-R1 + SMD-R2) consistently exhibits the highest accuracies over
the five rounds, followed by the IMCSBPSO

PSO classifier with the reference MD space of healthy parts
(SMD-R1) and, finally, the IMCSBPSO

PSO classifier with the reference MD space of defected parts (SMD-R2),
with the lowest accuracies in all rounds.

4.3.2. Imbalanced Dataset

An imbalanced dataset usually refers to classification problems where the number of observations
for each category is not equal [33,34]. To investigate the impact of an imbalanced dataset on classification
performance, four additional scenarios are conducted in this subsection. The training pool is randomly
selected as 30% of the original dataset.

Scenario 1: Training pool consists of healthy/defective samples with a ratio of 1:10
Scenario 2: Training pool consists of healthy/defective samples with a ratio of 3:7
Scenario 3: Training pool consists of healthy/defective samples with a ratio of 5:5
Scenario 4: Training pool consists of healthy/defective samples with a ratio of 7:3
Scenario 5: Training pool consists of healthy/defective samples with a ratio of 10:1
Similarly, such random sampling is performed over 20 independent runs for each scenario in order

to evaluate the average classification ability of the method. The detailed classification results under
the five scenarios are listed in Figure 16, indicating their overall accuracies (mean ± std). Additionally,
the numbers on the bars stand for the overall number of selected features using the form of mean ± std.
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Of the five scenarios, the IMCSBPSO
RF classifier (SMD-R1 + SMD-R2) demonstrates the optimal

classification performance for both training and testing datasets. Using a balanced classification ratio
of 5:5 in Scenario 3, marked by a black-dashed rectangular, the highest testing accuracy was obtained
based on the IMCSBPSO

RF classifier, followed by slightly imbalanced cases (Scenario 4 and Scenario 2).
Scenario 1, with a severe imbalanced ratio of 1:10, revealed the worst results, with an overall testing
accuracy of 96.09%.

Of additional interest is that training accuracy based on the IMCSBPSO
PSO classifier (SMD-R2) was

gradually improved with an increase in the proportion of healthy samples. In fact, the direct cause of
this phenomenon is the decrease of variation diversity of MD in MD space due to the reduction in the
proportion of defective samples. However, even in this case, it does not necessarily contribute to the
accuracy of the testing dataset.
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The discussion of the impact of an imbalanced classification ratio indicates that the increase of an
imbalanced ratio in training data sets indeed reduces testing accuracy. In particular, the classification
could be worse if the imbalance weight is heavily skewed towards the defective samples.

However, the above discussion on the classification performance of an imbalanced dataset is
based on the condition that sufficient samples are available. For a sparse dataset, such as the turbine
blades in Section 4.1, the imbalance is still challenging.

5. Conclusions

This paper provides a different perspective on the classification performance of the recently
proposed integrated Mahalanobis classification system (IMCS) by considering different reference
MD spaces. The reference MD spaces were constructed by considering (i) only normal observations
(corresponds to the classical approach), (ii) only abnormal observations, and (iii) a combination of both
normal and abnormal observations.

A sparse and imbalanced experimental case study of metal turbine blades with complex shapes
was conducted, showing marginal improvements in employing an alternative reference MD space.

An additional rich and balanced synthetic dataset of dogbone cylinders was also studied in order
to further exploit the ability to deal with imbalanced dataset cases and to investigate the robustness of
the IMCS approach.

The results demonstrate that the achieved classification accuracy is far from satisfactory if the
reference MD space is based on only defective samples. An appealing classification result was obtained
using IMCS based on a reference MD space constructed from both healthy and defected samples.
A further investigation on bringing in the nonlinear classification boundary from random forest
indicates an improvement to classification performance. For imbalanced datasets, the classification
accuracy of the testing dataset decreases as the imbalance of the training dataset increases. To note,
IMCS with a reference MD space based on both healthy and damaged samples eventually yields better
classification performance for imbalanced datasets.
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