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Abstract: Application Programming Interface (API) usage mining is an approach used to extract
the common API usage to help developers get used to the APIs. However, in Android applications,
the usage can be hidden or fragmented due to class inheritance. Such hidden or fragmented usages
could decrease the coverage and accuracy of the existing API mining approaches. Our method aims to
resolve the problem of hidden and fragmented usages through API generalization. This generalized
usage is expected to be applicable to every class that inherits a class in the usage. In the experiment,
among 442,809 Android API usages, 104,839 usages either were hidden or fragmented. By revealing
such usages, the accuracy of the code completion was improved by at most 6.66%. The usage
generalization was efficient for extracting API usages in Android applications in which the APIs are
used through class inheritance.

Keywords: API usage patterns; Android applications; object-oriented programming

1. Introduction

Recently, software development has relied on third-party libraries instead of writing the code
from scratch. These libraries define their own Application Programming Interfaces (APIs) that
provide various functionalities required for developing software programs. However, it has been
difficult for developers to grow accustomed to these APIs [1]. To resolve this, existing libraries have
provided developers with several materials such as API documentation, unified name convention rule,
and example code. However, these approaches are insufficient to present various API usages [1].

API usage mining is another approach that aims to resolve the difficulties in learning APIs.
Existing mining approaches, such as association rule [2], graph representation [3], and clustering [4],
have been proposed to extract common API usages from huge source repositories. Such common
usages can be used for various purposes, such as code completion [5] and document generation [6].

This paper focuses on the hidden and fragmented usages when the API usages are collected
in Android applications. Assume that a developer-written class X inherits an Android library class
Activity. Such a class X can invoke an API method getApplicationContext() (abbreviated as gAC()),
which aims to manipulate the global application status. Without considering the class inheritance,
an API mining tool would ignore the call site X.gAC(), which is a non-API method defined in X. In
other words, the usages involving X.gAC() will be fragmented. In the worst case, if such usages
consisted of the method invocations only with X, they would be hidden from the mining tool.

The fragmented and hidden usages should be handled properly to increase the accuracy and the
coverage of an API usage mining tool. These two metrics have been used to evaluate the performance
of existing mining tools [4,5]. An API mining tool would infer an incorrect API usage from the
fragmented usage as the tool misses the inherited APIs. In the similar manner, the API mining tools
could not detect the hidden usages, which would decrease the coverage of the mining tool.

Appl. Sci. 2020, 10, 9048; doi:10.3390/app10249048 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://dx.doi.org/10.3390/app10249048
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/24/9048?type=check_update&version=2


Appl. Sci. 2020, 10, 9048 2 of 15

In this paper, we propose a generalization approach to minimize the number of fragmented or
hidden API usages. This approach aims to generalize the API usages by finding the representative
classes for each usage. An evaluation was conducted using 442,809 API usages demonstrated that
104,839 usages (23%) were hidden or fragmented without the generalization. In addition, the accuracy
of the code completion increased by at most 6.66% with the generalized usages. These experimental
results imply the importance of usage generalization when mining API usages.

The remainder of this paper is structured as follows. Section 2 introduces the existing studies
related to our work. Section 3 presents an example code that motivates our idea. Section 4 explains the
approach for generalizing the API usages to minimize the fragmented or hidden usages. Section 5
presents the implementation of the code completion with the proposed approach. The experimental
setup and results are explained in Sections 6 and 7, respectively. Section 8 discussed with the
experimental results. Finally, Section 9 summarizes the proposed approach and the main findings.

2. Related Work

In recent years, the API mining tools have been advanced in various aspects [7]. In particular,
these tools have focused on collecting high-quality usages from huge source repositories. This section
introduces several existing relevant studies.

2.1. Existing API Usage Mining Tools

Mining API usages from Open-source repositories (MAPO) [4,8] is a tool proposed for providing
frequent API usages for a given API query. To search the common usages, the API sequences
are clustered based on three similarities computed from the method names, API members, and
subsequences in each cluster.

Usage Pattern Miner (UP-Miner) [9] was proposed to improve the quality of API usages by
removing the redundant ones among them. This goal was achieved by mining frequent closed
sequences based on SeqSim, which is an n-gram based similarity metric. For example, given the API
sequences a, b, and ab, UP-Miner attempts to select the longest sequences ab. Despite the improvement,
the metric could not reflect the similarity between the usages in which the same library APIs involved
through class inheritance.

Nguyen et al. [10] proposed a graph representation of the API usages involving multiple objects.
Based on the graph representation, common API usages could be found by finding the frequent
induced subgraphs. It was demonstrated that this approach was effective in detecting anomalies that
could cause the defects in a program.

Method USage Examples (MUSE) [11] provided example codes extracted from the source code with
the clone detection technique. The clone detection technique was used to provide one representative
usage among the clones.

Probabilistic API Miner (PAM) [5] aims to overcome the limitation that the frequency-based
mining approach tends to include uninteresting usages. The basic idea is to include only the API
sequence that improves the overall probability of the API model.

API FunctiOn Calls and USage patterns (FOCUS) [12] is a state-of-the-art recommendation system
based on the collaborative filtering. The basic idea is that the valuable API usages in a target program
can be collected from the similar program. The experimental results demonstrated that FOCUS
outperformed PAM.

LibraryGuru [13] focused on the API usages found in event-based frameworks such as Android.
This tool recommends the most suitable callback methods for a given API query.

All the aforementioned tools focused on mining frequent API usages while reducing redundant
usages. Although these tools contribute to improving the collected dataset, several API usages could
be either fragmented or hidden because of the APIs used by inheriting library classes.
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2.2. API Usage Mining with the Class Inheritance Information

CodeWeb [2] proposed generalized association rules to consider class inheritance for extracting
API usage patterns. This work is similar to our study in that class inheritance was considered when
extracting API usages from the source code. However, this approach did not discuss how the rules
can be combined with recent learning models such as the Hidden Markov Model (HMM), n-gram, or
recurrent neural networks (RNN). Our study aims to consider the class inheritance for such various
models, especially for HMMs.

Pattern-based Bayesian Networks (PBN) [14] is a code completion tool based on the Bayesian
network. In contrast to the other studies introduced in Section 2.1, the class hierarchy was considered
to determine (1) the enclosing method through which an API sequence is extracted, and (2) resolving
the overloading methods. In contrast to these purposes, our approach considers the class inheritance
for each method call in an API sequence to reduce the fragmented or hidden sequences.

Robbes and Lanza [15] compared several strategies that could be used for code completion.
The experiments demonstrated that the strategy that prioritizes the APIs changed recently was more
effective than the other strategies such as prioritizing the APIs found in the parent classes. However, this
comparison did not consider that the class hierarchy could be utilized to resolve problematic usages.

Bruch et al. [16] proposed a document generation method for the object-oriented white-box
frameworks. The document is generated to introduce how each library class should be inherited.
Although this approach focuses on class inheritance, the fragmented or hidden usages are ignored.

2.3. Data Source and Learning Model of the API Usages

It is possible to collect API usages from the binary or source files. For example, hidden Markov
model of API usages (HAPI) is a statistical and generative model based on the dataset collected from
binary files [17]. In contrast, Non Client-Based Usage Patterns miner (NCBUP-miner) attempted
to extract usage patterns from the framework code, instead of the client code [18]. In our study,
we collected the usages from the source code based on the static code analysis.

Ogasawara et al. [19] focused on the characteristics of API usages that influenced existing
API-related systems. The investigation confirmed that frequent API usages have been observed in
various projects. In contrast, it also confirmed that the uncommon API usages should not be ignored
as they could be project-specific API usages.

The mined API usages have been learned using various prediction and representation models.
Raychev et al. [20] considered the code completion task as a natural-language processing (NLP) task.
Based on this idea, a language model was implemented based on n-gram and recurrent neural networks
(RNNs) that have been used in the NLP domain. Furthermore, the n-gram model was improved
by combining syntax and semantic information [21]. an n-gram was also used to extract the code
convention in the source code [22]. Similarity, Yan et al. [23] proposed an API suggestion model based
on long short-term memory (LSTM).

Graph-based statistical Language (GraLan) [3] learns API usages based on the probability that
each available graph contains the given subgraph. Maddison et al. [24] proposed the probabilistic
context-free grammar (PCFG) and demonstrated that the source code generated by the model was
human-friendly source code. CodeKernel [25] was proposed to increase the quality of the usage dataset.
It was demonstrated that the object usage graph and the graph kernel were effective in increasing the
dataset quality.

Among these models, we adopted HAPI [17] that showed better accuracy for code completion
and has a relatively feasible learning time than the other models that are based on n-gram and RNN.
In addition, this model has been used in a recent study that proposed a code search engine using
natural languages [26].
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2.4. Applications of the API Usages

Mined API usages and the prediction models have been used for various purposes. DroidAssist [27]
detected suspicious API usages in the source code based on HMM. Java Rule Finder (JRF) [28] aims
to extract the specification of a library from the source code written in object-oriented languages.
The program rule graph (PRG) was proposed to represent the pre- and post-conditions of each method.
Schäfer et al. [29] proposed a method for extracting the changes in API usages after the framework
code was modified. Gu et al. [30] proposed a search engine based on a deep learning model to find the
API usages. Given a query in natural language, their proposed system provides a relevant example
code. Export [31] is a visualization tool that presents the API usages similar to the given usage. Such
visualization aims to help developers investigate API usages in huge source repositories. Jigsaw [32] is
a model that integrates the reused source code into a new location. Nguyen et al. [33] proposed the
method that extracted API usages from fine-grained changes.

The proposed API generalization is evaluated for the code completion task. For example,
GraPacc [34] is a graph-based API mining tool utilized for performing code completion using
context-sensitive features collected from code editing. Moreover, this task has been used in numerous
existing studies, including those studies introduced in Sections 2.1 and 2.2.

3. Motivation

Table 1 presents the two API usages collected from the projects wordpress-android and Pockethub.
Each method invocation is presented as a qualified name that consists of the names of the class
and method. One usage consists of the two classes, WPLaunchActivity and Intent, while another
usage consists of LoginActivity and Intent. These two raw API usages of WPLaunchActivity and
LoginActivity seem incompatible. However, both usages aim to run a new activity and finish the
current activity. This similarity can be identified through API generalization. The two generalized
usages consist of the methods bound to the classes, Intent and Activity. These classes can be determined
by traversing their class hierarchies, as shown in Figure 1.

Table 1. Example of raw and generalized Application Programming Interface (API) sequences.

Class Name Type API Sequence

WPLaunchActivity

Raw
Intent.<init>
WPLaunchActivity.startActivity
WPLaunchActivity.finish

Generalized
Intent.<init>
Activity.startActivity
Activity.finish

LoginActivity

Raw
Intent.<init>
LoginActivity.startActivity
LoginActivity.finish

Generalized
Intent.<init>
Activity.startActivity
Activity.finish

The raw usages are generalized by finding the representative class that defines all the methods
that appear in each usage. In this example, LoginActivity has five candidate classes, one of which can
be its presentative class. In particular, the ancestor classes Context and Activity define startActivity()
and finish(), respectively, which are shown in the raw usage of LoginActivity. The API generation
determines that Activity would be a representative class as Context could not invoke finish() defined
in Activity. Similarly, WPLaunchActivity can also be generalized into Activity.

Consequently, the two raw usages are converted into the same usage that initializes Intent and
invokes startActivity() and finish(), which are bound with Activity.
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Existing studies have focused on reducing the redundant usages to increase the quality of the
usage dataset [12,25]. However, we will demonstrate that frequent usages could be missed, or several
API calls could be omitted when collecting API usages from the raw sequences.

Figure 1. Class hierarchy of WPLaunchActivity and LoginActivity.

4. API Usage Generalization

Let T = {t1, . . . ,tm} be a set of types and M = {m1, . . . ,mp} be a set of method signatures. An API
usage is a sequence of the pairs (ti, mj), or S = {(t, m) | t ∈ T and m ∈M}. We assume that API usages
are collected from a compliable and error-free code. For example, the method add() declared in
java.util.List can be paired, whereas the method cannot be paired with java.util.Map.

Figure 2 shows the algorithm used to generalize the input API sequence S. This algorithm
iterates each API sequence twice. The first iteration collects the class that defines each method in the
given S. This iteration targets only the pair (t, m) that invokes an overridable method (line 3). For
example, in Java, every method can be overridden unless the method is a static or private method [35].
Subsequently, the algorithm finds the method to be invoked from the pair (line 4). The notation
resolution(t, m) denotes the language-specific method resolution (e.g., [36]). Thereafter, the identified
class td replaces the original class t (line 5). Lastly, the identified class is added to the variable classes
(line 6).

After the first iteration, the algorithm determines the representative classes (lines 8–13).
The variable called classes consists of classes that are partially ordered by class inheritance. In
other words, each minimal element in classes should have a parent class and zero child class. Every
non-minimal class is mapped into the corresponding minimal class (lines 9–13).

The second iteration aims to replace each class with a representative class in the API sequence. For
each pair (t, m), t is replaced as the corresponding minimal element identified in the variable mapping
(line 15–19).

Figure 3 illustrates the generation process with the code that instantiates the class
CategoryFragment. The first iteration investigates each pair in the usage to determine the class
that declares the method to be invoked from the pair. As shown, the first pair (Bundle, <init>) and the



Appl. Sci. 2020, 10, 9048 6 of 15

third pair (CategoryFragment, <init>) are not modified as these pair aim to invoke non-overridable
methods; <init> is a special method used to initialize a class. In contrast, in the second pair (Bundle,
putString), Bundle is replaced with BaseBundle, which defines the method to be invoked from this
pair. Similarity, in the pair (CategoryFragment, setArgument), CategoryFragment is replaced with
Fragment. In the second iteration, the class of each pair is replaced as the representative class in this
API usage. In this example, there is only one candidate for each class: BaseBundle for Bundle and
Fragment for CategoryFragment.

Figure 2. API sequence generation algorithm.

Figure 3. Example of the API generation process.
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5. Code Completion with the Generalized API Sequence

This section introduces the code completion process for Android projects with the proposed
generalization method, as illustrated in Figure 4. First, the training phase generalizes the API sequences
collected from the source code. Subsequently, statistical models were generated based on these
generalized sequences. Later, in the test phase, code completion was conducted using these generated
models. The details of each step are described in the following subsections.

Figure 4. Overview of the code completion with the API sequence generation.

5.1. API Usages Dataset

The API usages can be collected either from the source code or the compiled bytecode. A larger
usage dataset can be collected from the compiled bytecode than from the source code [17]. For example,
API usages are difficult to collect using the source code from the closed-source projects, whereas the
usages in bytecode can be collected from their binary files. However, the usages collected from the
bytecode are not exactly matched to the hand-written API sequence. The enhance-for statement in
Java is an example; this syntax is compiled into a sequence of APIs of interface Iterator and Iterable.
Developers do not need to know the compiled API sequence because enhance-for syntax makes shorter
code and provides the same functions as the compiled sequence. In this study, API usages were
collected from the source code instead of bytecode.

Each method in a Java source code is converted into an API sequence, following the approach of
PAM [5]. Figure 5 simplifies the process of collecting API sequences from a method. Each Java source
code has at least one class containing multiple methods.

Such a source file is parsed as an abstract syntax tree (AST) using Eclipse JDT parser. Furthermore,
this AST is transformed into an API sequence through depth-first traversal started from each method
node. As shown in Figure 5, this traversal starts from two methods, C.x() and C.y(), respectively.
During the traversal of C.x(), two call sites D.x(a) and D.y(a) are extracted sequentially. Note that the
extracted sequences do not consider conditional executions. This approach aims to avoid collecting
incomplete sequence such as D.x(a) or D.y(a) only [5]. This example shows how two independent API
sequences are extracted from the two methods.
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Figure 5. Example of extracting API sequences

5.2. Statistical Model Generator

The statistical model was generalized using the HAPI [17]. HAPI is known to outperform than
SLANG [20], which uses n-gram and recurrent neural networks. The HAPI was designed to learn
the API usages for each set of classes instead of generating one model for every usage. For example,
one model was generated for one class java.util.LinkedList, whereas another model was generated for
the class java.util.String. The remainder of this section will explain the HAPI model briefly.

HAPI was employed to approximate the probabilities of state transitions and method invocations.
Figure 6 presents the simplified state diagram and a HAPI model of the class MediaPlayer that
belongs to the Android standard library. The state diagram presents the methods expected to be
invoked from each state. However, such state diagrams are rarely provided with exiting libraries
and frameworks including Android. The HAPI aims to generate probabilistic diagrams based on the
collected API usages.

Figure 6. Example of extracting API sequences.

Each HAPI learns the invocation probability of each method in a given set of classes. A HAPI
model has k hidden states, H = {h1, . . . hk}; n invocable methods, M = {m1, . . . mn}; a transition matrix
A = {aij|i ≤ k ∧ j ≤ k}, where aij is the transition probability from hi to hj; output probability B = {bij|i ≤
k ∧ j ≤ n}, where bij is the probability of emitting mj in hi; and Π = {π1, π2, . . . , πk}, where πi is the
probability of an API sequence that started from the hidden state hi. In other words, the HAPI needs
to determine the parameters λ = (A, B, Π). This can be solved using the Baum–Welch algorithm [37],
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which performs both forward procedures and backward procedures and updates parameters until the
parameters converge. Given an API sequence S = (s1, . . . ,sl), forward probability ai,t is the probability of
sequence s1, . . . ,st when the current state ct is hi. Moreover, backward probability bi,t is the probability
of sequence st+1, . . . sl when ct is hi.

ai,t = P(s 1, . . . , st, ct = hi|λ)bi,t = P(s t + 1, . . . , sl|c t = si ,λ)

With forward and backward probabilities, we can calculate the transition matrix and emission
matrix as follows.

γi(t)= P(ct = hi|M, λ ) =
at,ibi,t

P(M|λ)
εij(t)= P

(
ct = hi, ct+1 = h j|M, λ

)
Both forward probability and backward probabilities are recalculated until the parameters

γ and ε converge. Note that among the parameters, the number of hidden states should be
determined empirically.

5.3. API Recommendation for Code Completion

The API recommendation based on HAPI computes the likelihood of a method m at location t in a
sequence St = {s1, s2, . . . , st-1, st+1, . . . , sl}. The likelihood represents the possibility that S = {s1, s2, . . . ,
st-1, m, st+1, . . . , sl} is generated from the HAPI model.

P(S, st = m|λ) =
K∑

i+1

P(S, st = m, ct = hi|λ) =
K∑

i=1

ai,tbi,t

The recommendation will return the possibility of every method m that can be available at position
t. Finally, all the methods are ordered according to the calculated possibility.

6. Experimental Setup

In this section, we explain how we evaluate the API generalization with three research questions.

6.1. Research Questions

RQ1. How many API usages are hidden or fragmented without the generalization?
The generation aims to reveal the hidden usages and fix the fragmented usages. The higher the

number of such usages, the more effective the generalization is for improving the coverage and accuracy.
To answer this question, the number of hidden or fragmented usages was counted among the

Android- and Java-related API usages collected from the experimental dataset. Assume that an API
sequence S is supposed to be collected from a source file. The sequence was considered as fragmented
when the generalized usage included any methods that did not exist in the raw usage. Similarly,
the sequence was considered as hidden when it could be collected with the generalization only.

RQ2. How accurate is the code completion based on the generalized and raw API usages?
The HAPI models based on the generalized sequences were expected to be more accurate than

those based on the raw sequences. The API generalization provided more sequences for the method
training because it included the fragmented and hidden sequences. In addition, the generalization
helps discover the general API usages that could be found in multiple classes.

To demonstrate this expectation, two different groups of HAPI models were generated based
on the generalized and raw API usages, respectively. If the fragmented or hidden APIs were rare,
no difference was observed between the accuracies of the two groups. The completion was considered
correct when the expected method was ranked in top k.
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6.2. Data Collection

The experiments were conducted with 442,809 usages that had Java- or Android-related API
calls collected from 2121 projects. All of these projects were a part of the GHTorrent dataset [38].
The API usages were collected from every commit registered between 2014 and 2017. A project was
considered as an Android project if its description contained the word term ‘android’ or ‘Android’. In
addition, projects that had less than 100 commits were excluded to eliminate unmanaged repositories.
The commits that failed to build were also discarded.

The collected API sequences were filtered to obtain the appropriate lengths for the experiments.
The minimum and maximum lengths were set to 2 and 15, respectively. The average lengths of the
single-class and multiple-class API usages were found to be 3.0 and 7.8, respectively. These averages
were similar to the values reported in the HAPI experiments [9].

6.3. Training Code Completion Model

Five-fold cross-validation was adopted to evaluate the accuracy of the code completion. The dataset
was divided into five groups; four of which were used as training data and one was selected as test
data. The final score was the average of the five iterations.

Furthermore, to determine the number of hidden states for each HAPI model, four-fold
cross-validation was conducted with the training data; three of which were used as training data and
one was selected as validation data. The validation was repeated with the number of hidden states
varying from 1 to 20. For each iteration, the model evaluated the likelihood of the validation data. The
number of hidden states was determined to demonstrate the best average likelihood score.

7. Evaluation

7.1. Number of Hidden or Fragmented API Usages

Table 2 introduces four types of API sequences observed in this experiment. As mentioned in
Section 6.1, an API sequence was considered hidden when it could be collected only with the proposed
generalization approach. In contrast, a sequence was considered fragmented when its generalized
form had more than one API call than in the raw sequence. Lastly, the unaffected group consisted of
every sequence that was selected regardless of the API generalization.

Table 2. Number of usages in each group.

Sequence Type Number of Sequences Number of APIs

Hidden 18,727 (4.2%) 4330 (40.9%)
Unaffected 337,970 (76.3%) 6252 (59.1%)

Fragmented 86,112 (19.4%) 874 (8.2%)

The experimental result demonstrated that the hidden and fragmented usages degraded the
coverage of APIs in our dataset by 23.6%. These problematic sequences involved 49.1% of the APIs
that appeared in the dataset.

Figure 7 presents a fragmented sequence in our experiment. The source code invokes three
methods, setVisibility(), setEnabled(), and setText() with five variables.

As shown in Figure 7, the raw sequence extracted without the generalization ignored three
methods that were invoked with a non-Android library class, WPTextView. In contrast, the API
generalization detected the methods invoked with mProgressTextSignIn and mSignupButton, and
could further convert them to TextView. In this case, the raw sequence was considered fragmented.

Figure 8 illustrates a hidden sequence in our experiment. This code aimed to instantiate an option
menu within a developer-written class. It can be seen that the raw sequence ignored two methods
invoked with the non-library class WPWebViewActivity. As a result, this sequence was discarded as its
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length was less than two, which was the minimum length in our study. In contrast, the generalization
detected that WPWebViewActivity could be converted to the Android class Activity. In this case, the
raw sequence was considered hidden.

Figure 7. Example of a fragmented API sequence (strikethrough on non-Android APIs).

Figure 8. Example of a hidden API sequence (strikethrough on non-Android APIs).

7.2. Accurate of Code Completion Based on the Generalized and Raw API Usages

Figure 9 presents the accuracies of the HAPI based on raw and generalized API sequences.
An HAPI that learned the API usages of one class only was categorized as a single-class model. It was
categorized as a multi-class model, otherwise. These two categorizations are presented separately
because the multi-class models would be relatively more difficult to learn than the single-class ones.
This separation helped to investigate the impact of the generalization, independent of the prediction
difficulty. In addition, code completion was conducted only for the “unaffected” and “fragmented”
sequences as the models based on the raw sequences were incapable of observing the hidden usages.

Figure 9. Comparison between raw and generalized APIs.

The accuracies approximately equaled at the top-one case, which was 0.52% in the single-class
models. The increment at the high-top case was expected as the prediction became easier to be accurate
with a high number of API candidates. Nonetheless, the models based on the generalized APIs tended
to be more accurate than those based on the raw ones, up to 5.55%. This tendency was similar even in
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the multi-class usages, which was the highest (5.47%) at the top-two case. In summary, the generation
was effective in improving the code completion accuracy.

8. Discussion and Threats to Validity

The fragmented or hidden API usages accounted of 23% in our dataset. Such problematic usages
tended to contain the APIs inherited from Android library classes. Table 3 presents the top three APIs
that appeared in the hidden and fragmented usages. For example, the most popular API in each
problematic usage was setContentView() and supportStartPostponedEnterTransition(), respectively.
These APIs were defined in the Android class Activity, which aims to manage the lifecycle and user
interfaces in Android applications. The other methods in Table 3 were also defined in the Android
classes that were inherited by the developer-written classes. These results supported that the inherited
methods incurred hidden or fragmented usages.

The influence of fragmented and hidden usages on code completion was significant. The accuracy
was improved by at most 5.55% with the API generalization. A feasible explanation is that the API
generalization reduces the number of observable outputs in each HAPI model. For example, in
Figure 6, the raw sequence consisted of five methods, setVisibility() and setEnabled() of RelativeLayout,
setEnabled() of EditText, and setVisibility() and setText() of WPTextView. In contrast, the generalized
sequence consisted of four methods, setVisibility() and setEnabled() of View and TextView, respectively.
This difference helped the HAPI model consider fewer methods and classes.

Table 3. Most frequently observed APIs in each group.

Group API Ranking

Hidden
1. AppCompatActivity.setContentView()
2. CursorWrapper.getColumnIndex()
3. Fragment.setHasOptionMenu()

Fragmented
1. FragmentActivity.supportStartPostponedEnterTransition()
2. CursorLoader.setSelection()
3. CursorLoader.setSelectionArgs()

Another feasible explanation is that the fragmented usages degraded the accuracy of the code
completion. Figure 10 presents the accuracy of the code completion only for the fragmented usages, all
of which consisted of multiple classes.

Figure 10. Comparison between raw and generalized APIs.

Regardless of the threshold, the accuracy was always higher with the generalized usages than
with the raw usages. The maximum difference was 6.66% observed at the top two recommendation,
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whereas the minimum was 4.08% observed at the top eight. This result implies that the API usages
learned from the generalized usages were more predictable than the fragmented usages.

Our study focused on the code completion task. However, API usage mining has been used in
various applications such as code search or bug prediction. The proposed API generalization would
influence such applications. In addition, it is necessary to confirm whether the generalization was
effective even with the larger dataset and on various platforms other than Android and Java.

A threat to validity could be introduced due to the possibility of bugs in the mining tools, such as
Eclipse JDT, that were used in our experiments. Similarly, the class hierarchy may have been resolved
incorrectly due to the bugs in the build tool or Eclipse JDT. We used the most recent build version in
which several bugs have been corrected.

9. Conclusions

The API usages were extracted from the source code without considering that they could be
utilized in similar classes. In this paper, we proposed an approach that aims to generalize the API
usages and investigate whether the usages could be hidden or fragmented without the generalization.

The three experiments demonstrated that 23% of API sequences were hidden or fragmented in
Android projects. In addition, the accuracy of the code completion was improved by up to 6.66% when
the usages were generalized. In our future works, we aim to conduct experiments on various dataset,
platforms, and languages to confirm the effectiveness of the generalization.
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