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Abstract: The use of residual forms of biomass, resulting from processes of transformation of the agri-
food and/or forest industries, presents itself as an alternative with high potential for energy recovery,
given the existing availability, both from the perspective of quantities, but also from the perspective
of geographic distribution. In this work, samples of four by-products originating from the agri-food
industry were collected, namely coconut shells, sugarcane bagasse, cashew nutshells, and palm kernel
shells, which were characterized in the laboratory by determining their Thermogravimetric and
Elemental analysis, subsequently calculating the High Heating Value, Low Heating Value, Hardgrove
Grindability Index, Mass Yield, Energy Yield, and Energy Densification Ratio. The values obtained
show the potential to optimize logistical operations related to transportation, demonstrating that
energy densification operations, especially if associated with physical densification processes, enable
the use of these residual forms of biomass in the replacement of fossil fuels, such as coal.

Keywords: agriculture waste; thermochemical conversion processes; biomass energy; waste recovery

1. Introduction

The need for new forms of energy has given rise to a rapid development of energy
technologies from all renewable sources [1]. Those developments led to major technolog-
ical breakthroughs, which are reflected in greater energy production capacity and cost
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reductions [2]. The latter is likely the most important factor considered in the choice of
a particular type of energy to be implemented. Decision makers tend to opt either for
choosing the cheapest forms or, at the very least, for energy profiles that required less
investment vs. production capacity, while allowing permanent cash flow, thus, justifying a
return on investment that is acceptable to investors [3].

Energy production, however, is an issue that arguably should be addressed through a
strategy-setting approach at the national levels. In the case of European Union countries,
the following strategy has, however, been mainly addressed from a purely economic
perspective, wherein financial models determine the priority agenda of investments, often
disregarding environmental and decentralized variables related to energy production [4].
In reality, energy production is one main topic that should be based on a thorough strategic
discussion, since, for highly energy-dependent countries, a greater renewable energy
production capacity should lead to significant reductions in the balance of transactions as
well as a higher level of sustainability, related to economic decarbonization [5].

Currently, with the paradigm shift caused by environmental issues raised by climate
change anticipated adverse effects, there has been a gradual mindset change regarding
the issue of managing the energy matrix [6]. Policy makers increasingly show a greater
willingness to give priority to alternative renewable energy sources at the expense of
traditional sources of fossil origin, such as oil or coal. This new principle is especially valid
when it is possible to use renewable sources in direct substitution for fossil sources [7] if
coal consumption can be avoided because the installed wind capacity is able to satisfy
the needs of the electricity grid, or if the annual hydrological regime is able to keep the
hydroelectric power plant system operational [8]. However, this direct relationship between
these renewable sources and meteorological factors leads to intermittent production and it
is, therefore, not possible to have a constant supply for the power grid without extensive
energy storage capacity [9]. For this reason, it is necessary to have dispatchable production
points, which are able to ensure this supply when seasonal or daily weather conditions
make it necessary [10].

From this perspective, biomass, being a renewable source of energy, can be a viable
alternative fuel. At the same time, biomass presents a global availability in practically all
latitudes of the globe, except for the poles and some desertic regions, but is widely dis-
tributed among the most inhabited regions where energy consumption is more intense [11].
However, present production of usable and available biomass that can be used as a source
of energy is mostly carried out far from centers of consumption [12]. For example, residual
forms of biomass of agricultural origin are produced far from large urban centers, where
energy needs are more pressing, forcing the transport of energy products [13]. This trans-
port, and the subsequent set of associated logistic operations, such as handling or storage,
entails a set of costs that can make the operation and the sustainability of the process
unfeasible [14].

In the above context, biomass shows distinct advantages, such as its widespread
availability, the decentralized ability to be used in gas, liquid, or solid forms the energy
potential and the capacity to serve as a counterpoint to the intermittency of other sources.
However, biomass shows challenges, which include its low heating value, high moisture
content, and low density, coupled with geographical dispersion, all reflected, for higher
scale utilizations, in higher transport costs [15]. The sum of these issues makes the use of
biomass for energy production often difficult to implement, since the costs associated with
all the ancillary operations make the process unfeasible, making it imperative to study
variables associated with the logistics process, in addition to variables associated with
energy recovery processes [16].

There are several forms of biomass resulting from commercial agroforestry businesses,
such as the production of coconut, sugarcane, cashew nuts, or palm oil, which deliver a
steady supply of waste that, in the absence of use, can turn into environmental problems
through the emission of greenhouse gases (GHGs), either by their combustion to eliminate
the materials, or by rotting due to lack of destination or form of recovery [17]. Thus, the
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possibility of transporting these materials to a destination where they can be valorized
should be a very interesting possibility, were it not for the previously mentioned problems
related to the logistical costs associated with these materials [18]. The scale of food process-
ing facilities is generally not large enough to serve as an “end use point” for utility scale
production, but it is often of sufficient scale to serve as a location for preprocessing prior to
shipment to a larger, centralized conversion facility.

The possibility of materials being subjected to energy densification processes, such
as thermochemical conversion processes, eliminating moisture and volatile compounds
with low heating value, is associated with a densification process, such as pelletization or
briquetting, which can transform waste with little value into readily transportable energy
products, capable of functioning as an alternative to coal. This is mainly of the most
common types with widespread commercial use, such as sub-bituminous and bituminous
coals [19]. Another advantage is that those energy value-added products can be feedstock
used directly in coal-fired power plants, without the need for major changes, since they
have similar physico-chemical properties with regard to heating value and grindability [20].

In the above context, the aim of the present study was to characterize the properties of
four widely used residual biomass feedstocks of agroforestry origin, namely coconut shells,
sugarcane bagasse, palm kernel shells (PKS), and cashew nutshells, which are abundant
in tropical and subtropical regions, and constitute a reserve with the potential to supply
countries that are currently replacing coal as a way to reduce greenhouse gases (GHGs)
emissions. Based on the results obtained, it was intended to demonstrate that the energy
densification of these materials allows the reduction of logistical costs, and, thus, their
transport to places of final use away from the points of production.

2. Materials and Methods
2.1. Sample Collection and Preparation

Samples of sugarcane bagasse, cashew nut shells, coconut shells, and PKS from Costa
Rica, Brazil, Malaysia, and Nigeria, respectively, were collected in Portugal, as part of
several samples that arrived for viability tests in March 2020. The origins of the materials
were selected based only on its availability. With the exception of sugarcane bagasse,
all other materials were destined for energy recovery in Europe, so samples were sent in
significant quantities so that buyers could carry out laboratory tests to validate the products.
Sugarcane bagasse feedstock, produced in the laboratory following the procedure described
by Nunes et al. (2020), was used [21] with some variations in the tasks of sugarcane juice
extraction and drying. The sugarcane samples were purchased and were subsequently
washed to remove any dirt or contamination. Thereafter, they were cut into fragments and
squeezed, as shown in Figure 1. In the end, the squeezed fragments were washed, so that
any excess sugar still present could be removed, simulating the industrial process, which
works under running water. Then, all materials were dried in a laboratory oven for 24 h at
a temperature of 90 °C.



Appl. Sci. 2021, 11,20 40f23

Figure 1. Process of preparing sugar cane samples to obtain bagasse. (a) Cutting sugar cane fragments, (b) juice extraction,
(c) washing the sugarcane bagasse, and (d) dry fragments of sugarcane bagasse.

After drying, three samples of approximately 300 g, of each biomass feedstock, were
weighed. Each set of three samples was subjected at thermal treatments of heating at
300 °C and 400 °C and without heating. Heat treatments followed the procedure pre-
sented by Ribeiro et al. (2018) [22] and were also previously used by other authors, e.g.,
Viana et al., 2018, and Sa et al., 2020 [23,24]. Biomass samples were compacted to cylinder
specimens, which were wrapped in aluminum foil. The cylinder specimens were wrapped
in aluminum foil in such a way so that the foil was tightened as much as possible for limit-
ing the amount of air trapped to a minimum. Then, the wrapped specimens were placed
inside a ceramic muffle furnace consisting of a metallic monobloc, covered with refractory
bricks, with kaolin insulation. The furnace is heated by a system of electrical resistance
coils, according to two sequential programs established to achieve process temperatures of
300 °C and 400 °C shown in Table 1.

Table 1. Correspondence of the four programmable levels with the different phases, depending on the temperature and

residence time.

o Residence Time Temperature Range
Phases Temperature (°C) .
(Minutes) 300 °C Treatment 400 °C Treatment
Heating Troom (18 °C) to Ty 30 18-180 18-180
Drying T toTp 60 180-300 180-400
Torrefaction T, 920 300 400
Cooling T, to 50 °C Enough to cool and safely 300-50 400-50

remove the samples
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2.2. Elemental Analysis

The elemental composition of the samples was analyzed in accordance with standard
EN 15104: 2011, Solid Biofuels-Determination of Total Content of Carbon, Hydrogen and
Nitrogen-Instrumental Methods. The oxygen content was thereafter estimated by a weight
difference according to Equation (1).

w(0O) =100 — w(C) —w(H) — w(N) —w(S) (1)

where w(O) is the oxygen content (%), w(C) is the carbon content (%), w(H) is the hydrogen
content (%), w(N) is the nitrogen content (%), and w(S) is the sulphur content (%). The
sulfur amount was considered nil for all biomass samples. Samples were tested in duplicate.

2.3. Proximate Analysis

Thermogravimetric analysis (TGA) was conducted in accordance with the standards EN
14775: 2009, Solid Biofuels—Determination of Ash Content, EN 15148: 2009, Solid Biofuels—
Determination of Volatiles Content, and EN 14774-3: 2009, Solid Biofuel—Determination of
Moisture Content. Samples were tested in duplicate.

2.4. Determination of Heating Value

The heating value (HV) of a fuel was defined by Moran and Shapiro (2002) as being
equal to its combustion enthalpy module [25]. The distinction of a high heating value
(HHV) and a low heating value (LHV) is that, while the former is obtained when all the
water formed in the combustion is liquid, the latter is obtained when steam is formed.
The difference between a high heating value (HHV) and LHYV is equivalent to the energy
necessary for vaporization of the water formed in the combustion [26]. A high heating
value (HHV) was calculated from elemental analysis results using Equation (2) presented
by Channiwala and Parikh (2002) [27].

HHV = 0.3491 x C 4+ 1.1783 x H — 0.1034 x O — 0.0151 x N — 0.0211 x Ashes 4 0.1005 x S )

whose validity range is 0% < C < 92.25%, 0.43% < H < 25.15%, 0.00% < O < 50.00%,
0.00% < N < 5.60%, 0.00% < S <94.08, 0.00% < Ashes < 71.4%, and 4.75 MJ/kg < HHV
< 55.35 M]/kg. Normally, for solid fuels, the value determined in the laboratory is the
HHYV of the dry material. The contents of moisture and ash are also relevant because these
components cause high variations in the HV of biomasses [26]. A low heating value (LHV)
of the dry material was calculated from the HHV and the elemental analysis results, where
the enthalpy of water vaporized during combustion is discounted [28]. Equation (3) can be
used for calculating LHV [27].

LHV = HHV — my,0 x AHp,0,,, (25 °C) 3)

where AHp,0,,,(25 °C) is the enthalpy of water vaporization at 25 °C.
The mass of water formed during combustion is calculated using Equation (4).

my,0 =9 X H 4)
where H is the hydrogen content in the dry solid fuel [26,27].

2.5. Material Grindability

Grindability is associated with the capacity of a material to be crushed or ground [29].
This property is a quality parameter commonly used in ores, coke, and coal to estimate
yields and energy spent on milling processes [30]. Quantitatively, biomass grindabil-
ity can be determined by using the Hardgrove Grindability Index (HGI) with adapta-
tions, and, for lower HGI values, a greater energy will be required to grind the material.
Bridgeman et al. (2010) used a method adapted from the British standard BS1016-112, De-
termination of Hardgrove Grindability Index of Hard Coal, released in 1995, to quantify the
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grindability of torrefied miscanthus [31]. Equation (5) predicts the HGI using proximate
analysis results [32].

HGI = 102.69 + 4.227 X Sy — 1.634 X V —0.569 x A —0.237 x M (5)

where V, A, M, and Sy, refer to volatiles, ash, moisture, and sulphur.

2.6. Specific Density and Energy Density

Lastly, the energy densification ratio (EDR), mass yield (MY), and energy yield (EY)
were calculated by Equations (6)—(8) [33].

EDR = HHVdried treated biomass ( 6)
HHVdried raw biomass

where HHV gyied torrefied biomass aNd HHV gried raw biomass refers to HHV of torrefied biomass
and dried raw biomass, respectively.

W .
MY ((70) — dried treated biomass % 100 (7)
Wdried raw biomass

where W gried torrefied biomass 1S the mass of dried torrefied biomass and W gied raw biomass 1S
the mass of dried raw biomass, and

EY (%) = MY x EDR 8)
where MY is the mass yield ratio (%) and EDR is the energy densification ratio.

3. State-of-the-Art
3.1. Framework

A significant range of biomass feedstocks that can be used as fuel, if properly pre-
processed, for improving hindrances previously mentioned, such as high moisture con-
tent, lower heating value, and lower density, as has been widely reported over recent
decades in many studies of biomass for energy applications, e.g., by Garcia et al. (2016),
by Thorenz et al. (2018), Nunes (2020), or Nunes et al. (2020) [11,34-36]. There is also a
wide variety of studied biomasses, ranging from those common in European latitudes,
such as the maritime pine (Pinus pinaster), as reported by the studies by Enes et al. (2019),
by Alvarez-Alvarez (2018), or by Viana et al. (2018) [23,37,38], to others available in other
latitudes, as shown by Ratnasingam et al. (2015) or Ioras et al. (2012), wherein the energy
properties of rubberwood from Malaysia are analyzed [39,40], or by Hytonen et al. (2019)
who studied rubberwood, from Southern Thailand [41].

Many other studies were carried out on different types of technologies for converting
and enhancing biomass, such as the work of Kim et al. (2014) wherein hydrothermal car-
bonization of anaerobically digested sludge for solid fuel production and energy recovery
is analyzed [42], or the work presented by Lee et al. (2017) about pyrolysis of agricultural
residues aiming biochar production [43], or the work of Sheth and Babu (2010) where the
topic of hydrogen production from biomass gasification is addressed [44]. Many more
studies are available, among which the works of Mohan et al. (2016), Lu and Ren (2016),
Mohan et al. (2019), and Dahiya et al. (2018), on the diverse forms of recovery of energy
and chemicals, e.g., biorefinery techniques [45-48].

A wide range of biomass studies have also been investigated for reintroduction of
waste, resulting from forest management and agricultural production operations aiming
to integrate these operations, under the new perspective of the circular economy, in new
supply chains and value creation wherein waste is a source of additional income genera-
tion [49]. There are also works that approach this theme from different perspectives and
are usually associated with different sectors of activity. For example, Rudi et al. (2017)
analyzed the layout of a biomass value chain specifically for the Upper Rhine region [50],
while Umar et al. (2013) analyzed the value chain of an activity sector, which is, in this
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case, the palm oil biomass renewable energy industry in Malaysia [51], demonstrating, in
any case, the interest in the valorization of this type of material and their integration in the
supply chains of biomass for energy.

3.2. Agricultural Residual Biomass
3.2.1. Sugarcane Bagasse

Sugarcane bagasse is a type of biomass that originated from residues of sugarcane
cultivation widely available around the world [21]. For this reason, it is also one of the
most studied forms of biomass, mainly due to the fact that this feedstock is associated with
the production of bioethanol, a biofuel used to replace gasoline with wide dissemination,
e.g., in Brazil and India [52-54]. The need to increase the efficiency and productivity of
processes related to the recovery of sugar as much as possible from sugarcane bagasse
has become a top scientific priority reflected by the huge number of published studies.
For example, Rabelo et al. (2017) presented a paper on biorefineries for the production of
bioethanol, methane, and heat from sugarcane bagasse [55], while Macrelli et al. (2012) car-
ried out a technical-economic evaluation of the production of second generation bioethanol
from sugarcane bagasse [56], which is in line with the study presented by Ramadoss
and Muthukumar (2015) that addressed the topic of increasing productivity using dual
salt on the pretreatment of sugarcane bagasse with hydrogen peroxyde [57]. However,
perhaps the form of energy recovery most associated with sugarcane bagasse is direct
combustion and conversion to charcoal [21]. In this perspective, there are several studies
that characterize samples of sugarcane bagasse from different sources, highlighting the
works originating in Brazil, such as those by Morais et al. (2017), Novotny et al. (2015), or
Zandersons et al. (1999) [58-60], works originating in India, such as those by Shukla and
Kumar (2017), Shanmukharadhya and Sudhakar (2007), or Varshney et al. (2019) [61-63],
or even works originating from other sources, such as the Caribbean or Southeast Asia
region, such as the works by Gongora and Villafranco (2018), by Quintana et al. (1998),
Yevich and Logan (2003), or Arbex et al. (2000) [64—67].

3.2.2. Coconut Shells

Coconut shells are another form of biomass that has a high availability and geographic
distribution, and it is already commonly used for value added goods and services such
as energy production, as well as for the production of high-quality biochar widely used
for conversion into activated carbon materials, used in preparation of filters and adsor-
bent products [68-71]. Energy uses have also been studied by Tsai et al. (2006), where
the products resulting from the rapid pyrolysis of rice straw, sugarcane bagasse, and co-
conut shells in an induction-heating reactor are described, or in the work of Abrahim and
Homenauth (2019), for evaluating the energy potential of the different varieties of coconuts
in Guyana, or the work of Kumar et al. (2003), by analyzing the opportunities for using
coconut shells in Sri Lanka [72-74]. Studies on the most efficient technologies for the en-
ergy recovery of coconut shells are also available. Sundaram and Natarajan (2009) carried
out experimental work with pyrolysis, similarly to works conducted by Said et al. (2015),
Rout et al. (2016), or Ali and Naebulharam (2017) [75-78]. With regard to torrefaction,
there are also some articles, such as those of Chen and Kuo (2010), Tanchuling and De
Leon (2018), or Hilmiyati et al. (2018) [79-81], presenting satisfactory results in conversion
yields and product quality, when compared with similar conversion processes of common
biomasses used in Europe and in the USA [82].

3.2.3. Cashew Nut Shells

Of the materials covered in the present study, cashew nut shells are perhaps the
feedstock with the smallest quantities globally available. However, it can still be considered
an abundant product, with world production divided by several countries, namely Vietnam,
India, Ivory Coast, Philippines, Benin, Tanzania, Mali, Guinea-Bissau, and Brazil [83]. The
energy uses of the biomass generated by the exploitation of the cashew nuts have been
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documented for a long time, namely with the work of Nindi (1991), on the uses of the
cashew nut shells for the production of biochar in Tanzania, or Ramachandra (1998),
on the energy recovery of agricultural waste in the Indian state of Karnataka [84,85].
However, only more recently, studies on the energy recovery of this waste have become
more common, such as with pyrolysis tests and the characterization of the resulting
products by Abrego et al. (2018), or by the valorization through gasification carried out
by Sharma and Kaushal (2020) [86,87]. The main difficulty encountered in handling this
material is related to the amount of oil that normally impregnates the product [88,89],
and the irritant and allergenic properties of the oil that can cause dermatitis and related
problems [90].

3.2.4. Palm Kernel Shells

The industry associated with the production of palm oil is of the utmost importance in
agroforestry sectors in tropical countries, and also the one with the highest productivity [91].
Palm oil is a very broad-spectrum feedstock with uses ranging from food and biofuel
production to cosmetics, soap, or detergents [92]. In fact, this constant demand for palm
oil, given its versatility as a raw material, has also led to the expansion of planted forests of
Elaeis guineensis coming into conflict with native forests in different parts of the world, as
shown by numerous studies. For example, Petrenko et al. (2016) presents the ecological
impacts of this expansion in Indonesia, while de Almeida et al. (2020) assess the long-term
changes in the landscape caused by the expansion of palm cultivation in the Brazilian
Amazon [93,94]. The use of palm oil in the production of biofuels, mainly liquids, is widely
covered in the literature, as shown by the available publications, such as the works of
Benjumea et al. (2008), by Mekhilef et al. (2011), by Al-Widyan and Al-Shyoukh (2002),
by Ong et al. (2011), by Crabbe et al. (2001), or by Noiroj et al. (2009) [95-100]. However,
the palm oil extraction process also results in a set of residues, including oil palm trunks
(OPT), oil palm fronds (OPF), empty fruit bunches (EFB), palm pressed fibers (PPF), palm
kernel shells (PKS), and palm oil thousand effluent (POME), which have been studied over
the years, in order to find a solution for their elimination and/or recovery [101]. The use
of thermochemical conversion pyrolytic technologies has already been addressed such
as by Sabil et al. (2013), Assadullah et al. (2014), Faizal et al. (2018), Jaafar and Ahmad
(2011), or by Rentizelas and Li (2016) [102-106]. The use of direct combustion has also been
widely studied in the works of Pawlak-Kruczek et al. (2020), Odusote and Muraina (2013),
Okoroigwe and Saffron (2012), or by Suheri and Kuprianov (2015) [107-110]. Currently, the
use of residues from the palm oil industry, mainly PKS, is widely used in power generation,
with a steady market installed in Southeast Asia, for supplying biomass to countries such
as Japan and South Korea [111-114].

3.3. Biomass Thermochemical Conversion Technologies

Biomass thermochemical conversion technologies are processes wherein, by manipu-
lating the temperature with an atmosphere poor or without oxygen, biomass undergoes
structural changes that improve its energy properties, increase its grindability, and upgrade
its physical storage capacity, due to an increase in hydrophobicity, and resistance to biotic
agents [115,116]. As previously mentioned, there are several works on the thermochemical
conversion of biomass residues of the most different provenances. However, the upscaling
of conversion from laboratory to industrial production scale is an unchartered territory,
since, currently, there are no large-scale operative production units, which allow confirma-
tion of the promising experimental data made available in recent decades. Some examples
are the works by Nunes (2020) presenting a study on the grindability of agroforestry wastes,
aiming its use as an alternative to coal in coal-fueled power plants, by Gil et al. (2015),
which present a study on the grindability and combustion behavior of coal and torrefied
biomass blends, by the study from Yu et al. (2019), that analyzes the improvement of
energy density and grindability of wood pellets by dry torrefaction, or by the study from
S4 et al. (2020), that analyzes torrefaction in a perspective of pre-treatment of biomass
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for eliminating halogenated products such as chlorine [11,24,117,118]. The principles of
thermochemical degradation can be also utilized for assessing the chemical structure of bio-
materials, through instrumental analysis of the products released by biomass pyrolysis. In
this context, analytical techniques combining pyrolysis with gas chromatography (GC) and
mass spectroscopy (MS), forming the Py-CG-MS system, can be used to identify the degree
of thermochemical conversion of biomass and biochar, allowing to (i) upgrade the stan-
dards of quality evaluation of these materials, (ii) track the termed “combustion continuum”
fundamental in the dynamics of environmental black carbon and carbon sequestration,
and (iii) deepen the insight about the true technological potential of these byproducts.

3.4. Biomass Supply Chains
3.4.1. Short Distance Supply Chains

Short distance supply chains are those shorter than 50 km, or when, even if the
distance is larger, only one transportation mode is used. The methodology of short distance
supply chains is used for describing the process flowsheet from biomass harvesting to the
stage of availability for conversion or recovery, eventually including the last stage of final
consumption after conversion/recovery [119-121]. Several steps can be identified for a
short distance supply chain for a biomass torrefaction unit, shown in Figure 2, where the
different stages of the supply chain are listed, as well as the set of tasks associated with
each stage.
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Figure 2. Definition of the different steps and options that may be present in a short distance supply chain.
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Based on the definition of the different steps and respective tasks, it is possible to
calculate the costs associated with the entire operation, providing the sequence of options
followed during the process, since the model allows the combination of all different options
and tasks between them. The total costs associated with the supply chain are calculated
using Equation (9).

TOC = HOC + TC + PPOC + TSC + FUOC, )

where TOC are Total Operation Costs, HOC are Harvesting Operation Costs, TC are
Transportation Costs, PPOC are Production Plant Operation Costs, TSC are Transportation
and Storage Costs, and FUOC are Final Use Operation Costs.

Each of the costs associated with each step are calculated using Equations (10)—(14).

n
HOC = Op, Costs () Tn=T1+...+Th_1+ Tn), (10)
i=1
n
TC = Op,, Costs (ZTn =T1+...+Tn 1+ Tn), (11)
i—1
PPOC = Op, Costs (} Tn=Ti+...+Tn_1+ Tn), (12)
i=1
n
TSC = Op, Costs ()  Tn=T1+...+Th_1+ Tn), (13)
i=1
n
FUOC = Op,, Costs (Y ‘Ta=Ti+...+Tn1+ Tn), (14)
i=1

where Opn costs are the costs associated with each of the five options and Tn corresponds
to the sequence of the n tasks incorporated to pursue each option. This model includes
all operations of a logistical nature, even those associated with the production process. In
this way, the model intends to exhaustively describe all operations in the process, with the
objective of optimizing the design and operation of the logistical process.

The great difference between the model presented above in relation to other studies,
namely those presented by Pavlou et al. (2016), Perrin et al. (2017), Paolotti et al. (2017)
or Acuna et al. (2019), lies in the fact that these authors do not include the logistics
components that occur inside the biomass recovery units in their analyses, dealing only
with the logistical processes that occur outside of biomass recovery [122-125]. However,
it is understood that, similarly to the treatment that is given in, e.g., automotive industry,
short-distance operations should be evaluated, aiming to eliminate unnecessary operations
and to achieve cost reductions [126-129].

3.4.2. Long Distance Supply Chains

Long distance supply chains are defined by including different types of transportation
systems in their route, usually multimodal, with transfer units, or, in a simpler situation for
being longer than 50 km, the distance usually accepted for the viability of non-densified
biomass transportation [130,131]. These supply chains are associated, for example, with
the supply of solid biofuels to coal-fired power plants, which can use wood pellets in a
cofiring system [132]. For example, currently, North American wood pellet producers have
their preferred markets in Europe and Asia (Japan and South Korea), with supply routes
designed for delivering their predefined products [133-136].

4. Results
4.1. Elemental Analysis

The results obtained in the elementary analysis are shown in Table 2, including
p-values for two-way ANOVA with n = 2 for the effect of feedstock type and thermal
treatment type. This information was added as well in Tables 3-5.



Appl. Sci. 2021, 11, 20 11 0f 23
Table 2. Results obtained in the elemental analysis (average values shown).
Materials Test C (wt%) H (wt%) N (wt%) O (wt%)
As received 47.30 6.56 0.601 45.54
Sugarcane bagasse 300 °C 78.60 6.46 0.381 14.56
400 °C 77.50 7.59 0.305 14.61
As received 53.50 6.39 0.435 39.68
Cashew nutshells 300 °C 69.50 5.19 0.962 24.35
400 °C 76.70 3.49 1.060 18.75
As received 52.00 543 0.322 42.25
PKS 300 °C 58.50 3.56 0.603 37.34
400 °C 56.00 2.90 0.613 40.49
As received 46.70 5.35 0.869 47.08
Coconut shells 300 °C 70.10 3.60 1.120 25.18
400 °C 74.10 3.28 1.030 21.59
p value: feedstock 0.0232 0.0174 0.0013 0.0042
p value: thermal treatment <0.001 0.5446 0.5944 <0.001

The choice of feedstock impacts elemental composition for all measured elements,
with cashew nutshells and PKS having higher carbon, lower nitrogen, and lower oxygen
contents. Hydrogen content is highest in bagasse and cashew nutshells. Thermal treatment
impacts carbon content and oxygen content in all samples, even though there is not a
consistent trend when comparing the 300 °C and 400 °C treatment. This is likely due
to preferential volatilization of oxygen-rich compounds from the biomass, which is not
enhanced by temperatures above 300 °C. For example, in the case of sugarcane bagasse,
wherein, after a rise in carbon content from 47.30% to 78.60% for the test carried out at
300 °C, a slight reduction was observed at 400 °C. A similar situation is observed for
the PKS, where, after a rise from 52.00% to 58.50%, there is a decrease to 56.00%. In
the case of cashew nutshells and coconut shells, values of consecutive rise of 53.50%,
69.50%, and 76.70% and 46.70%, 70.10%, and 74.10%, respectively, were obtained. There
is a tendency similar to carbon for the hydrogen contents in sugarcane bagasse with the
values evolving from 6.56% to 6.46% and 7.59%. In the remaining materials analyzed,
there was a downward trend in the levels of hydrogen content. Nitrogen has a tendency
of content increase with temperature for cashew nutshells and PKS samples, while there
is a downward trend in the content in the case of sugarcane bagasse. In coconut shells,
there was an increase from 0.869% to 1.120% followed by a decrease to 1.030%. The
oxygen content shows a downward trend in cashew and coconut shells, from 39.68% and
47.08% without heating, to 24.35% and 25.18% at 300 °C, and to 18.75% and 21.59% at
400 °C, respectively.

4.2. Proximate Analysis
The results obtained in the proximate analysis are shown in Table 3.
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Table 3. Results obtained in the proximate analysis (average values shown).
Materials Test Moisture (Wt%)  Volatiles (wt%) Ash (wt%) F"‘e(‘:vg,j‘jb“
(]
As received 3.31 82.25 1.36 16.38
Sugarcane bagasse 300 °C 3.79 27.10 4.39 68.52
400 °C 3.67 25.97 5.38 68.65
As received 5.85 81.32 2.04 16.65
Cashew nutshells 300 °C 3.55 48.85 7.24 43.92
400 °C 5.24 22.77 7.42 69.81
As received 2.65 67.86 9.80 22.34
PKS 300 °C 4.54 27.90 15.32 56.78
400 °C 4.59 20.80 18.76 60.44
As received 6.50 70.72 6.38 2291
Coconut shells 300 °C 3.02 27.60 11.21 61.20
400 °C 3.75 20.84 12.81 66.35
p value: feedstock 0.2426 0.0023 <0.001 0.1223
p value: thermal treatment 0.3184 <0.001 <0.001 <0.001

Moisture content does not show a statistically significant variation with respect to
either feedstock or thermal treatment. Moisture presents a generalized downward trend
in all materials, except for sugarcane bagasse, wherein the values are, respectively, 3.31%,
3.79%, and 3.67%. In the case of cashew nutshells, there was a decrease from 5.85% to
3.55%, but followed by an increase to 5.24% for the test carried out at 400 °C, likely related
to the fact that the samples were not stabilized in the desiccator after being removed from
the mulffle. The volatile content shows a downward trend in all samples. The ash content
shows an upward trend in all samples, related to the concentration of non-volatile materials
and directly proportional to the mass losses which were, for 300 °C and 400 °C, and for
each of the materials in the order of Table 1, of 60.16% and 73.63%; 37.77% and 76.67%;
35.79% and 75.46%; and 59.46% and 64.72%, respectively. The fixed carbon content shows
an upward trend in all analyzed samples.

4.3. Determination of Heating Value
The results calculated for HHV and LHV are shown in Table 4.

Table 4. Values calculated for high heating value (HHV) and low heating value (LHV).

Materials Test HHV (MJ/kg) LHV (M]/kg)
As received 19.45 16.85
Sugarcane bagasse 300 °C 33.45 30.89
400 °C 34.37 31.36
As received 22.05 19.52
Cashew nutshells 300 °C 27.69 25.64
400 °C 28.78 27.39
As received 19.97 17.82
PKS 300 °C 20.42 19.01
400 °C 21.38 20.23
As received 17.59 15.47
Coconut shells 300 °C 25.86 24.43
400 °C 27.21 25.92
p value: feedstock 0.0442 0.0823
p value: thermal treatment 0.0181 0.0190

HHYV and LHYV are both impacted by feedstock and thermal treatment (at a 95% level
of confidence). A generalized upward trend was observed in the values of HHV and LHV
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with increasing test temperature in all materials. The maximum values for HHV and LHV
were related with sugarcane bagasse samples at 400 °C with 34.37 MJ/kg and 31.36 MJ/kg,
respectively. PKS samples showed the lower values of HHV and LHV for 300 °C and
400 °C with 20.42 MJ /kg, 21.38 MJ /kg, 19.01 M] /kg, and 20.23 MJ/kg, respectively.
4.4. Material Grindability

The results of grindability, calculated for the HGI, are shown in Table 5.

Table 5. Values calculated for the hard-grove grindability index (HGI).

Materials Test HGI
Sugarcane bagasse 300 OC 2
400 °C 56
300 °C 18
Cashew nutshells 400 °C 60
300 °C 47
PK3 400 °C 57
300 °C 51
Coconut shells 400 °C 60
p value: feedstock 0.3049
p value: thermal treatment <0.001

HGI is not impacted by feedstock choice but is affected by thermal treatment (p < 0.05).
The calculated values were all greater than 50, with the exception of the value obtained for
cashew nutshells at 300 °C and for PKS at 300 °C. In the remaining results, the values were
distributed between 51, for coconut shells at 300 °C, and 60, for coconut shells at 400 °C.

4.5. Specific Density and Energy Density
The results calculated for EDR, MY, and EY are shown in Table 6.

Table 6. Values calculated for EDR, MY, and EY.

Materials Test EDR MY (%) - EY (%)
Susarcanc bazasse 300 °C 1.08 26 285
& & 400 °C 1.10 31 337
300 °C 1.08 62 67.2
Cashew nutshells 400 °C 1.05 23 245
300 °C 1.07 64 72.0
PKS 400 °C 1.07 25 26.4
300 °C 1.06 4 429
Coconut shells 400 °C 1.05 35 37.1

The results obtained for EDR with the tests carried out at 300 °C between 1.06 for
coconut shells and 1.08 for sugarcane bagasse and cashew shells. For the tests carried
out at 400 °C, the values ranged between 1.05 for cashew and coconut shells, and 1.10 for
sugarcane bagasse. MY values, except for sugarcane bagasse, showed a downward trend,
in line with the mass losses presented. EY values followed the same trend as MY, rising for
all materials, except for sugarcane bagasse.

5. Discussion

The main objectives of the characterization of the selected biomasses were the evalua-
tion of their potential for replacing fossil fuels such as coal and possible logistical gains
due a densification of these feedstocks, allowing for a financial feasibility of the transporta-
tion to more distant locations from the origin. Many studies are available on processes
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of physical densification of biomass, namely on the form of pellets and briquettes, such
as the works of Bhattacharya et al. (1989), wherein an analysis of the pioneering state-
of-the-art is presented, of Li and Hiu (2000), which address the issue of high-pressure
densification of wood residues, of Tumuluru et al. (2010), presenting a technical review
on biomass processing, with emphasis on the optimization of the densification process,
of Panwar et al. (2011), presenting a characterization of briquettes made from residual
biomass, of Obidzifiski (2014), addressing the pelletization of waste biomass, or the most
recent works of Bajwa et al. (2018), Zhang et al. (2020), or Nunes (2020), where priority is
given to balancing between the technological properties of densified biomasses vs. their
potential to replace coal in energy production [11,137-142].

It was concluded that physical densification alone was not capable of solving all
logistical problems of biomass conversion, especially these related with properties such
as density and heating value, which allow the materials to become transportable over
long distances [143-148]. Moreover, it was found that, with some residual biomasses,
transport and use away from the origin would be possible only in addition to the physical
densification, an energy densification through thermochemical conversion technologies
such as torrefaction would be carried out (e.g., Uslu et al. (2008), Van der Stelt et al.
(2011), and Chen et al. (2015) [19,149,150]. Thermochemical conversion technologies show
interesting advantages from the point of view of improved logistical properties because
they promote energy densification, as can be easily proven from the results obtained in this
study. As can be seen in Figure 3, the thermo-chemical conversion processes of biomass
promote energy densification, since their products show increases between 28% and 70%
of the available energy per unit of mass.

ML: > 68%

EfC: [30.89—31.36] MJ/kg —— ED: [35~40] %

-

Thermochemical conversion reactor

ML: > 37%

i

Cashew nutshells

EfC: [25.64—27.39] MJ/kg ——» ED: [28—70] %

-

Thermochemical conversion reactor
ML: > 35%

i

PKS

EfC: [17.23—19.01] MI/kg ——» ED: [31—70] %

=

Thermochemical conversion reactor
ML: = 59%

}

Coconut shells

EfC: [24.43-25.92] MJ/kg ——» ED: [40—46] %

-

Thermochemical conversion reactor

Figure 3. Mass and energy balance (EiC-Initial Energy Content, ML-Mass Loss, EfC-Final Energy Content, ED-Energy

Densification).
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From a perspective of cost analysis associated with long-distance maritime transport,
of the transatlantic type, where the vessels used can transport around 60,000 tons of
biomass pellets, it is possible to quantify a reduction in transport costs per unit of energy,
which can vary between 35% and 52%. In the case of smaller boats that carry pellets
within the European space, with capacities of around 7500 tons, the cost reductions are
smaller. However, they are still quite interesting, ranging from 20% to 40%. In other
words, thermochemical conversion technologies present themselves as enhancing the
competitive logistical advantages of biomass products, associated with energy transport.
In addition, the torrefied biomass products show other advantages, presented in the works
of Ciolkosz et al. (2011), Kambo and Dutta (2014), Chen et al. (2018), or Zhang et al. (2020).
These advantages are related to the hydrophobicity of materials, which allow their storage
in less demanding situations, which can be arranged outdoors, similarly to coal. Moreover,
their storage period can even be prolonged indefinitely, since these products do not react
to biological activity [151-154]. This is an advantage, especially for short distance supply
chains, since torrefied or carbonized biomass can also be used as a raw material for other
processes, namely for the production of hydrogen by gasification [155-157].

From the point of view of the aptitude to combustion of the biomasses, there is some
agreement of the results obtained in this work with the results from other previous works.
In the case of sugar cane bagasse, the results of this work are concordant with those
by Nunes et al. (2020), wherein the feasibility of using sugarcane bagasse subjected to
carbonization of biomass at different temperatures was demonstrated, for applications of
energy recovery from biomass products [21].

There are several references regarding torrefaction and pyrolysis of coconut shell, e.g.,
Chen and Kuo (2010), which concludes that severe torrefaction is not recommended to
pretreat biomass due to a high percentage of mass loss and due to the possible difficulty
of densifying torrefied products posteriori [79]. In the work presented by Nasution and
Limbong (2017), it is shown that the average yield is 38.20% for a process temperature
of 348 °C, which agrees with the results obtained in the present work, where, for 300 °C,
a 41% mass yield was obtained, and, for 400 °C, a 35% mass yield was obtained [158].
PKS, perhaps the most studied product, of all those analyzed here, is the product that also
presents the most interesting results, mainly for tests carried out at 300 °C, resulting in
products presenting a MY of 64% and a 72% EY.

Regarding cashew nut shells, there are currently no studies available that can serve as a
point of comparison. However, the results obtained were good, especially mass yield, which
is 62%, and EY, which is 170% relative to tests carried out at 300 °C. These values showed
a significant potential technological upgrading of the feedstock with thermochemical
conversion. In Table 7, the LHV of commercial coals, used for the production of electricity,
is shown with values ranging between 16.1 MJ/kg and 33.4 M]/kg. This LHV range is
similar to the LHV range between 19.01 MJ/kg and 31.36 M]/kg found for the biomass
samples analyzed in this work.

Table 7. Approximate lower heating values (LHV) of standard grades of coal (adapted from Refer-
ences [159,160]).

Coal Grade LHV (M]/kg)
Anthracite 30.1
Semi-Anthracite 32.1
Low-volatile Bituminous 33.4
Medium-volatile Bituminous 32.2
High-volatile Bituminous A 30.5
High-volatile Bituminous B 28.3
High-volatile Bituminous C 25.0
Subbituminous B 21.3
Subbituminous C 20.8

Lignite 16.1
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Another important characteristic of biomass torrefied products is grindability evalu-
ated in this work through the HGI calculation. This characteristic, which defines the greater
or lesser difficulty in grinding a fuel, and, consequently, the amount of energy spent in
the fuel grinding, which must be injected into the furnace. This is one of the stages of the
energy production process wherein the constraints for replacing coal by biomass products
normally occur. Most commercial coals show HGI values > 50 [161], whereas fuels such as
non-thermally processed biomass have HGI values < 50 [162], indicating that the amount
of energy needed to pulverize the products from torrefaction or pyrolysis is similar to that
of coals. This quality upgrading delivered through the thermochemical conversion turns
biomass, in its different forms, as an alternative to the use of coal for energy production.
This was previously shown by authors such as Nunes et al. (2014), Proskurina et al. (2017),
Nunes (2020), or Sher et al. (2020) [11,163-165].

However, despite the evident advantages found in the use of forms of biomass,
especially those that fit into the residual forms, due to its enormous availability and low
cost, the logistical disadvantages remain, associated with its low density and with the
significant distances between the origin to the point of consumption. These challenges can
still be overcome through a physical densification process such as palletization added to
energetic densification by torrefaction, carbonization, or pyrolysis [166]. Economic issues
related to the transportation of biomass take on an often-decisive role with regard to the
use and recovery of these materials, especially those that are considered residual. The
costs associated with transport vary widely from case to case, namely due to the issues
related to the density, inherent to the type of material, but also to the distances to which
the materials have to be transported. It is, at this point, that the energetic densification of
materials assumes a decisive role, since it can enhance their transport over greater distances,
especially intercontinental transport, creating a true value chain for waste materials, in
a perspective of circular economy. This value chain, if possible, will allow products that,
until now, have no use, or at least do not have a use that values waste completely, to be
incorporated into a global supply chain, serving as alternative, traditional fossil fuels. This
path presents itself as a true tool for mitigating climate change, by contributing to the
reduction of GHG emissions.

6. Conclusions

The use of residual biomass as an energy alternative to the use of fossil fuels presents
itself as a possibility that assumes increasing importance. In fact, the availability of these
materials, combined with their dispersion, makes them very viable alternatives. However,
despite these apparent competitive advantages, in the vast majority of cases, it is necessary
to use technologies that promote energy densification, while improving other properties,
such as grindability, the reduction of humidity, or hydrophobicity. Thermochemical con-
version technologies play an important role in this context, since they allow obtaining
products with optimized combustible properties from residual biomasses while improving
the perspectives of logistics involved in the transport process between the locations of
production and consumption in which the latter is associated with energy production.
Overall, the results were very positive with EY values ranging from 24.5%, for samples of
cashew nutshells processed at 400 °C, to 72%, for PKS samples processed at 300 °C. At the
same time, there is an increase in the values calculated for the HGI, which, in all situations,
approach, or exceed, the value of 50, considered to be the most common value found in
commercial coals. These results clearly showed the existence of a significant increase in
the energy density of the products from thermochemical conversion processes such as
torrefaction or pyrolysis. An additional optimization of the logistic transport processes
is possible if the thermochemical conversion is associated with physical densification
processes, such as pelletization or briquetting. This possibility allows the creation of a
value-added chain for waste materials in a real perspective of a circular economy, at the
same time that it contributes to the creation of an alternative to fossil fuels. However,
further studies are needed, mainly related to the combustion of residual biomasses in their
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different states of thermochemical conversion, to verify the potential for the occurrence of
corrosive, fouling, and slagging phenomena, as well as the combustion stability when used
in co-firing processes with coal.
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