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Abstract: This article presents the electrochemical results that can be achieved for pure LiNiO2

cathode material prepared with a simple, low-cost, and efficient process. The results clarify the roles
of the process parameters, precipitation temperature, and lithiation temperature in the performance
of high-quality LiNiO2 cathode material. Ni(OH)2 with a spherical morphology was precipitated at
different temperatures and mixed with LiOH to synthesize the LiNiO2 cathode material. The LiNiO2

calcination temperature was optimized to achieve a high initial discharge capacity of 231.7 mAh/g
(0.1 C/2.6 V) with a first cycle efficiency of 91.3% and retaining a capacity of 135 mAh/g after 400 cycles.
These are among the best results reported so far for pure LiNiO2 cathode material.
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1. Introduction

LiCoO2, introduced by J. B. Goodenough [1], was the first layered transition metal oxide
used in commercial Li-ion batteries and has since become the most common cathode material for
rechargeable batteries [2]. However, cobalt is very expensive and has been subsequently replaced
partially by other metals to decrease the manufacturing costs of the cathode materials [3]. A common
type of mixed metal oxide, NCM333, was first introduced by Ohzuku et al. [4] in 2001 and has
an equal mix of nickel, cobalt, and manganese. Cathode materials with a high nickel content
(LiNixCoyMe1-x-yO2. x≥ 0.8–1.0) have attracted much interest as lithium storage materials for rechargeable
lithium batteries. These layered oxide materials typically have high energy densities (>200 mAh/g) but
suffer from low thermal stability and capacity fading during cycling. Recently, the focus has been on
high nickel-containing, mixed-metal oxides, tailored especially for the demand of electric vehicles [3,5].

Pure LiNiO2 is an interesting candidate for cathode material in Li-ion batteries, because most of
its high theoretical capacity of 274 mAh/g is utilizable at a reasonable voltage range between 2.6 and
4.2 V and the material is low cost. For these reasons, it has been under study for over 15 years [6–8].
However, the electrochemical and structural stability results noted by earlier studies lacked promise,
driving interest towards LiCoO2 and mixed LiNixCoyMnzO2 materials [9]. Recent published articles
about the synthesis conditions of LiNiO2 include Bianchini et al.’s [10] structural study, which showed
a low lithiation temperature of 650–700 ◦C would annihilate most defects in the LiNiO2′s crystal
structure. Deng et al. [11] went further, showing that an electrolyte dopant can stabilize LiNiO2 cells.
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The present study focuses on the development of a continuous and simple process for producing
high quality LiNiO2. This work will provide direction for future work on preparing and testing
different dopants, coatings, and other subjects relating to the performance of LiNiO2 cathode material.

2. Materials and Methods

2.1. Precipitation of Ni(OH)2 Precursors

Spherical Ni(OH)2 precursors were synthetized by using hydroxide co-precipitation under an
inert atmosphere, according to the literature [12,13]. Precipitation was carried out in a continuous
flow reactor with a volume of three liters at temperatures of 40, 50, or 60 ◦C under vigorous mixing
at 1150 rpm. The reactor was preloaded with deionized water; then, aqueous solutions of 1 M
NiSO4·6H2O, 2.5 mol/L NaOH, and concentrated ammonia were fed separately to the reactor using
peristaltic pumps. The feeding rates of the reactants were optimized in order to achieve a residence
time of 4 h as well as the desired precipitation pH level and ammonia concentration in the reactor.

Particle growth during precipitation was analyzed by determining the particle size distribution
of the slurry sampled from the overflow tubing of the reactor. After a precipitation time of 12 h,
the precursor slurry was filtered under reduced pressure, and the precipitate was washed carefully
with a sufficient amount of deionized water. The synthetized Ni(OH)2 precursor was then dried in a
vacuum oven at 60 ◦C overnight.

2.2. Lithiation

The Ni(OH)2 precursor precipitated at 40 ◦C was mixed with LiOH using a Li:Ni molar ratio
of 1.04:1. The LiOH excess was used to compensate for the lithium lost during high-temperature
calcination and to ensure homogeneous lithiation. The mixtures were calcined with a 2.5 ◦C/min
heating ramp and a 5 h holding time at different temperatures (650, 670, or 690 ◦C) in an oxygen
atmosphere; samples were later named LN650, LN670, and LN690, according to their respective
calcination temperature. The material was subsequently milled and sieved to less than 40 µm in dry
room conditions. For the pouch cell tests, the residual lithium was washed from the surface of the
secondary particles with deionized water.

2.3. Cell Assembling and Electrochemical Characterization

Electrochemical performance testing was carried out using both half-cells, with metallic lithium
as the counter electrode, and full cells, with graphite as the anode material. All electrode foils and
battery cells were prepared in dry room conditions.

A cathode slurry was mixed using a mixer (Thinky ARE-250). The slurry composition was
4% polyvinylidene fluoride (Kureha #1100), 4% carbon (Timcal C45), and 92% active material,
with 1-methyl-2-pyrrolidinone (Alfa Aesar, anhydrous 99.5%) as a solvent. The slurry was spread on
aluminum foil with 100 µm applicators before being dried on a hot plate at 50 ◦C for a one hour and
finally being placed in a vacuum oven at 120 ◦C overnight.

The cathode foil was calendared three times before coin cell assembly. The active material loading
on the foil was about 12 mg/cm2. Two 2016-type coin cells were assembled from each sample foil
with metallic lithium as the counter electrode and 1M LiPF6 in 1:1:1 EC:DEC:DMC as the electrolyte.
Cells were cycled 62 times at 25 ◦C (see Table 1 for the C-rate used). Cells were at first charged at
a constant current until 4.3 V was reached, and after that with a constant voltage until the current
decreased to 0.015 C for the first two cycles. In subsequent charge cycles, the same method was used
but the current threshold was raised to 0.02 C. Discharge for the first two cycles was done at constant
current of 0.1 C until 2.6 V was reached and after that with constant voltage until the current decreased
to 0.015 C. A subsequent discharge was done to 3.0 V with a constant current. Cells were tested
at 25 ◦C. The theoretical capacity used to calculate the C-rate was 200 mAh/g. One electrode pair
pouch cell (50 mAh) was prepared with a graphite anode (Hitachi), an electrolyte of 1.15 M LIPF6 in
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EC:DMC:EMC (2:4:4), and 1% vinylene carbonate. After the formation cycles, the pouch cells were at
first charged at a constant current 0.5 C until 4.2 V was reached, and after that with a constant voltage
until the current decreased to 0.03 C and discharged to 2.5 V at 0.5 C. Every 200 cycles, a capacity check
cycle at 0.2 C was run and before the capacity check, the cells were discharged at 0.2 C.

Table 1. Coin cell testing program.

Cycle Number 1 2 3 4 5 6 7–30 31 32–59 61 62

Charge C-rate 0.1 +
0.015

0.1 +
0.015

0.1 +
0.02

0.1 +
0.02

0.1 +
0.02

0.1 +
0.02

0.2 +
0.02

0.2 +
0.02

0.2 +
0.02

0.2 +
0.02

0.1 +
0.02

Discharge C-rate 0.1 +
0.015

0.1 +
0.015 0.2 0.33 0.5 1 2 0.2 2 0.2 0.1

Voltage range 4.3 V–
2.6 V

4.3 V–
2.6 V

4.3 V–
3.0 V

4.3 V–
3.0 V

4.3 V–
3.0 V

4.3 V–
3.0 V

4.3 V–
3.0 V

4.3 V–
3.0 V

4.3 V–
3.0 V

4.3 V–
3.0 V

4.3 V–
3.0 V

2.4. Characterization of Samples

The tapped density of the powders was measured using an Erweka SVM222 tapped density device
and following the ISO EN 787/11 standard. Residual lithium was measured with an automatic titrator.
Particle size distribution (PSD) during precipitation was measured with a Malvern Mastersizer 3000.

X-ray diffraction (XRD) was measured with Rigaku SmartLab 9 kW X-ray diffractometers and
using Co as a source at 40 kV, 135 mA. Diffractograms were collected in the 2θ range (5–120◦ at
0.01◦ intervals) with a scan speed of 4.06 deg/min. Peaks were identified using the database of the
International Centre for Diffraction Data (PDF-4 + 2020). The crystallite sizes as well as anisotropy
and distribution were computed using the Rikagu PDXL2 analysis package. The Whole Powder
Pattern Fitting (WPPF) was used with the decomposition and least square Pawley method. The peak
shape was modelled using the FP (Fundamental Parameter) method with continuous scan and the
Cheary–Coelho Axial model, using experimental geometry and optics. The crystallite shape was
refined as an ellipsoidal shape, with a lognormal distribution used as the free parameter for iterative
refinement other than spherical shape, which is a better fit for the crystal structure of LiNiO2. The site
occupancy was analyzed using the Rietveld model by PDXL2.

The microstructures shown in the field-emission scanning electron microscopy (FESEM) images
was obtained using a Zeiss Sigma FESEM operating at 5 kV. Both XRD and FESEM were performed at
the Centre for Material Analysis of the University of Oulu.

3. Results and Discussion

3.1. Effect of Precipitation on Crystal Growth

The morphology of the precipitated Ni(OH)2 particles was followed and is presented in Figure 1.
According to the FESEM imaging, the higher precipitation temperature created more closely packed
primary particles and started cracking the secondary particles. The particle morphology shown
in Figure 1 is comparable to that reported by Yang et al. [12]. During the reaction-crystallization
precipitation process in an aqueous solution, the Ni(OH)2 particles are known to evolve from an
amorphous state to spherical particles with sizes ranging from nanometers to several microns.
According to the proposed mechanism, growth on crystallite templates in the radial direction is free
and fast, but the growth rate in other directions is restricted due to a short supply of monomers.
As only radially arranged crystallites grow quickly, the resulting macrospherical Ni(OH)2 particles
were characterized by large radially arranged platelet-like crystallites [14].
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Figure 1. SEM images of the Ni(OH)2 particles precipitated at 40, 50, or 60 °C. Magnitudes are 5000× 
and 75,000×. 

The PSD is correspondingly visible in Figure 2, with the measured PSD curves after precipitation 
times of 6, 8, 10, and 12 h as well as after a maturation period of 12 h. Table 2 shows the tap densities 
of the samples prepared at different precipitation temperatures, illustrating that higher temperatures 
created a higher tap density. The precursor precipitated at 40 °C was subsequently lithiated at 
different temperatures, indicating a good tap density for LiNiO2 after the lithiation process (Table 2). 

Figure 1. SEM images of the Ni(OH)2 particles precipitated at 40, 50, or 60 ◦C. Magnitudes are 5000×
and 75,000×.

The PSD is correspondingly visible in Figure 2, with the measured PSD curves after precipitation
times of 6, 8, 10, and 12 h as well as after a maturation period of 12 h. Table 2 shows the tap densities of
the samples prepared at different precipitation temperatures, illustrating that higher temperatures
created a higher tap density. The precursor precipitated at 40 ◦C was subsequently lithiated at different
temperatures, indicating a good tap density for LiNiO2 after the lithiation process (Table 2).
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different Li1±xNiO2 compositions that agree well with our values for stoichiometric LiNiO2. LN670 
presented the highest c/3a value, indicating samples with the lowest cation–anion mixing in a 
structure [2]. Despite this, the values for the different samples were notably close to each other. The 
crystallite size increases with the temperature, as can be expected. 
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Ohzuku et al. (1993) showed that electroactive LiNiO2 showed larger integrated intensity ratios 
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split of the (108) and (110) peaks is not as clear as that of the LN670 and LN690 samples. 
  

Figure 2. Particle size distribution (PSD) curves after precipitation times of 6, 8, 10, and 12 h.

Table 2. Tap density results for the Ni(OH)2 precursors lithiated at 670 ◦C.

Sample T.de (g/mL) T.de (g/mL)
Ni(OH)2 LiNiO2

Ni12 (40 ◦C) 1.86 2.56
Ni14 (50 ◦C) 2.00
Ni15 (60 ◦C) 2.07

3.2. XRD Results and Discussion

Table 3 shows the XRD lattice parameters that agree with the previously published values for
stoichiometric LiNiO2 [6,7,15]. Specifically, Dahn et al. [15] showed XRD lattice parameter values
for different Li1±xNiO2 compositions that agree well with our values for stoichiometric LiNiO2.
LN670 presented the highest c/3a value, indicating samples with the lowest cation–anion mixing in
a structure [2]. Despite this, the values for the different samples were notably close to each other.
The crystallite size increases with the temperature, as can be expected.

Table 3. XRD parameters for the samples.

Sample C-Axis (Å) A-Axis (Å) C/a c/3a Ratio (003)/(104)
Integrated Ratio

Crystallite
Size a (Å)

Crystallite
Size c (Å)

LN650 14.1919(2) 1 2.87638(2) 1 4.9339 1.64465 1.306 1579.6(9) 1 1973(1) 1

LN670 14.1929(1) 1 2.87646(1) 1 4.9342 1.64471 1.338 2419.9(9) 1 3773(1) 1

LN690 14.1989(1) 1 2.87882(1) 1 4.9322 1.64406 1.294 2854.8(9) 1 4119(1) 1

1 The error of the crystallite sizes 14.1919(2) means 14.1919 ± 0.0002, 1579.6(9) means 1579.6 ± 0.9.

Ohzuku et al. (1993) showed that electroactive LiNiO2 showed larger integrated intensity ratios
of I(003)/I(104) and a clear split of the (108) and (110) peaks [7]. LN670 showed the highest integrated
intensity ratios of I(003)/I(104) and highest discharge capacity (see Table 4). Figure 3 shows the LiNiO2

structure without impurity phases and magnifications of the split peaks (108) and (110). The LN650
split of the (108) and (110) peaks is not as clear as that of the LN670 and LN690 samples.
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Table 4. First cycle performance and capacity retention after 62 cycles.

Sample Charge 4.3 V 0.1 C
+ 0.015 C (1st)

DC 3.0 V
0.1 C (1st)

DC 2.6 V
0.1 C (1st)

0.1 C Eff
3.0 v (1st)

0.1 C Eff.
2.6 v (1st)

DC 3.0 V
0.1 C (62)

Retention After
62 Cycles

mAh/g mAh/g mAh/g % % mAh/g %

LN650 250.9 218.4 223.1 87.0 89.0 193.3 88.5
LN670 253.8 227.2 231.7 89.5 91.3 188.0 82.8
LN690 252.0 221.9 225.6 88.1 89.5 165.5 74.6
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by nickel, it showed that LN670 has the lowest amount of cation mixing (occupancy of 0.0128), which 
actually supports 670 °C being the best lithiation temperature. Zhang et al. [16] claimed that under 2% 
of cation mixing does not affect the electrochemical performance of the LiNi0.33Mn0.33Co0.33O2 (NMC111) 
cathode material. 
  

Figure 3. XRD pattern for the prepared LiNiO2 materials.

Table 5 shows the lattice occupancies of the Li, Ni, and O sites determined by Rietveld refinement.
The refinement was done by Rietveld refinement, the FP (Fundamental Parameter peak shape) method
with continuous scan, and the Cheary–Coelho Axial model, using experimental geometry and optics.
Constraints on total occupancy of Wyckoff sites 3a and 3b being equal to 1 (Ni + Li = 1). The ESD
was the standard deviation from the refinement process, which means the estimated error from the
iterative, least squares method computation. From the Ni1(3b) value, which is the ratio of lithium sites
occupied by nickel, it showed that LN670 has the lowest amount of cation mixing (occupancy of 0.0128),
which actually supports 670 ◦C being the best lithiation temperature. Zhang et al. [16] claimed that
under 2% of cation mixing does not affect the electrochemical performance of the LiNi0.33Mn0.33Co0.33O2

(NMC111) cathode material.
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Table 5. Lattice occupancies of the Li, Ni, and O sites.

LN670 LN670 (ESD) LN690 LN690 (ESD) LN650 LN650 (ESD)

Li1 (3a) x 0 0 0
y 0 0 0
z 0 0 0

Occ. 0.0114 0.0017 0.0029 0.0017 0.0095 0.0020
Ni1(3b) x 0 0 0

y 0 0 0
z 0.5 0.5 0.5

Occ. 0.0128 0.0005 0.0248 0.0005 0.0166 0.0007
Ni2(3a) x 0 0 0

y 0 0 0
z 0 0 0

Occ. 0.9886 0.0017 0.9971 0.0017 0.9905 0.0020
Li2(3b) x 0 0 0

y 0 0 0
z 0.5 0.5 0.5

Occ. 0.9872 0.0005 0.9752 0.0005 0.9834 0.0007
O1 x 0 0 0

y 0 0 0
z 0.258 0.258 0.257724

Occ. 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
Rwp (%) 6.26 6.13 5.26

3.3. SEM Images of LiNiO2

The FESEM images in Figure 4 show that the LiNiO2 secondary particles retained their
round-shaped morphology during the mixing, lithiation, milling, and sieving processes. The images
in Figure 4, shown at 75,000×magnification, illustrate the secondary particle surfaces and how the
primary particle size increases with lithiation temperature.Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 12 
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Figure 4. SEM images of LN650, LN670, and LN690 at magnitudes of 5000× and 75,000×.

3.4. Electrochemical Performance

Table 4 shows the first cycle performance and capacity retention after the testing program.
LN670 had the highest first cycle efficiency (91.3%) and discharge capacity (231 mAh/g), one of
the highest ever reported for LiNiO2. [17–19]. Higher and lower lithiation temperatures produced
lower capacities and lower efficiency, but the lowest lithiation temperature also showed improved
capacity retention.

In Table 6, the discharge capacity results from previously published research articles are presented
for comparison. As can be seen in Table 6, results of Yoon et al. [17] show the highest first cycle capacity
of 246.6 mAh/g. There are, however, some differences in the electrochemical testing conditions between
our work and the work of Yoon et al. For example, lower current and higher testing temperatures used
in the article of Yoon et al. can increase the first cycle capacity.

Table 6. The first cycle discharge capacities and testing conditions from reference articles.

Testing Conditions
Result (mAh/g) Current (mA/g) Voltage Range (V) T (◦C) Ref.

231.7 20 4.3–2.6 25 This article
246.6 18 4.3–2.7 30 [16]
220.2 22.5 4.3–3.0 25 [18]
199 21 4.27–2.6 [17]

Table 7 shows the rate performance of the LiNiO2 materials. Cells were charged at 0.1 C to 4.3 V
and at a constant voltage until 0.02 C was reached. Cells were subsequently discharged at different
rates (0.2 C, 0.33 C, 0.5 C, 1 C, and 2 C). Results indicate the best results were produced by the LN670
sample regardless of the discharge rate.

Table 7. Rate performances of the tested samples.

Sample
Charge 0.1 C + 0.02 C –>4.3 V–>DC 3.0 V

DC 0.2 C
mAh/g

DC 0.33 C
mAh/g

DC 0.5 C
mAh/g

DC 1 C
mAh/g

DC 2 C
mAh/g

LN650 215.5 210.2 206.0 201.3 195.3
LN670 217.4 211.6 207.1 202.9 196.5
LN690 208.3 201.7 197.0 191.8 185.6

Figure 5a shows the first cycle charge and discharge voltage curves for the different LNO samples.
Figure 5b shows the discharge voltage curves at different C rates for sample LN670. Up to 0.5 C voltage,
the plateaus are clearly different, but at 1 C and 2 C, the plateaus start fading. Figure 5c shows the
charge and discharge curves for cells charged to different cut-off voltages. Cut-off voltages of 4.3 V
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and 4.2 V show similar voltage plateaus, but cells with 4.15 V and 4.1 V the highest voltage plateau
vanish. Figure 5d shows the cyclability curves for cells with different cut-off voltages, indicating that
the 4.3 V and 4.2 V cut-off voltages possess a similar capacity and capacity retention, while 4.15 V and
4.1 V bear a lower capacity but excellent capacity retention. Yoon et al. [17] presented similar results,
claiming that a better capacity retention was due to a lower level of particle cracking for cells with
lower voltage cut-offs.
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Sample Charge 0.1 C + 0.02 C -->4.3 V-->DC 3.0 V 

  
DC 0.2 C 
mAh/g 

DC 0.33 C 
mAh/g 

DC 0.5 C 
mAh/g 

DC 1 C 
mAh/g 

DC 2 C 
mAh/g 

LN650 215.5 210.2 206.0 201.3 195.3 
LN670 217.4 211.6 207.1 202.9 196.5 
LN690 208.3 201.7 197.0 191.8 185.6 

Figure 5a shows the first cycle charge and discharge voltage curves for the different LNO 
samples. Figure 5b shows the discharge voltage curves at different C rates for sample LN670. Up to 
0.5 C voltage, the plateaus are clearly different, but at 1 C and 2 C, the plateaus start fading. Figure 
5c shows the charge and discharge curves for cells charged to different cut-off voltages. Cut-off 
voltages of 4.3 V and 4.2 V show similar voltage plateaus, but cells with 4.15 V and 4.1 V the highest 
voltage plateau vanish. Figure 5d shows the cyclability curves for cells with different cut-off voltages, 
indicating that the 4.3 V and 4.2 V cut-off voltages possess a similar capacity and capacity retention, 
while 4.15 V and 4.1 V bear a lower capacity but excellent capacity retention. Yoon et al. [17] presented 
similar results, claiming that a better capacity retention was due to a lower level of particle cracking 
for cells with lower voltage cut-offs. 
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Table 8 shows the excess lithium before (LN670) and after the washing procedure (LN670-W).
Results showed that washing effectively reduced the lithium from the particle surfaces.

Table 8. Li/Me ratio measured by ICP-OES and residual lithium measured with automatic titration.

ICP Residual Li
Sample Li/Me Li2CO3 (wt.%) LiOH (wt.%) Li (wt.%)

LN-670 1.08 0.92 1.38 0.57
LN670-W 1.01 0.19 0.19 0.09

Figure 6 shows pouch cell discharge capacity retention during the cycles. The unwashed sample
capacity was higher at the beginning but decreased quickly. A high amount of residual lithium on the
unwashed particle surfaces can react with electrolytes and produce gases, causing bad contacts in the
cell [18,20,21]. The washing procedure can remove lithium from the LiNiO2 structure, which might
explain the lower capacity at the beginning of the tests [18]. The capacity remaining for the washed
sample after 400 cycles was 135 mAh/g at 0.2 C.
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4. Conclusions

Ni(OH)2 precipitation was performed by applying different temperatures, with the results
showing that it is possible to change the precursor particle morphology and tap density by changing
the precipitation temperature within a range of 40–60 ◦C.

The lithiated LiNiO2 samples showed good properties according to electrochemical studies.
The optimal lithiation temperature to achieve high capacity and good capacity retention was found
to be 670 ◦C. Lower cut-off voltages resulted in better capacity retention during coin cell testing,
and the results were similar to those of previous studies. Pouch cell results showed that residual
lithium compounds on particle surfaces are critical for the cycling properties, and that washing
procedures should be optimized to avoid the delithiation of the LiNiO2 structure. Future work will
focus on different elemental doping during precipitation and coating during the lithiation process.
Different cut-off voltages will be tested in pouch cells to see how they stabilize cells for long-term
cycling tests.
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