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Featured Application: Chemical analysis of soil samples using handheld spectroscopic instruments
was performed to investigate if classification accuracy is enhanced through multianalyzer
data fusion.

Abstract: The ability to rapidly conduct in-situ chemical analysis of multiple samples of soil and
other geological materials in the field offers many advantages over a traditional approach that
involves collecting samples for subsequent examination in the laboratory. This study explores
the application of complementary spectroscopic analyzers and a data fusion methodology for the
classification/discrimination of >100 soil samples from sites across the United States. Commercially
available, handheld analyzers for X-ray fluorescence spectroscopy (XRFS), Raman spectroscopy (RS),
and laser-induced breakdown spectroscopy (LIBS) were used to collect data both in the laboratory
and in the field. Following a common data pre-processing protocol, principal component analysis
(PCA) and partial least squares discriminant analysis (PLSDA) were used to build classification
models. The features generated by PLSDA were then used in a hierarchical classification approach
to assess the relative advantage of information fusion, which increased classification accuracy over
any of the individual sensors from 80-91% to 94% and 64-93% to 98% for the two largest sample
suites. The results show that additional testing with data sets for which classification with individual
analyzers is modest might provide greater insight into the limits of data fusion for improving
classification accuracy.

Keywords: laser-induced breakdown spectroscopy; LIBS; Raman spectroscopy; RS; X-ray fluorescence
spectroscopy; XRFS; chemometrics; machine learning; multianalyzer data fusion

1. Introduction

Until recently, chemical analysis for material characterization, particularly in the geosciences,
has been possible only in the laboratory. For materials collected in the field, analysis tends to be
limited in scope to a small number of samples that are subsequently analyzed in a laboratory setting
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using specialized instrumentation. This process is labor intensive, time-consuming, and often very
costly because individual samples must be collected and packaged on-site in the field, transported
to the laboratory, and then prepared in specific ways for analysis on what can be very expensive
instrumentation. However, with the recent advent of portable single analyzer instrumentation for
chemical analysis in the field, there is a technological opportunity to create a novel and unique
characterization and forensic capability for the rapid, in-situ analysis of both soil and a wide range
of other geological materials undisturbed in the field under ambient environmental conditions,
particularly where the data from multiple analyzers can be combined for an enhanced interpretation
through chemometric analysis.

Laser-induced breakdown spectroscopy (LIBS) utilizes a pulsed laser to ablate an area of
approximately 30 to several hundred microns in diameter on the surface of a material and determine
its chemical composition through spectral analysis of light emitted from the high-temperature plasma
generated by the ablation/evaporation process. It is particularly sensitive to light elements and is also
capable of continuous depth profiling into a sample and microscale multielement mapping. Thus, it can
also be used to ‘clean’ the surface of a sample so that underlying layers can be analyzed once any
surface coating, crust, or corrosion is removed. Raman spectroscopy (RS) observes molecular character
through monitoring the inelastic scattering of monochromatic laser light from the surface of a material
to measure the energy of molecular vibrational and rotational modes and thereby acquire a structural
fingerprint by which different substances can be identified. X-ray fluorescence spectroscopy (XRFS) is
a technique for determination of bulk chemical composition that uses X-ray-induced fluorescence to
compositionally interrogate an area of several millimeters in diameter on a material’s surface and is
particularly efficacious for transition metals and other heavy elements. Handheld models of these
three types of analyzers are commercially available from multiple manufacturers.

2. Background

Information fusion is the process of combining data gathered from two or more sensors to produce
a more comprehensive dataset through mathematical modeling. The integration and concurrent use
of multiple sensors has long been utilized in remote sensing and mechatronics for the perception of
particular aspects of different environments and in decision making about the environment being
sensed. It is well understood that any task using parameter estimates from multiple sources of data
can benefit from the use of information fusion. Since different instrument types have their individual
capabilities and limitations, the synergistic combination of multiple analyzers and aggregation of
the unique information from the individual components of a multianalyzer system is expected to
improve overall system performance [1]. Amongst the advantages and benefits of such data fusion
are extended parameter coverage yielding a more complete view of the system being interrogated,
provision of information about the independent features of the system, increased characterization of
information content, improved resolution, reduced uncertainty, increased robustness and reliability
of the analysis, increased hypothesis discrimination, and increased confidence in the result [2].
Traditionally, multisensor data fusion is perceived in a three-level hierarchy, namely data/information
fusion, feature fusion, and decision fusion [3]. The success of such information fusion is determined by
how well the new knowledge produced by fusion processes represents reality, which consequently
depends on the quality of the data, the adequacy of the uncertainty model(s) used, and the accuracy or
applicability of prior knowledge.

It has been observed across a variety of application domains as diverse as agriculture and food
safety [4–6], archaeology and cultural heritage [7–9], the geosciences [10–14], metallurgy [15,16], remote
sensing [17–20], robotics [21,22], and defense, security, and forensics [23–25] that, by synthesizing raw
data from multiple sources (data fusion), processing and integrating this data (information fusion),
and then analyzing the integrated data using the tools of multivariate statistics, statistical estimation
and inference, information theory, artificial intelligence, and machine learning, it is possible to generate
more meaningful results than can be obtained with data from any single source and that such fused
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information can be of enhanced value due to the use of complementary information. For example,
fusion of measurements from different kinds of analytical instruments can reduce limits of detection
and decrease uncertainty, whereas the fusion of information from different types of sensors with
different physical characteristics can enhance insight about the environment being observed [26–30].

XRFS and RS are well-established laboratory techniques for chemical analysis [31–35] and have
been applied to a very wide range of natural and man-made materials for more than half a century.
LIBS is a less well known analytical methodology, but there is a robust technical literature from the last
two decades that documents and validates that LIBS can analyze the elemental content of gases, liquids,
and solids [36–42]. Recent work has demonstrated that LIBS can be used effectively for geomaterial
classification and discrimination [43–47] and that LIBS analysis of soils is an effective methodology for
characterizing elemental chemistry [48–50]. Like XRFS and RS before it, LIBS technology has recently
progressed rapidly from laboratory systems to commercial handheld units for field use [51].

Since all analytical methods have certain strengths and limitations, the intentional combination
of complementary techniques can provide for a more robust and informative analysis. XRFS and
LIBS are both analysis methods with unique features and different sensitivities to a wide range of
elements. The X-ray method is well suited for analysis of many elements and especially transition
metals, but its sensitivity decreases substantially for lighter elements such as Si, Al, and Mg. By contrast,
the laser-based approach can detect all elements (H through U) and is especially sensitive to light
elements such as Li, Be, B, and Na, thus making it an ideal complement to XRFS. However, the limit of
detection for commonly encountered elements such as S, Cl and Br and some metals is better for XRFS
than for LIBS. In addition, compared to XRFS, LIBS analysis is faster (seconds versus minutes) and the
analytical spot size is smaller thus providing better spatial resolution. While there is overlap of the
elements each method can detect, the strengths of one technique offset the weaknesses of the other. RS
analysis identifies vibrational bands associated with molecules and thereby gives a molecular-structural
fingerprint for samples that is wholly different from the compositional profiles that LIBS and XRFS
provide. While RS analysis has the disadvantage of possible fluorescence interference, and the fact that
certain materials give a very weak Raman signal (poor scatterers), the advantage of obtaining both
elemental and molecular information about a sample can be highly useful. RS also has the benefit
that it can be used to distinguish materials with similar or even identical elemental compositions
(e.g., crystallographic polymorphs). Thus, the fusion of data from a combination of these spectroscopic
tools expands the discriminating capability of the chemometric analysis.

Several previous studies have demonstrated the benefit of two-analyzer fusion. For example,
Ramos et al. [52] evaluated data fusion approaches for the combination of micro-Raman and micro-X-ray
fluorescence data for the characterization of ochre pigments (hematite, caput mortum violet, yellow
ochre, red ochre and burnt sienna) in cultural heritage objects. The classification of ochre pigments
was improved using low-level fusion, with PCA and PLSDA models developed from the fused data
observed to be more robust for prediction of new samples with respect to those results obtained by
single instrument classification. Moros and Laserna [23] utilized the capability of LIBS for elemental
analysis and that of RS for molecular analysis to combine spectral outputs for the analysis and
discrimination of explosive compounds. After simple mathematical treatment, image analysis of
2-D patterns was observed to be effective in discrimination of explosive materials from common
confusants. Deneckere et al. [7] used XRFS and RS for the analysis of art objects and described a data
fusion procedure that was applied for the identification of the pigments used in porcelain cards from a
database containing the fused spectra of 24 reference pigments. Classification by multivariate statistical
analysis using the fused data was superior to that based on either the XRFS or RS data separately.

In 2011, Donais et al. [8] used spectral data from handheld XRFS and RS instruments to analyze
pigments on over 80 fresco samples on-site at the Coriglia, Castel Viscardo archaeological site near
Orvieto, Italy. Identified pigments included vermilion, red ochre, yellow ochre, terre verte, Egyptian
blue, and hematite. Fusion of complete XRFS and RS spectra was observed to provide better
sample discrimination than the use of individual spectral peaks. In a forensic study of printer inks,
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Hoehse et al. [24] fused RS and LIBS spectral data for ten blue and black ink samples on white paper
into a single data matrix, with the number of different groups of inks then determined through
multivariate analysis. In all cases, the results obtained from the integration of the RS and LIBS spectra
were found to outperform the classification performance obtained with the individual RS or LIBS data
sets. Subsequently, in 2017, Khajehzade et al. [10] used reflectance spectroscopy, XRFS, and LIBS to
obtain quantitative mineralogical information on slurries from the tailings stream of a flotation plant of
an iron ore concentrator needed for processes that control optimization during the ore beneficiation
operation. It was observed that the on-stream mineralogical assaying of the slurry flows could be
improved significantly by data fusion from the three analyzers. Data fusion performed using partial
least squares regression enhanced the quantitative identification of hematite, magnetite, quartz and
ferrorichterite to provide a valid estimate of the slurry mineral content.

More recently in 2019, and particularly apropos to this study, Xu et al. [11] integrated the output
of four instruments commonly used in soil studies - visible near-infrared (VIS-NIR) spectroscopy,
mid-wavelength infrared (MWIR) spectroscopy, XRFS, and LIBS to achieve rapid measurement of soil
properties. Rather than use full spectra, a genetic algorithm and partial least-squares regression (PLSR)
analysis were used to select characteristic spectral bands. Models were then calibrated using PLSR for
single analyzer data, PLSR for fused data combined from the four instruments, and Bayesian model
averaging based on prediction results of fused data. For the single analyzer data, predictive performance
decreased as follows: MWIR>VIS-NIR>LIBS>XRFS. The multianalyzer data fusion approach slightly
improved or even reduced prediction accuracy and caused a large amount of redundancy, whereas the
Bayesian model averaging achieved the best prediction performance of the six soil properties. A year
later, Desta et al. [12] employed a data fusion approach for integrating MWIR and long-wavelength
infrared (LWIR) spectroscopy to facilitate the more accurate prediction elemental concentrations
in a polymetallic sulfide deposit. Prediction models linking the mineralogical concentrations with
the reflectance spectra were developed using PLSR, principal component regression (PCR) and
support vector regression (SVR) methodologies, with results indicating that SiO2, Al2O3, and Fe2O3

concentrations in minerals could be successfully predicted using both MWIR and LWIR spectra
individually, but the prediction performance greatly improved with data fusion. In that same year,
Sánchez-Esteva [53] analyzed 147 Danish agricultural soils by LIBS and VIS-NIR spectroscopy for soil
phosphorus determination. PLSR models were combined with interval partial least squares (iPLS) and
competitive adaptive reweighted sampling (CARS) variable selection methods to identify the relevant
wavelengths for the study. This merging of LIBS and VIS-NIR spectroscopy with variable selection
showed potential for improving soil phosphorus determination. Also in 2020, Gibbons et al. [13]
developed a data-driven approach based on LIBS and RS for the reliable identification of clay minerals
in mixed-mineralogy specimens. A low-level data fusion approach was used to concatenate spectral
datasets from the two spectroscopic techniques into a single data matrix that served as a unique
identifier of specimen composition. Multivariate statistical analysis was used to identify the different
clay mineralogical groups, with fused data classifying the samples based on their dominant clay
mineralogy better than either the Raman and LIBS data separately.

It is our hypothesis that there is much to be gained for geological applications through a
multianalyzer system comprised of three technologies—XRFS, RS, and LIBS. Each of the three techniques
for chemical analysis has certain common performance attributes, such as minimally-destructive
analysis and rapid data collection and processing. However, each modality has its own unique
functional competency, such as differential sensitivity to a wide range of elements, point versus
area analysis, surface analysis versus depth profiling, and analysis of elemental versus molecular
compositions, so that the integration of the three analyzers into a single multisensor system, with the
fused results of their combined spectral data processed through chemometrics, has the potential to result
in a new and unprecedented analytical performance capability for real-time chemical analysis in the
field. Such a multianalyzer system could be deployed in the field for rapid inspection, characterization,
and monitoring under ambient environmental conditions (including adverse weather conditions).



Appl. Sci. 2020, 10, 8723 5 of 19

Used by an individual or deployed on an unmanned robotic ground or air vehicle, it could be used in
both readily accessible and denied areas.

3. Materials and Methods

3.1. Description of Field Sites and Samples

A total of 129 soils from four sources across the United States were utilized for this
project—50 samples from non-irrigated land in central New Mexico, 21 soil samples from two
sites in west-central New Hampshire, and 58 soils from small arms ranges on military installations
in Massachusetts, Virginia, Georgia, Idaho, Washington, and Alaska. Each sample was sieved and
homogenized, with fine-grained aliquots hydraulically pressed into pellets for analysis.

In the U.S., soils are classified by the Natural Resources Conservation Service (NRCS) on the
basis of physical and chemical properties in their different horizons (e.g., composition, color, texture,
structure, etc.) from the surface to a depth of two meters. The NRCS soil taxonomy establishes
hierarchies of classes to permit the relationship among soils and between soils, and the factors
responsible for their character, to be understood. The soil series is the lowest category within soil
taxonomy. All soils within a single series have uniform differentiating characteristics and arrangement
of horizons. This does not mean that all soils within a series are identical; it does mean that they have
a similar sequence of horizons, but the horizons may be of different thickness, color, and structure,
within prescribed limits. All of the soils within a series will have developed in the same kind of parent
material with comparable drainage characteristics and will be of similar age. The effects of climate
and biological activity will have been very similar. Consequently, the soils within a series exhibit like
properties and respond in like fashion to usage or manipulation.

Compositionally distinct soil series were sampled from six locations across central-north
New Mexico that formed the primary suite of samples for this work. The six soils sampled were
(i) the loamy fine sand of the Bluepoint Soil Series at the Rio Salada, (ii) the very stony sandy loam of
the Laborcita-Pilabo-Lemitar Soil Series Complex in Upper Socorro Canyon, (iii) the very stony sandy
loam of the Laborcita-Pilabo-Lemitar Soil Series complex in Lower Socorro Canyon, (iv) the gravelly
sandy loam of the Millett-Sedillo Soil Series complex at Sedillo Hill, (v) the gypsiferous sand of the
Lark-Transformer Soil Series association at White Sands, and (vi) the strongly saline silty clay loam of
the playa soil at Willard. These soils were sampled from the upper 10 cm of the surface soil profile and
analyzed in January 2019.

An additional 58 soil samples came from six US military installations—Ft. Wainwright, AK;
Ft Lewis, WA; Idaho National Guard Camp Kinama; Ft. Benning, GA; Ft. Eustis, VA; and Massachusetts
Military Reservation/Joint Base Cape Cod. These soils were collected from the top 2.5 cm of soil
at individual firing ranges and, therefore, are contaminated to various extents with metal elements
present in munitions such as Cu, Zn, Pb, W, and Sb. A range of soils, varying from uncontaminated to
strongly contaminated, were analyzed for each of the six military installations. These six soil groups
were analyzed in March-April 2019.

Finally, six samples of soil were collected from the upper 5 cm of soil at two locations in central
New Hampshire, three samples from the site of the USACE-ERDC Cold Regions Research & Engineering
Laboratory in Lebanon, NH and three samples from the Bean Hill locality in Belmont, NH. Two separate
pellets were prepared from each of these soil collections to create a data set that consisted of six ‘samples’
per class. Additionally, three soil pits were excavated at each of the Bean Hill sample sites, with the
different soil horizons in each pit described and sampled. The Bean Hill areas have been mapped
as belonging to three NRCS soil series—Canterbury fine sandy loam, Moosilauke fine sandy loam,
and Pillsbury fine sandy loam.
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3.2. XRFS, RS, and LIBS Analysis

XRFS analyses were undertaken using a SciAps X-250 handheld analyzer. The X-250 utilizes a Rh
X-ray tube with 4 mm spot size and 20 mm silicon drift detector (SSD) with 135 eV resolution that has
a FWHM of 5.95 keV for the Mn K-alpha line. An energy-to-channel calibration was performed at the
beginning of each day of operation and approximately every 30 minutes thereafter. Three separate
sequential measurements of 40 seconds were made with preset beam parameters (50 keV, 60 mA,
no filter; 40 keV, 60 mA, no filter; and 15 keV, 80 mA, 100 mm Al filter) at each of three locations on
each soil pellet using the SciAps internal ‘soil mode’ calibration based on the analysis of 40 certified
reference materials (CRMs). This provided quantitative data for 17 elements (P, S, K, Ca, Ti, Fe, V, Cr,
Mn, Ni, Zn, Rb, Sr, Zr, Sn, Sb, Ba), with some other elements of interest (As, Co, Mo, Cd, Tl, Pb, U, Th)
consistently below the limit of detection in the soil suites analyzed.

RS analyses were undertaken with a SciAps Chem-200 Raman analyzer. This instrument utilizes
a 785 nm laser that produces 500 mW (maximum power). Spectra were collected over a wavenumber
range of 200–1800 cm−1 using fifteen 1.2-second accumulations at three locations on each soil pellet
after calibration using a benzonitrile standard. Raw, unprocessed (i.e., non-baseline corrected) spectra
were used for the data analysis.

LIBS analyses were undertaken using a SciAps Z-300 LIBS instrument which contains a 1064 nm
Nd-YAG laser that produces a 50–100 µm diameter beam on the sample surface. The laser was operated
at 5–6 mJ, a 1 nsec pulse duration, and a 10 Hz firing rate. The three spectrometer-CCD (charge-coupled
device) pairs, covering the spectral range of spectral range of 190 to 950 nm (FWHM = 0.20 nm at
<365 nm, 0.25 nm from 365 to 620 nm, and 0.40 nm at >620 nm) had a gate width of 1 millisecond a gate
delay of ~650 ns. Analyses were collected under Ar gas flow using three data collection laser pulses
after two cleaning pulses in each location of three 4 × 2 grids with 0.5 mm spot spacing on each soil
pellet to generate 72 spectra with 23,431 data points per spectrum. The instrument was wavelength
calibrated at the beginning of operation and periodically thereafter at approximately 30-min intervals.

3.3. Data Processing

The XRFS, RS, and LIBS data was pre-processed as described below. Subsequent chemometric
data processing and analysis was undertaken using MATLAB®version 2019a. Partial least squares
discriminant analysis (PLSDA) was used for both the instrument-specific and fusion classifiers. PLSDA
is an extension of the partial least squares (PLS) regression technique commonly used in chemometrics
to model the multivariate structural relationship between two matrices [54,55]. In this study, PLSDA
models were developed for the spectral data using open source software—the Pattern Recognition
Toolbox for MATLAB (https://github.com/covartech/PRT). The specific implementation of PLSDA was
based on the SIMPLS algorithm [56].

LIBS: Two preprocessing steps were applied to the LIBS spectra followed by normalization.
First, sections of the LIBS spectra were removed to ensure that the presence of argon would not be used
for classification. Three spectral windows were therefore used for subsequent data processing: 190–675,
765–771, and 776–779 nm. The presence of argon in the LIBS spectra is an effect of the collection
system and its removal ensures that the presence of argon will not erroneously bias classification
results. This process reduced the LIBS spectra from 23,431 data points to 14,823 data points. Second,
the LIBS spectra were further preprocessed by applying a baseline correction algorithm that consisted
of a two-stage process. A Hampel filter was first applied to remove the response peaks from the
spectra [57]. For the filter, the window size was 2% of the spectrum length (296 data points). For each
sample, if the response magnitude was more than three standard deviations from the window’s
median, it was replaced by the median. Once the response peaks were removed from the spectrum,
the baseline of the spectrum was estimated by smoothing the residual with a median filter that was
0.5% of the spectrum length (74 data points). This smoothed baseline estimate was then subtracted
from the original spectrum. Once the argon portions of the spectrum were removed and the baseline

https://github.com/covartech/PRT
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corrected, the LIBS spectrum was scaled by subtracting the mean of the spectrum and dividing by its
standard deviation.

XRFS: While three different beam energies were used to collect XRFS spectra, preliminary testing
indicated no increase in classification performance with the addition of the spectra from the 40 keV and
15 keV spectra; therefore, only the 50 keV spectra were used for classification. The XRFS spectra were
truncated to be the same length for classification purposes and normalized using the same procedure
described above for the LIBS spectra.

RS: RS spectra were normalized as described for LIBS and XRFS spectra.

3.4. Classification for Multianalyzer Data Fusion

Frequently, the terms data fusion and information fusion are employed as synonyms, but data
fusion should apply to the raw data acquired directly from sensors, whilst the term information fusion
should denote data that have been processed in some way. As noted by Ramos et al. [52], who used
data acquired from an integrated micro-RS/XRFS system for the classification and discrimination of
ochre pigments, fusion can be undertaken directly on raw spectra after background removal or on the
features extracted from the pre-processed spectra. We have utilized the latter approach in this study.

In order to combine data from the multiple analyzers, a hierarchical classification approach was
used (Figure 1). For each sample, a set of Ns × Ds spectra were collected for each instrument, where Ns

refers to the number of spectra for analyzer s and Ds refers to the dimensions of a spectrum collected
by s. Multiple locations on each soil sample pellet were interrogated as described in Section 3.2 to
adequately model the within-sample variability, given the potential heterogeneity of the soil samples.
This resulted in a different number of spectra collected per instrument. The dimensions of the spectra
are also specific to each analyzer, with Ds = 14,823 data points, 8194 data points, and 2152 data points
for the LIBS, XRFS, and Raman analyzers respectively.
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Figure 1. Flow chart of the process used for analyzer data fusion. The three instruments collected
spectra (Figure 2) from multiple locations on each soil pellet. These spectra are first classified using
analyzer-specific classifiers, that output a set of confidence values that each spectrum belongs to each
class. Then, the confidences from each analyzer-specific classifier are averaged and concatenated to
generate a single vector for the sample. Finally, this vector is used as the input to the final data fusion
classifier and a class label for the sample is generated.

The analyzer-specific classifiers were applied to the spectra generating Ns ×C classifier confidences
that the sample’s spectra belong to each of C classes, where the number of classes range from 2 to 6
depending on the classification schema (see Section 4, Table 1). In order to generate an input vector for
the fusion classifier, the classifier confidences for each analyzer were averaged to produce a single 1 × C
vector. These vectors were then concatenated to create a single vector that is 1 × 3C for the sample as an
input to the final classifier. This feature input vector was classified by the fusion classifier and a class
label assigned to the sample based on the class that generated the highest fusion-classifier confidence.
Classification accuracy was estimated using leave-one-sample-out cross-validation. Each sample was
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in turn held out as a test sample and the remaining samples were used to train both the analyzer-specific
and fusion classifiers.

1 
 

 

Figure 2. Example of the XRFS, RS, and LIBS spectra used in this study for data fusion, in this case for
the White Sands, NM soil. The XRFS spectrum (A) shows principally the presence of Ca, Sr, S, and Fe;
the RS spectrum (B) shows the presence of documented bands for the vibrational modes of gypsum,
CaSO4·2H2O [58]; and the LIBS broadband spectrum (C) showing mainly the presence of Ca and Sr,
together with the minor levels of Si and Na. Note the presence of broad bands in the LIBS spectrum
corresponding to the molecular bands of CaO, a species that is formed when O from the sample and
the ambient atmosphere combines with the Ca in the soil.

Table 1. Definition of the soil classification schemas and number of samples per class.

Soil Suite Class Samples/Class

New Mexico

Rio Salada 14
Sedillo Hill 8

Lower Socorro Canyon 4
Upper Socorro Canyon 6

White Sands 6
Willard 6

Military Installations

MMR Joint Base Cape Cod (MA) 11
Ft. Eustis (VA) 10

Ft. Benning (GA) 11
ING Camp Kinama (ID) 10

Ft. Lewis (WA) 10
Ft. Wainwright (AK) 9

New Hampshire Lebanon 6
Belmont 6

New Hampshire (Belmont)
Pit #1 6
Pit #2 6
Pit #3 7



Appl. Sci. 2020, 10, 8723 9 of 19

4. Results and Discussion

The classification schemas used for the three soil suites and the number of samples per class are
show in Table 1. The New Mexico soils and military installation soils were classified based on the
location from which the samples were collected. The New Hampshire soils were classified using two
different schemas: location discrimination to separate Belmont and Lebanon samples, and intra-location
discrimination to separate samples obtained from different layers of the three excavation pits at the
Belmont Bean Hill site.

Examples of typical XRFS, RS, and LIBS spectra obtained during this study are presented in
Figure 2. The extensive suites of XRFS, RS, and LIBS spectral data obtained for the natural soils and
soil standards analyzed during this project are archived in the “JRPA Multisensor Project” folder on the
Open Science Framework tool (https://osf.io/z3wgk/), together with other compositional information
for these samples.

4.1. Visualization

For visualization of the sample data in feature space, principal component analysis (PCA [59])
was applied to the fusion feature vectors (the 1 × 3C vectors used as input to the final classifier) to
reduce their dimensionality. Such visualization can provide insight into the cause of any classification
errors (e.g., the presence of outliers within a class, or the overlap of samples between classes). In order
to plot the feature representation of the samples, the feature vectors are reduced to three or fewer
dimensions even though the vectors are already of low dimensionality. The scores for the first three
principal components are plotted for the New Mexico soils in Figure 3A and for the military installation
soils in Figure 3B. While overlap between different classes in reduced-dimension feature space does
not necessarily indicate classification will be poor, clear separation between the classes is indicative
that classification accuracy will likely be high. For the New Mexico soils, the fused feature vectors
demonstrate clear separation for all the classes except the Upper and Lower Socorro Canyon sites,
suggesting that multiple analyzer data fusion will result in high classification accuracy. Similarly,
for the military installation soils, the samples in each class generally show visual separation from the
samples from other classes.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 20 
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For the New Hampshire soil suite, the samples separate clearly for the discrimination of the
Lebanon and Belmont sampling locations (Figure 4A); however, a few class outliers exist for the
intra-location samples at the Belmont site (Figure 4B). The outlier observed for Pit 2 is the deepest soil
layer from this pit. Similarly, the two outliers observed for Pit 1 are the deepest and shallowest layers
from this pit. Thus, as might be expected, soil depth has an impact on the measured spectra and may
confound discrimination between sites.
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4.2. PLSDA Loading Vectors

The multivariate data analysis approach utilized in this study outputs a set of loading vectors,
which are coefficients that indicate the relative importance that each variable has on the predictive
value of the PLSDA model. Before considering the results of individual PLSDA classification success
and the relative merit of multianalyzer data fusion for the sample suites examined in this study, it is
essential to understand the basis for discrimination. When loading values (in arbitrary units) are
plotted against the relevant variables (i.e., energy, wavelength or Raman shift) associated with each
analytical technique, the resulting plot has the appearance of a XRFS, LIBS or RS spectrum, except that
the magnitude of the peaks or bands specifies how much of an effect it has on explaining the observed
variation between the samples.

Examination of the loadings allows one to verify that the basis for classification is reasonable
based on the anticipated composition of the soil samples. For example, the XRFS spectra for the
New Mexico soils (Figure 5A) were classified primarily based on differences in the levels of Ca, Fe,
and Sr with smaller contributions from S, K, Ti, Rb, and Ba. These results are consistent with the
major and minor elements that can be detected by the XRFS analyzer and are present in the principal
soil-forming silicate species, such as the feldspars and aluminosilicate clay minerals as well as various
carbonates, oxides, and sulfates. Fe has the largest loading values for the XRFS classification task.
This result is in accordance with the broad range of values found for Fe using the internally calibrated
quantitation feature of the instrument. For example, the weight percentage of Fe in the New Mexico
samples ranges over two orders of magnitude—from ~0.030% for the White Sands samples to ~3.4%
for Sedillo Hill. The XRFS loadings profile for the military installation soil suite (Figure 5B) is similar
to that obtained for the New Mexico soils, with some notable exceptions. K, Ca, Fe, Rb, Sr, and Ba
are present in each XRFS loadings plot, though their relative significance differs, especially for Ca.
Importantly, Pb lines play a major role in discrimination, possibly due to the presence of varying levels
of Pb-contaminated soils at these firing range sites. Cu also has a notable impact on this PLSDA model.



Appl. Sci. 2020, 10, 8723 11 of 19

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 20 

and the relative merit of multianalyzer data fusion for the sample suites examined in this study, it is 

essential to understand the basis for discrimination. When loading values (in arbitrary units) are 

plotted against the relevant variables (i.e. energy, wavelength or Raman shift) associated with each 

analytical technique, the resulting plot has the appearance of a XRFS, LIBS or RS spectrum, except 

that the magnitude of the peaks or bands specifies how much of an effect it has on explaining the 

observed variation between the samples. 

Examination of the loadings allows one to verify that the basis for classification is reasonable 

based on the anticipated composition of the soil samples. For example, the XRFS spectra for the New 

Mexico soils (Figure 5A) were classified primarily based on differences in the levels of Ca, Fe, and Sr 

with smaller contributions from S, K, Ti, Rb, and Ba. These results are consistent with the major and 

minor elements that can be detected by the XRFS analyzer and are present in the principal soil-

forming silicate species, such as the feldspars and aluminosilicate clay minerals as well as various 

carbonates, oxides, and sulfates. Fe has the largest loading values for the XRFS classification task. 

This result is in accordance with the broad range of values found for Fe using the internally calibrated 

quantitation feature of the instrument. For example, the weight percentage of Fe in the New Mexico 

samples ranges over two orders of magnitude—from ~0.030% for the White Sands samples to ~3.4% 

for Sedillo Hill. The XRFS loadings profile for the military installation soil suite (Figure 5B) is similar 

to that obtained for the New Mexico soils, with some notable exceptions. K, Ca, Fe, Rb, Sr, and Ba are 

present in each XRFS loadings plot, though their relative significance differs, especially for Ca. 

Importantly, Pb lines play a major role in discrimination, possibly due to the presence of varying 

levels of Pb-contaminated soils at these firing range sites. Cu also has a notable impact on this PLSDA 

model. 

 

Figure 5. Plot of loading vectors versus energy (keV) for the XRFS analysis of the New Mexico (A) 

and military installation (B) soil samples. Only the K lines are identified for the most significant 

Figure 5. Plot of loading vectors versus energy (keV) for the XRFS analysis of the New Mexico (A) and
military installation (B) soil samples. Only the Kα lines are identified for the most significant loading
values, except in the case of the Pb Lα and Lβ lines. Peaks associated with the Rh X-ray source and the
broad Compton scattering peaks are also not labeled.

It is not surprising that the loadings associated with analysis of the soils from the six New Mexico
locations using LIBS, which is especially sensitive to light elements, includes Li, Na, Mg, Al, and Si,
in addition to K, Ca, Ti, Fe, and Sr (Figure 6A). Moisture content of the soils appears to also contribute
to the discrimination since H and O also have appreciable loading values. While many of the same
elements appear in the XRFS and LIBS plots for the New Mexico soils (Figures 5A and 6A), labels for S
and Rb are notably absent in the latter since the most intense emission lines for these elements appear
at wavelengths greater than the 779 nm cut-off used to exclude argon lines from the chemometric
analysis. The loadings plot for the PLSDA model built using the LIBS data for the military installation
soil suite has significant values for Pb emission lines, a small contribution for Cu, as well as a similar
profile of elements to that found with the New Mexico soils. Only loading values above an arbitrary
threshold were labeled in the LIBS plots to simplify the graphical representation, but lines associated
with several other elements common to soil such as Mn (403.1 nm) in the New Mexico soils and Cr
(425.5 nm) in the military installation soils also have significant loading values.

Though not displayed in a figure, the top loading vectors for the classification task associated with
LIBS analysis carried out on soil samples from the Belmont and Lebanon, New Hampshire locations
are, in order of importance, Ca, Al, Mg, Si, H, Fe, K, Ti, Na, C and O. The three Belmont location soil
pits were distinguished on the basis of same elements in a similar order of relevance: Ca, Al, Mg, Si, H,
Fe, Na, C, Ti, K and O. In these two cases, the contribution for the C line at 193.1 nm plays a more
important role than for the other two soil suites, suggesting that varying amounts of organic matter aid
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in the discrimination. Likewise, the relative amount of moisture present in these samples contributed
to the discrimination as evidenced by the comparably high loading value for the H line at 656.3 nm.
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(A) and military installation (B) soil samples. The loading values that have the largest impact on the
PLSDA model are labeled with the element associated with that emission line.

Soil is a complex mixture in different proportions of rocks fragments and minerals, organic
materials, and moisture and gases, the Raman bands associated with the mineral components
are expected to overlap. In addition, there is significant fluorescence associated with the organic
components of soil. Since no attempt was made to remove the fluorescence background or to deconvolve
overlapping bands, few peaks can be confidently identified, and the plots are not included in this
paper. The only distinct loading for the New Mexico soils is the symmetric stretching mode of sulfate
that appears at 1010 cm−1 [58]. This is the strongest of the sulfate stretching modes, as illustrated
in the representative Raman spectrum of a gypsiferous sample from White Sands, NM (Figure 2).
The military installation soils likewise do not have distinct peaks but rather show broad, unidentified,
overlapping bands. The loading values for the Raman data have a dynamic range that is one or two
orders of magnitude smaller than those found for the XRFS and LIBS classification tasks respectively.
This suggests that the differences between the Raman spectra of soils from different locations is not as
marked as for the data associated with the elemental analysis techniques.

4.3. Multianalyzer Data Fusion Results

The classification accuracy with each individual analyzer is compared to the accuracy achieved
with data fusion for the New Mexico and military installation soil suites in Figure 7A. For the
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New Mexico soils, the classification accuracy for the individual analyzers ranges from 79. to 91%
correct. Data fusion increases classification accuracy to 94% correct. For the military installation soils,
classification relying on the RS spectra performs poorly with a classification accuracy of 64% correct.
In contrast, classification using either the XRFS or LIBS spectra results in classification accuracy of
>93% correct. Data fusion increases the classification accuracy to >98% correct. For both data sets,
fusion increases classification accuracy over any of the individual instruments suggesting the benefit
for assessing soils with multiple analyzers.Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 20 
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Figure 7. Classification accuracy for the individual XRFS, RS, and LIBS analyzers and for
three-instrument data fusion for (A) the New Mexico (left) and military installation soils (right)
and (B) the New Hampshire Lebanon and Belmont and Lebanon locations (left) and the three Belmont
location soil pits (right) described in Table 1.

Classification accuracy for the two New Hampshire soil schemas is shown in Figure 7B. As is
expected from the principal component score plots (Figure 4), samples are perfectly discriminated in
terms of the Lebanon and Belmont locations. This is true for each of the individual analyzers, thus their
data fusion provides no additional benefit. For the within-location discrimination for the soil pits at
the Belmont site, no benefit is observed for data fusion; however, this may be a result of the extremely
poor classification accuracy with the RS spectra. This suggests that for multianalyzer data fusion to be
beneficial, some minimum level of accuracy need be achieved by each instrument.

The potential for multianalyzer data fusion to correct classification errors is demonstrated in
Figure 8 for the New Mexico soils. Four classification matrices are shown where the rows indicate
the true class of the samples and the columns indicate the class label selected by the classification
algorithm. The entries in the matrix, mi,j, are the percent of samples with the true label from row i and
the classifier-selected label from column j. Thus, the diagonal entries are the percent of samples that
were correctly classified, and off-diagonal entries demonstrate assignment errors made by the classifier.

As expected from the visualization in Figure 3, most classification errors for each analyzer occur
between the Lower and Upper Socorro Canyon classes, where the geological similarity is high between
soils at the two sites. None of the individual analyzers correctly classify the Socorro Canyon samples
with greater than 60% accuracy. With data fusion, the classification accuracy of the Socorro Canyon
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samples is increased to 70% correct and other off-diagonal errors committed by single analyzer
classification are eliminated.
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Figure 8. Classification matrices for each individual analyzer for the New Mexico soil suite (RS, top
left; XRFS, top right; LIBS, bottom left) and the data fusion (bottom right). Each row indicates the
samples’ true class label and each column indicates the classifier label given to the samples analyzed
from this class. Each entry is the percent (%) of samples with a row’s true label that were assigned
a column’s label by the classifier. The diagonal entries indicate correctly classified samples and the
off-diagonal entries indicate misclassifications. Location abbreviations are as follows: RS = Rio Salada,
SH = Sedillo Hill, LSC = Lower Socorro Canyon, USC = Upper Socorro Canyon, WS = White Sands,
and W = Willard.

For example, for the military installation soils, classification accuracy with data collected with
the Raman analyzer is poor. In order to estimate the relative importance of each analyzer to the
fusion classification, we considered the regression weights applied to each instrument’s data. In a
trained PLSDA classifier, the regression weights are the values applied to the feature vector to estimate
the confidence that a sample belongs to each class [60]. For each instrument, the magnitudes of the
regression weights for the analyzer-specific features were pooled across the classes, and the probability
density function (pdf) was estimated using kernel density estimation [59]. These pdfs provide a
visualization of the range of regression weights applied to the features from each analyzer, with greater
magnitudes indicating greater influence on the final classifier confidence.

Figure 9 shows the regression weight pdfs for each analyzer for the two data sets. For both data
sets, the XRFS features are given the most weight. Further, the range of the pdf suggests that all of the
XRFS features are used for classification (i.e., the pdf does not extend towards zero). In contrast, for the
New Mexico soils, the means of the RS and LIBS pdfs are near zero suggesting that many of the RS and
LIBS features are given little weight during classification. However, the long tails suggest that some
of the features are given greater weight, and these are the features likely used for correcting errors
committed by the XRFS classification.
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Figure 9. Probability density functions (pdfs) for the PLSDA regression weights applied to the features
for the RS, XRFS, and LIBS analyzers for the New Mexico soils (top) and military installation soils
(bottom). The absolute value was taken of the regression weights since the magnitude, positive or
negative, indicates degree of influence on the classification decision. The weights were also normalized
to place the pdfs for the two data sets on the same scale.

With the military installation soils, for which the RS has poor classification accuracy, the mean of
the pdf for features is close to zero, and the short tail suggests that few of these features have a large
impact on the classification decision. By contrast, the LIBS features are farther from zero in general,
suggesting greater influence on the classification decision. These results suggest the potential for
the data fusion algorithm to be robust in classification scenarios in which an analyzer is unable to
discriminate the classes well. During training, the PLSDA classifier determines the lack of reliable
information in the features provided by the poorly performing instrument and applies lower weights
to reduce the influence of this analyzer on the classifier decision. The hypothesis that data fusion may
be robust despite poor individual analyzer classification performance is supported by the fusion results
for the New Hampshire Belmont soil pits that, while showing no increase in classification accuracy
with data fusion, demonstrate little negative impact from including the RS spectra.

5. Summary and Future Prospects

In this study, we analyzed 129 soil samples gathered from multiple locations in the United States
using X-ray fluorescence spectroscopy, Raman spectroscopy, and laser-induced breakdown spectroscopy
to evaluate the benefits of a data fusion approach for the compositional discrimination of geological
materials. The data was obtained using commercially available, handheld chemical analyzers and
subsequently processed using principal component analysis and partial least squares discriminant
analysis. Classification models were built for individual instruments and the resulting confidences
were combined and used as the input features for the data fusion classifier. The classification accuracy
was evaluated utilizing leave-one-sample-out cross-validation. The basis for classification was assessed
and found to be consistent with the presence of elements and species typically encountered in soil.
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Our results, presented above for the two largest soil data sets, suggest the potential for combining
the data from multiple analyzers to improve soil classification/discrimination. However, for both data
sets, classification with the LIBS data alone provided >90% accuracy. The XRFS results were similarly
very good, whilst classification accuracy based solely on the use of Raman spectra was notably poorer
because RS observes molecular character by contrast to the elemental composition detected by LIBS
and XRFS. Application of the three-analyzer/data fusion approach to other geological materials, such as
a suite of minerals in which at least some samples display more distinctive Raman bands and less
fluorescence than soil, is necessary to better judge the utility of this methodology. In general, additional
testing with data sets for which classification with individual analyzers is poor might provide greater
insight into the value and limits of data fusion for improving classification accuracy through error
correction. While data fusion appears robust even though there was poor discrimination for one of
the individual analyzers, as observed for the Belmont soil pit discrimination results, an assessment
of data fusion for poor performance by one or more analyzers would inform the minimum level of
performance necessary with each instrument in order to benefit from fusion of their respective spectral
data streams.
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