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Abstract: Rapidly increasing mobile data traffic have placed a significant burden on mobile Internet
networks. Due to limited network capacity, a mobile network is congested when it handles too much
data traffic simultaneously. In turn, some customers leave the network, which induces a revenue loss
for the mobile service provider. To manage demand and maximize revenue, we propose a dynamic
plan control method for the mobile service providers under connection-speed-restriction pricing.
This method allows the mobile service provider to dynamically set the data plans’ availability for
potential customers’ new subscriptions. With dynamic plan control, the service provider can adjust
data network utilization and achieve high customer satisfaction and a low churn rate, which reflect
high service supply chain performance. To find the optimal control policy, we transform the high-
dimensional dynamic programming problem into an equivalent mixed integer linear programming
problem. We find that dynamic plan control is an effective tool for managing demand and increasing
revenue in the long term. Numerical evaluation with a large European mobile service provider further
supports our conclusion. Furthermore, when network capacity or potential customers’ willingness to
join the network changes, the dynamic plan control method generates robust revenue for the service
provider.

Keywords: demand management; dynamic plan control; mobile Internet network congestion;
connection-speed-restriction pricing

1. Introduction

Mobile data traffic have exploded with the wide popularity of mobile Internet service
and the exponential growth of mobile applications. According to the Cisco Visual Net-
working Index released in February 2019 [1], global mobile data traffic have grown 17-fold
from 2012 to 2017 and will continue growing at a compound annual growth rate (CAGR)
of 46% from 2017 to 2022, reaching 77.5 exabytes per month by 2022. To handle rapidly
increasing data traffic, new technology for wireless communications is needed. However,
it takes a long time to promote technology. For example, the second-generation of wireless
telecommunications technology (2G) appeared ten years before the third-generation (3G),
followed by the fourth-generation (4G) eight years later. The fifth-generation of wireless
telecommunications was developed fast, but it still took six years to finally launch 5G [2].
According to the technology characteristics, the capacity of the mobile network is fixed
during the same generation of wireless telecommunications.

Customers use ever-increasing mobile Internet data while the mobile network capacity
is fixed during several years of the same generation. As a consequence, limited mobile
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network capacity is threatened by immense data traffic. Specifically, when a mobile
network handles too much data traffic simultaneously, network congestion occurs [3,4].
Network congestion leads to customer dissatisfaction in this wireless service supply chain.
For example, Internet web pages cannot be displayed quickly, and videos cannot be played
smoothly. In turn, customer dissatisfaction drives a number of customers to leave the
wireless network and then influences the service provider’s revenue and the wireless
service supply chain’s performance. Therefore, mobile service providers should take the
potential network congestion into consideration while maximizing revenue [5]. To this end,
several demand management methods considering congestion have been proposed and
studied, such as time-of-day pricing [6] and Wi-Fi offloading [7]. A detailed discussion of
these demand management methods is included in the literature review.

It is worth noting that the pricing scheme, where demand management methods
apply, has evolved with the progression of wireless telecommunications technology. In the
1980s, the first-generation of wireless telecommunications technology (1G) was launched.
Its connection speed was only 2.4 Kb/s (1 Gb = 1024 Mb; 1 Mb = 1024 Kb) , and users could
only make voice calls. At this time, flat-rate pricing dominated, which charges each user a
fixed fee per session independently of the user’s data usage. As wireless telecommunica-
tions technology upgraded to the second-generation (2G) and third-generation (3G), the
connection speed could reach up to 10 Mb/s. Multimedia services emerged, such as the
global positioning system (GPS) and video conferencing [8]. In the era of 2G and 3G, people
used mobile Internet for different purposes, which made data usage vary greatly from one
user to another. In 2011, the top 1% of mobile Internet users generated approximately 35%
of the traffic over the world [9]. To better match a customer’s cost with her/his data usage,
many service providers moved away from the simple flat-rate pricing to metered pricing,
which charges a user in proportion to her/his data usage. In contrast to flat-rate pricing,
metered pricing is concerned about not only whether a customer uses the data service, but
also how much data she/he consumes.

Since the fourth-generation of wireless telecommunications technology (4G) was
launched around 2009, connection speed has been greatly improved to 100 Mb/s. Mobile
Internet service is fast becoming an integral part of people’s daily life and is used through
various kinds of applications, including mobile videos, file transferring, social network
services, etc. Most people already consider mobile Internet service as a necessity. In contrast
to spending too much for mere access to mobile networks, people are more willing to pay for
a high connection speed. This is where connection-speed-restriction pricing comes into play.
Under connection-speed-restriction pricing, data usage is unlimited for users. However,
when a user’s data usage exceeds a threshold in a billing period, her/his connection speed
will be decreased. Throughout the rest of the current billing period, she/he can continue
using mobile Internet, but at the restricted speed. To re-obtain full-speed mobile Internet
service, the user needs to buy the supplementary data package or wait until the beginning
of the next billing period. In contrast to flat-rate pricing and metered pricing, connection-
speed-restriction pricing considers the connection speed, which is the focus for customer
experience.

In practice, connection-speed-restriction pricing plays an increasingly important role
in mobile Internet pricing. A study conducted on North American mobile service providers
showed that the percentage of data plans offered under connection-speed-restriction pricing
had grown from 39% in September 2016 to 66% in August 2018 [1]. In the arriving era of
5G, connection speed can reach up to 1 Gb/s, which is much faster than the speed of the
4G network. Hence, mobile service providers will have a strong motivation to employ
connection-speed-restriction pricing in the 5G era.

Technically, the restriction of a user’s connection speed is achieved by shifting her/his
data connection from a high-generation network to a low-generation network. For example,
if a service provider uses a 5G network to provide full-speed data service, the restriction
of a user’s connection speed can be achieved by shifting his/her data connection from a
5G network to a 3G network or even a 2G network. Most importantly, a 5G connection
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provides much higher connection speed than a 3G connection. According to Qualcomm’s
experiment, a 5G connection provides over 100 times faster speed on average than a 3G
connection. This fact provides valuable insight into demand management while consider-
ing network congestion. On the one hand, if too many customers buy the supplementary
data package to use full-speed data service in the high-generation network, then the mobile
network is highly prone to congestion. On the other hand, if too many customers do not
buy the supplementary data package, then the service provider wastes the network capac-
ity and loses potential revenue. Therefore, how can a wireless service provider manage
demand and maximize revenue under connection-speed-restriction pricing? We explore
this issue in our paper.

Based on connection-speed-restriction pricing, we propose a dynamic plan control
method. With this method, a wireless service provider can dynamically control which data
plans are open and which data plans are closed for new customers at the beginning of each
period. Here, each period refers to one month, one quarter, or another time dimension
according to the service provider’s state of operation. In each period, new customers
can only subscribe to one of the open data plans. The close of a plan only prevents new
customers from subscribing to it during a certain period, while old customers of this plan
can still use and pay for it during this period. Therefore, the service provider can take the
limited network capacity into consideration and maximize revenue in the long term by
this dynamic plan control method. At the same time, customer experience is ensured, and
supply chain performance is enhanced.

Our study has three contributions. First, we take the limited network capacity into
consideration and build a dynamic plan control model. The traditional dynamic pricing
of mobile data plans focuses on finding the optimal pricing parameters by assuming that
network capacity is unlimited. However, with the rapid growth of data traffic, network
capacity has become a bottleneck that affects how service providers can address customers’
demand. This research attempts to offer new insights into managing demand when network
capacity is limited. Compared with the all plans always open method, which is currently
implemented by most mobile service providers, our dynamic plan control method can
dynamically open a subset of data plans for new customers at the beginning of each period.
This dynamic control allows the service provider to adjust data network utilization and
achieve high customer satisfaction and a low churn rate, which reflect high service supply
chain performance.

Second, we provide a framework to model the behaviors of service providers and
customers under connection-speed-restriction pricing. Despite the growing popularity of
connection-speed-restriction pricing, little research has been devoted to demand manage-
ment under this pricing scheme. Our study addresses this issue and models the behaviors
of both service providers and customers under connection-speed-restriction pricing.

Third, the service provider’s optimization problem is a dynamic programming prob-
lem. Due to the high-dimensional property of the problem, it is difficult to implement
backward induction. To solve the problem efficiently, we propose an equivalent mixed inte-
ger linear programming (MILP) formulation. Through numerical evaluation, the efficiency
of the solution method is further validated.

The remainder of this paper is organized as follows. We conduct a brief review of the
relevant literature in Section 2. In Section 3, we describe the models of the service provider
and customers. Section 4 provides the solution approach, and Section 5 examines the
effect of our model with numerical experiments. Finally, Section 6 offers some concluding
remarks and future research directions.

2. Literature Review

Our research relates to two topics in the literature: the pricing scheme used for mobile
data service and the demand management methods considering congestion used by mobile
service providers. In this section, we review the relevant works on these two topics.
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2.1. Pricing Scheme

The pricing scheme used for mobile data service has evolved in the past two decades.
Because flat-rate pricing is easy to implement and quite effective in stimulating data
demand [10], it was popular when the total market demand for data service was low.
As data demand grew, mobile service providers moved to metered pricing, where a
customer is charged a fixed fee first and then a per-unit fee. In contrast to flat-rate pricing,
metered pricing allows mobile service providers to facilitate price discrimination and
thereby increase their revenue [11,12]. In practice, there are two versions of metered
pricing: two part pricing and three part pricing. The difference is that three part pricing
bundles some allotted data into the fixed fee, but two part pricing does not (see Figure 1a,b).
Danaher [13] studied two part pricing and found the optimal fixed fee and per-unit fee for
the revenue-maximizing strategy. In addition, they showed that the fixed fee and per-unit
fee have different relative effects on the demand and retention of users.

A similar investigation analyzed three part pricing. Reference [14] assumed that
each consumer has a predetermined demand. He showed that for consumers who are
not overconfident, the firm’s optimal strategy is a high fixed fee and thus takes all of
the consumers’ surplus. Furthermore, the firm’s profit increases if the consumers are
overconfident. Later, Reference [15] characterized the optimal three part pricing plan
under more general conditions. Based on a global bound for the service provider’s profit,
they employed a methodology that was different from the standard first-order conditions
approach and showed that this bound is attained using the optimal plan. In addition,
some researchers compared two part pricing and three part pricing and tried to find which
one was better for service providers. Reference [12] concluded that a relatively small menu
of three part pricing can be more profitable than a menu of two part pricing of any size.
In contrast, Reference [16] showed that the optimal three part pricing outcomes are identical to
the optimal two part pricing outcomes when the market demand follows an increasing price
elasticity or when the consumer distribution approximately follows an increasing hazard rate.

Data usage  

Fixed 

fee

 

 

Price

(a) Two-part Pricing

Data usage  

 

 

Price

(b) Three-part Pricing

Allotted data

Fixed 

fee

Data usage  

 

 

Price

(c) Connection-speed-restriction Pricing

Two options 

for customers

Pay the premium

Not pay the premium

Threshold

Fixed 

fee

Figure 1. Two part pricing, three part pricing, and connection-speed-restriction pricing.

Since we entered the era of 4G, connection-speed-restriction pricing has rapidly be-
come a popular pricing scheme used by the industry. Figure 1 shows the differences
among two part pricing, three part pricing, and connection-speed-restriction pricing. In an
overview of smart data pricing, Sen et al. [17] addressed connection-speed-restriction
pricing as a new trend of data pricing. However, to the best of our knowledge, few studies
have been devoted to connection-speed-restriction pricing. Our study aims to fill this gap.

2.2. Demand Management Considering Congestion

Another relevant stream of the literature is demand management methods considering
congestion in mobile Internet networks. As the demand for data service grew dramatically,
demand management has become a new challenge for service providers. Research on
demand management is conducted mainly considering two concepts, time-dependent
pricing and the traffic offloading mechanism, which aim to relieve network congestion by
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giving users incentives to shift their mobile data demand to less-congested time periods or
to supplementary networks (such as Wi-Fi) [18].

Time-dependent pricing has many variants. The most basic version is time-of-day
pricing, which charges users a higher price for data usage during certain “peak” hours of
the day than at other times of the day, so that network congestion in these time periods
can be relieved [19–21]. In contrast to time-of-day pricing, day-ahead pricing computes
new prices for different times of the next day in advance, based on predicted congestion
levels. Reference [22] showed that day-ahead pricing benefits both service providers and
customers, flattening the temporal fluctuation of data demand while allowing users to
save money by choosing the time and volume of their usage. Besides, day-ahead pricing is
also used in the electricity pricing context. Reference [23] considered a model for a single
smart home and for a community (multiple homes) with different priorities. The priority
was assigned to each appliance by electricity consumers. In their scheme, day-ahead real
time pricing (DA-RTP) and critical peak pricing (CPP) were utilized to calculate electricity
cost. Time-dependent pricing typically requires information about user demand [24,25].
To obtain a reliable forecast of user demand, Reference [26] built a multiple equation
time-series model. For day-ahead forecasting, the mean absolute percentage error (MAPE)
returned by the model over a period of 11 years was an impressive 1.36%, which is superior
to all benchmarks that the authors chose.

In addition to time-dependent pricing, service providers can manage demand by
encouraging users to shift some of their data traffic to supplementary networks such as
Wi-Fi [27]. Reference [28] noted that the success of such a “traffic offloading” strategy
largely relies on the economic incentives provided to users. Reference [29] proposed a novel
congestion-optimal Wi-Fi offloading (COWO) algorithm based on the subgradient method,
which aims to obtain the optimal offloading ratio for each access point to maximize the
throughput and minimize network congestion. Reference [30] proposed a downloading
mechanism in different vehicular networks that comprises an ad hoc network and a cellular
network. In this mechanism, roadside units act as traffic managers to collect data from
the Internet and then distribute them to vehicles in an approximately optimal manner.
Reference [31] constructed an intelligent offloading method for vehicular networks. They
jointly utilized licensed cellular spectrum and unlicensed channels and used the real data
of the traces of taxies to illustrate the effectiveness of the solution. In general, Reference [18]
stated that the realizations of time-dependent pricing and traffic offloading can help create
a financial win-win solution for service providers and their users.

Although time-dependent pricing and traffic offloading mechanisms have been proven
to be helpful in demand management, they have some drawbacks and limitations [18,32].
Time-dependent pricing makes the price change too frequently, which leads to extra costs,
including operational costs and costs to help consumers in understanding and making a
selection from a complex menu of choices [33]. Traffic offloading seems to be the direction
in which many service providers are going today, but it requires investment in expanding
wired and wireless network capacities.

To meet these challenges, we propose another demand management tool, the dynamic
plan control method, which can dynamically control open and closed plans for potential
customers in each period to relieve mobile network congestion. Moreover, we innovatively
apply it in the framework of connection-speed-restriction pricing, which is increasingly
popular now that 4G and 5G are available.

3. The Model

A mobile service provider (SP) employs connection-speed-restriction pricing and
offers m different data plans. The information about the data plans is pre-announced to the
customers. We consider a market composed of a large number of customers. The customer
population, denoted by N, is deterministic.

All data plans give customers unlimited data. The differences between the data plans
are their prices and allotted volumes of full-speed data. We denote bi as the price per period



Appl. Sci. 2021, 11, 91 6 of 23

of data plan i and vi as the allotted volume of full-speed data in data plan i. To use the data
service, a customer needs to subscribe to a data plan first. Connection-speed-restriction
pricing implies that for a customer subscribed to data plan i, his/her individual data speed
will be restricted after he/she uses up the allotted volume of full-speed data vi in his/her
data plan. If the customer wants to re-obtain full-speed data connection, he/she needs to
buy the supplementary data package or wait until the beginning of the next period.

The supplementary data package (SDP) provides the customers with additional full-
speed data. In addition, the purchase of the supplementary data package can be performed
repeatedly as desired. According to the SP’s arrangement, different data plans may offer
different supplementary data packages. A customer can only buy the supplementary data
package that is attached to his/her data plan. In this paper, we consider the situation
in which each data plan offers only one type of supplementary data package. For the
ease of exposition, we address the supplementary data package attached to data plan i as
“supplementary data package i”. We denote bs

i as the price per purchase of supplementary
data package i and vs

i as the additional volume of full-speed data within supplementary
data package i. For example, if a customer subscribes to data plan i and wants to consume
data volume vi + 3vs

i at full speed in one period, then she/he needs to buy supplementary
data package i three times, and her/his total cost in this period is bi + 3bs

i .
An overview of the data plan parameters is given in Table 1, and the mechanism of

connection-speed-restriction pricing is illustrated in Figure 2.

Table 1. Parameters of the data plan and supplementary data package (SDP).

Data plan i
vi = The allotted volume of full-speed data within data plan i

bi = The price per period of data plan i

Supplementary
data package i

vs
i = The additional volume of full-speed data gained by purchasing

supplementary data package i

bs
i = The price per purchase of supplementary data package i
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Figure 2. Mechanism of connection-speed-restriction pricing.

For the ease of discussion, we sort all data plans by price; that is, b1 < · · · < bi <
· · · < bm. Then, the allotted volumes of full-speed data within all data plans satisfy
v1 < · · · < vi < · · · < vm. In addition, we make the following assumptions.

Assumption. For all data plans and supplementary data packages, we have:

1.
b1

v1
≥ · · · ≥ bi

vi
≥ · · · ≥ bm

vm
,

2.
bs

1
vs

1
≥ · · · ≥

bs
i

vs
i
≥ · · · ≥ bs

m
vs

m
,
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3. bi+1 < bi +

⌈
vi+1 − vi

vs
i

⌉
· bs

i , ∀i = 1, 2, · · · , m− 1.

These three assumptions are mild and easily satisfied in real practice. Assumptions 1
and 2 are straightforward: a high-priced data plan (and its corresponding supplementary
data package) means a low unit price of full-speed data. Assumption 3 implies that when a
customer’s full-speed data usage is larger than a critical value, a higher price data plan is
always preferred by the customer over a lower price data plan.

Because the network capacity is fixed, network congestion occurs when the overall
data traffic in the network exceeds a threshold. Network congestion influences the customer
experience, resulting in a number of customers leaving the network. To manage network
congestion, the service provider can use the dynamic plan control method. With this
method, the service provider opens a subset of data plans in each period, and potential
customers can subscribe to only the open data plans. Let Ci,t be a binary variable indicating
the open/closed status of the data plan i in period t. Ci,t = 1 if the data plan i is open in
period t, and Ci,t = 0 otherwise. In the following, we model the behaviors of the service
provider and customers and then give the service provider’s revenue function.

3.1. Decisions of Potential Customers

Potential customers are those who are not in the service provider’s network. In each
period, a potential customer decides whether to join the service provider’s network first and
then chooses a data plan from all open data plans. As illustrated in Figure 3, the decision
process is investigated in two stages. In Stage 1, the probability that a potential customer
joins the network, denoted by λ, reflects the potential customer’s willingness to join
the network. This willingness is influenced by the service provider’s reputation and
advertising rather than the dynamic plan control. To avoid unnecessary complexity, we let
λ be exogenous and constant over periods. In Stage 2, we denote pi,t as the probability
that a potential customer subscribes to data plan i in period t. By definition, we have
∑m

i=1 pi,t = 1.
In Stage 2, a potential customer chooses a data plan based on his/her forecast of data

demand. Let D̂ be the potential customer’s forecast of data demand in a single period. The
potential customers’ demand forecasts are heterogeneous and distributed independently
and identically with a cumulative distribution function F(D̂), which is common knowledge
to both the service provider and customers. For a potential customer with demand forecast
D̂, we denote ri(D̂) as the cost for using data service at full speed in a single period if
she/he subscribes to data plan i. Then, we have:

ri(D̂) = bi +

⌈
(D̂− vi)

+

vs
i

⌉
· bs

i .

When deciding which data plan to choose in Stage 2, the potential customers are
concerned about both speed and cost. They choose the data plan that provides full-speed
data service with minimal cost in all open plans. Therefore, pi,t can be formulated as:

pi,t = Pr

(
Ci,t = 1, ri(D̂) ≤ min

j:Cj,t=1
rj(D̂)

)
.
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 A potential
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Not join the network

Join the network

Subscribe to data plan 1

Subscribe to data plan 2

Subscribe to data plan m

Subscribe to data plan i

w.p. 𝜆 

w.p. 1− 𝜆 
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w.p. 𝜆𝑝2,𝑡  

w.p. 𝜆𝑝𝑖,𝑡  

w.p. 𝜆𝑝𝑚 ,𝑡  

Figure 3. Decisions of the potential customers.

3.2. Characteristics of the Subscribed Customers

For a customer subscribed to data plan i, we introduce a vector (Ui, U f
i ), where Ui

is his/her total data usage (including full-speed data usage and restricted-speed data
usage) in a period and U f

i is his/her full-speed data usage in a period. In each period, the
subscribed customer consumes data continuously throughout the entire period. Therefore,
the vector (Ui, U f

i ) is random at the beginning of the period and realized at the end of
the period.

We model two key characteristics of the subscribed customers’ behavior. First, a cus-
tomer’s total data usage does not necessarily equal her/his data demand forecast, despite
the fact that the customer chooses the data plan based on her/his data demand forecast.
Generally, the customer’s total data usage fluctuates around the volume of full-speed
data in her/his data plan. This is reasonable because if the customer’s total data usage
is far below vi, then she/he should have subscribed to a “low-priced” data plan. If the
customer’s total data usage is far beyond vi, then she/he should have subscribed to a “high-
priced” data plan. Therefore, we assume that the expected volume of the customer’s total
data usage equals the volume of full-speed data in her/his data plan; that is, E[Ui] = vi.
In addition, we assume that the total data usage of all customers subscribed to plan i are
distributed independently and identically with a cumulative distribution function Fi(Ui).
Moreover, Fi(Ui) is homogeneous over periods.

Second, if a subscribed customer wants to consume more full-speed data than the
allotted volume within his/her data plan, he/she purchases the supplementary data
package repeatedly to maintain full speed throughout the entire period. This assumption
is reasonable because the marginal price for any supplementary data package is constant.

We can classify the subscribed customers of data plan i into three categories: A, B,
and C. For a customer of category A, her/his total data usage does not exceed the allotted
full-speed data vi. For a customer of category B, the total data usage exceeds vi, but he/she
does not purchase the supplementary data package. For a customer of category C, the total
data usage exceeds vi, and she/he purchases the supplementary data package i repeatedly.
The customers of category A and category C use data at full speed throughout the entire
period. However, the customers of category B use the restricted-speed data service, which
leads to customer dissatisfaction. An overview of the three categories is given in Table 2.
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Table 2. Three categories of subscribed customers.

Total Data Usage
Ui

Willing to Buy
SDP

Full-Speed Data
Usage U f

i

Price to Pay in
One Period

Customer
Satisfaction

Category A ≤ vi Not necessary = Ui = bi Yes
Category B > vi No = vi = bi No
Category C > vi Yes = Ui = bi + k · bs

i Yes

Let Si,t be the number of customers subscribed to data plan i at the beginning of
period t. Let SA

i,t, SB
i,t, and SC

i,t be the number of customers in the A, B, and C categories,
respectively. By definition, we have Si,t = SA

i,t + SB
i,t + SC

i,t. In addition, we define wi =

SC
i,t/(S

B
i,t + SC

i,t), which reflects the customers’ willingness to purchase supplementary data
packages. We assume that wi is constant over periods.

In period t, the customers of both A and B categories pay bi. The service provider’s
revenue generated from the customers of category A and category B is:

m

∑
i=1

(SA
i,t + SB

i,t) · bi.

To formulate the revenue generated from the customers of category C, we need to
further differentiate the data usage. We define k (k ∈ N+) as an integer that satisfies
vi + (k − 1) · vs

i < Ui ≤ vi + k · vs
i , where k denotes the number of supplementary data

packages a category C customer with data usage Ui purchases in a single period. Let SC,k
i,t

be the number of subscribed customers of data plan i who purchase k supplementary data
packages in period t. Then, the service provider’s revenue generated from the customers
of category C in period t is:

m

∑
i=1

k∗t

∑
k=1

SC,k
i,t · (bi + k · bs

i ),

where k∗t denotes the largest k in period t.

3.3. Network Congestion and Plan-Leaving Characteristics

Network congestion occurs when total full-speed data usage exceeds a threshold. Let
Gt be a binary variable indicating whether network congestion occurs in period t. Gt = 1 if
network congestion occurs in periods t, and Gt = 0 if not.

For a subscribed customer of data plan i, the expected volume of full-speed data usage
in a single period is E[U f

i ]. By definition, we have:

E[U f
i ] =

∫ vi

0
Ui · fi(Ui) dUi + vi · [1− Fi(vi)] · (1− wi) +

∫ ∞

vi

Ui · fi(Ui) · wi dUi.

When the subscribed customers feel unsatisfied with the service, they may quit the
service. There are multiple reasons that lead to customer dissatisfaction, but we model
only the two most important reasons, namely network congestion (NC) and individual
speed restriction (ISR). Let qP

i,t be the probability that a customer quits the service when
NC happens but ISR does not and qE

i,t be the probability that a customer quits the service
when ISR happens, but NC does not.

Let qi,t be the probability that a subscribed customer quits the service. Because network
congestion and individual speed restriction are two independent events, we have:
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qi,t =

{
F̄i(vi)(1− wi)qE

i,t , if NC does not happen in period t
qP

i,t + [F̄i(vi)(1− wi)qE
i,t]− qP

i,t · [F̄i(vi)(1− wi)qE
i,t] , if NC happens in period t

(1)

3.4. Dynamic Programming Formulation

We consider a total of T periods. In period t, the population size of potential customers
is N −∑m

i=1 Si,t. Each potential customer either subscribes to a data plan or does not join
the network. Let Yi,t be the number of new customers subscribing to data plan i in period
t. Therefore, we can build a multinomial distribution model for Yt = (Y1,t, · · · , Ym,t); that
is, Yt ∼ PN(N −∑m

i=1 Si,t : λp1,t, · · · , λpm,t). For all 0 ≤ ∑m
i=1 yi,t ≤ N −∑m

i=1 Si,t, we have
the probability mass function:

Pr(Yt = yt) = Pr(Y1,t = y1,t, · · · , Ym,t = ym,t)

=

(N −
m
∑

i=1
Si,t)!(1− λ)

(N−
m
∑

i=1
Si,t−

m
∑

i=1
yi,t)

(λp1,t)
y1,t · · · (λpm,t)ym,t

(N −
m
∑

i=1
Si,t −

m
∑

i=1
yi,t)!(y1,t)! · · · (ym,t)!

.

Similar to the classification we employ for subscribed customers, we classify new
customers into three categories and denote YA

i,t , YB
i,t, and YC

i,t as the number of new customers
in the A, B, and C categories, respectively. In addition, we assume that YC

i,t/(Y
B
i,t +YC

i,t) = wi.
The willingness to purchase supplementary data packages is heterogeneous for customers
with different data plans, but homogeneous for old customers and new customers.

Let Li,t be the number of customers quitting plan i at the end of period t. A sub-
scribed customer either does not quit the service or quits the service at the end of period.
Therefore, we can build a binomial distribution model for Lt = (L1,t, · · · , Lm,t); that is,
Li,t ∼ B(Si,t, qi,t). For all 0 ≤ li,t ≤ Si,t, we have the probability mass function:

Pr(Lt = lt) = Pr(L1,t = l1,t) · · · · · Pr(Lm,t = lm,t)

=
m

∏
i=1

Si,t!
li,t!(Si,t − li,t)!

(qi,t)
li,t(1− qi,t)

Si,t−li,t .

Let Vt(St) be the service provider’s maximum revenue from period t to the end, start-
ing at state St = (S1,t, · · · , Sm,t) at the beginning of period t. The dynamic programming
problem, which is to maximize Vt(St) by choosing the right Ci,t, can be written as follows:

(DP1) Vt(St)

=
m

∑
i=1

(
E[SA

i,t] +E[SB
i,t]
)
· bi +

m

∑
i=1

k∗

∑
k=1

E[SC,k
i,t ] · (bi + k · bs

i )

+ max
Ct∈{0,1}m

{
m

∑
i=1

(
E[YA

i,t ] +E[YB
i,t]
)
· bi +

m

∑
i=1

k∗

∑
k=1

E[YC,k
i,t ] · (bi + k · bs

i ) +E[Vt+1(St+1)]

}
, ∀ t.

The transition function is St+1 = St + Yt − Lt, and the boundary conditions are
VT+1(ST+1) = 0 for all ST+1.

4. Solution
4.1. Formulation of the Continuous State Problem

The service provider’s optimization problem is a dynamic programming problem
with discrete states. In practice, the customer population N is so large that the traditional
backward induction solution is hard to implement. For this reason, we proceed to analyze
the continuous state problem in limiting case N → +∞.



Appl. Sci. 2021, 11, 91 11 of 23

To characterize the percentage of customers already in data plan i at the begin-
ning of period t, we define θi,t = lim

N→+∞
Si,t/N. For convenience, we define θ0,t =

lim
N→+∞

(N −∑m
i=1 Si,t)/N. Moreover, we let Vt(θt) be the service provider’s maximum aver-

age revenue per customer from period t to the end, starting at state θt = (θ0,t, θ1,t, · · · , θm,t).
To simplify the expression, we let:

ρi =
k∗t

∑
k=1

[Fi(vi + kvs
i )− Fi(vi + (k− 1)vs

i )] · (1 + k ·
bs

i
bi
),

where ρi can be interpreted as the expectation that a customer of category C has to pay
more than customers of category A or B.

The dynamic programming problem (DP2) can be written as follows:

(DP2) Vt(θt)

=
m

∑
i=1

θi,t · [Fi(vi) + F̄i(vi) · (1− wi) + ρi · wi] · bi

+ max
Ct∈{0,1}m

{
θ0,t ·

m

∑
i=1

λpi,t · [Fi(vi) + F̄i(vi) · (1− wi) + ρi · wi] · bi +E
[
Vt+1(At(θt, It) · θt)

]}
, ∀ t.

The boundary conditions are VT+1(θT+1) = 0 for all θT+1. The transition matrix
At(θt, Ct) can be formulated as:

At(θt, Ct) =

[
A1 A2
A3 A4

]
,

where A1 ∈ R, A2 ∈ R1×m, A3 ∈ Rm×1, and A4 ∈ Rm×m with:

A1 = 1−
m

∑
i=1

λ · pi,t,

{A2}i = λ · pi,t, ∀ i,

{A3}ĩ = qĩ,t, ∀ ĩ,

{A4}iĩ =

{
1− qi,t, if i = ĩ, ∀ i, ĩ,
0, if i 6= ĩ, ∀ i, ĩ.

According to the definition of θi,t, we have:

∑m
i=1 θi,t · [Fi(vi) + F̄i(vi)(1− wi) + ρi · wi] · bi

= ∑m
i=1 lim

N→∞

Si,t
N · [Fi(vi) + F̄i(vi)(1− wi) + ρi · wi] · bi

= lim
N→∞

1
N {∑

m
i=1[Si,tFi(vi) + Si,t F̄i(vi)(1− wi)] · bi

+ ∑m
i=1 Si,t ·∑

k∗t
k=1

[
Fi
(
vi + kvs

i
)
− Fi

(
vi + (k− 1)vs

i
)]
· (bi + k · bs

i )
}

= lim
N→∞

1
N

{
∑m

i=1

(
E[SA

i,t] +E[SB
i,t]
)
· bi + ∑m

i=1 ∑
k∗t
k=1 E[S

C,k
i,t ] · (bi + k · bs

i )
}

, ∀ t. (2)

Analogously, we can derive:

max
Ct∈{0,1}m

{
θ0,t ∑m

i=1 λ · pi,t · [Fi(vi) + F̄i(vi)(1− wi) + ρi · wi] · bi
}

= lim
N→∞

1
N max

Ct∈{0,1}m

{
∑m

i=1

(
E[YA

i,t ] +E[YB
i,t]
)
· bi + ∑m

i=1 ∑
k∗t
k=1 E[Y

C,k
i,t ] ·

(
bi + k · bs

i
)}

, ∀ t. (3)
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Summing (2) and (3) over t and plugging them into the formulation of Data Plan 2
(DP2), we obtain:

Vt(θt) = lim
N→∞

Vt(St)

N
, ∀ t.

Due to the strong law of large numbers, we can reformulate θi,t+1 and θ0,t+1 as follows.

θi,t+1 = lim
N→∞

Si,t+1

N

= lim
N→∞

Si,t + Yi,t − Li,t

N
= θ0,t · λpi,t + θi,t · (1− qi,t), ∀ i, t. (4)

θ0,t+1 = 1−
m

∑
i=1

θi,t+1

= 1−
m

∑
i=1
{θ0,t · λpi,t + θi,t · (1− qi,t)}

= θ0,t · (1−
m

∑
i=1

λpi,t) +
m

∑
i=1

θi,t · qi,t, ∀ t. (5)

Combining (4) and (5), we have the transition function θt+1 = At(θt, Ct) · θt.
The arguments above can be summarized in the following theorem.

Theorem 1. The optimal objective value in (DP2) equals the optimal objective value in (DP1):
V1(θ1) = lim

N→∞
V1(S1)/N.

Theorem 1 suggests that when the customer population becomes large enough (which
is easily satisfied in real applications), we can approximately solve the SP’s dynamic
programming problem with discrete states by solving a related problem with a continu-
ous state.

4.2. Formulation of Mixed Integer Linear Programming

In this subsection, an equivalent mixed integer linear programming (MILP) formula-
tion is proposed. With this MILP formulation, we can solve the dynamic programming
problem with a continuous state much more efficiently.

4.2.1. System state transitions

Define αi,t = θ0,t · λpi,t and βi,t = θi,t · qi,t, where αi,t denotes the percentage of new
customers who join plan i in period t and βi,t denotes the percentage of customers quitting
plan i in period t. Then, we have the following state transition functions:

θi,t+1 = θi,t + αi,t − βi,t, ∀ i, t,

θ0,t+1 = θ0,t −
m

∑
i=1

αi,t +
m

∑
i=1

βi,t, ∀ t,

m

∑
i=0

θi,t = 1.

(6)

4.2.2. Percentage of New Customers

Figure 4 shows how we determine the probability pi,t. For all open data plans i, j1,
and j2 that satisfy 1 ≤ j1 < i < j2 ≤ m, a potential customer chooses a data plan i if
her/his data demand forecast falls into the interval (Xj1,i, Xi,j2], where:

Xj1,i = vj1 +

⌊
bi − bj1

bs
j1

⌋
· vs

j1, Xi,j2 = vi +

⌊ bj2 − bi

bs
i

⌋
· vs

i .
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Forecast of Data Demand  
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bi
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Figure 4. The interval in which plan i is preferred.

Conventionally, we can determine pi,t by a list of constraints first and then determine
αi,t by the relationship between pi,t and αi,t. However, in the definition of αi,t, the term
θ0,t · pi,t is not a linear term, so we determine αi,t directly by the following constraints:

αi,t ≤ M · Ci,t, ∀ i, t,

αi,t ≤ θ0,t · λ
[
F
(
Xi,j2

)
− F

(
Xj1,i

)]
+ M

(
2− Cj1,t − Cj2,t

)
, ∀ 1 ≤ j1 < i < j2 ≤ m, ∀ t,

αi,t ≤ θ0,t · λ
[
F
(
Xi,j2

)
− F(X0,i)

]
+ M

(
1− Cj2,t

)
, ∀1 ≤ i < j2 ≤ m, ∀ t,

αi,t ≤ θ0,t · λ
[
1− F

(
Xj1,i

)]
+ M

(
1− Cj1,t

)
, ∀1 ≤ j1 < i ≤ m, ∀ t,

αi,t ≤ θ0,t · λ[1− F(X0,i)], ∀ i, t,
m

∑
i=1

αi,t = θ0,t · λ, ∀ t.

(7)

4.2.3. Congestion Effect and the Percentage of Leaving Customers

Let τ be the threshold of full-speed data usage upon which network congestion
occurs. Then, we can characterize network congestion and determine Gt by the following
constraint:

−M · (1− Gt) ≤
m

∑
i=1

θi,t ·E[U
f
i ]− τ ≤ M · Gt, ∀ t. (8)

With the indicator Gt, we can determine the probability qi,t and then the percentage of
leaving customers βi,t. In the definition of βi,t, the term θi,t · qi,t is not a linear term, so we
determine βi,t directly by the following constraints:
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βi,t ≥ θi,t · F̄i(vi)(1− wi)qE
i,t −M · Gt, ∀ i, t

βi,t ≤ θi,t · F̄i(vi)(1− wi)qE
i,t + M · Gt, ∀ i, t

βi,t ≥ θi,t ·
{

qP
i,t + [F̄i(vi)(1− wi)qE

i,t]− qP
i,t · [F̄i(vi)(1− wi)qE

i,t]
}
−M · (1− Gt), ∀ i, t

βi,t ≤ θi,t ·
{

qP
i,t + [F̄i(vi)(1− wi)qE

i,t]− qP
i,t · [F̄i(vi)(1− wi)qE

i,t]
}
+ M · (1− Gt), ∀ i, t

(9)

4.2.4. Final Formulation

Let Z(θ1) be the SP’s maximum average revenue per customer from Period 1 to the
end, starting at the initial state θ1. Then, the equivalent mixed integer linear programming
problem can be proposed as follows:

(MILP) Z(θ1) = max
Ct∈{0,1}m

T

∑
t=1

m

∑
i=1

(θi,t + αi,t) · [Fi(vi) + F̄i(vi) · (1− wi) + ρi · wi] · bi,

s.t. (A),(B),(C),(D),

Ci,t ∈ {0, 1}, ∀ i, t

Gt ∈ {0, 1}, ∀ t

θ0,t ≥ 0, ∀ t

θi,t ≥ 0, ∀ i, t

α0,t ≥ 0, ∀ t

αi,t ≥ 0, ∀ i, t

βi,t ≥ 0, ∀ i, t

Theorem 2. The optimal solution to (MILP) is the same as the optimal solution to (DP2), and the
optimal objective values Z(θ1) = V1(θ1).

Proof. See Appendix A.

Theorem 2 suggests that we transform the SP’s dynamic programming problem into
an equivalent mixed integer linear programming problem. The new problem’s dimension
is significantly reduced, and it can be solved efficiently by many commercial software
programs, such as CPLEX and Gurobi.

5. Numerical Evaluation

To evaluate the dynamic plan control method, we apply our model to a large mobile
service provider in Europe. The service provider employs connection-speed-restriction
pricing and offers five data plans. It is worth noting that the five supplementary data
packages attached to the five data plans are identical in this case, which is a special situation
that satisfies our assumptions. The relevant attributes are shown in Table 3.
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Table 3. Overview of the five data plans and supplementary data packages.

DP a 1 DP 2 DP 3 DP 4 DP 5

The allotted volume of full-speed data 1 GB b 3 GB 6 GB 8 GB 10 GB
The price per period e 34.45 e 43.95 e 67.75 e 83.65 e 98.15

SDP c 1 SDP 2 SDP 3 SDP 4 SDP 5

The additional volume of full-speed data 250 MB 250 MB 250 MB 250 MB 250 MB
The price per purchase e 4.95 e 4.95 e 4.95 e 4.95 e 4.95

a DP: data plan; b 1 GB ≈ 1000 MB; c SDP: supplementary data package.

To construct a base case, we make the following estimate based on the real situation:

1. The service provider has a high initial market share (=45%).
2. λ is empirically set to be 8%.
3. The threshold τ is set empirically to be 2.2 GB per customer.

We list all plan-related parameters for the base case in Table 4. The total number of
periods considered in the base case is seven.

Table 4. Base case: parameters related to the data plans and supplementary data packages.

Plan 1 Plan 2 Plan 3 Plan 4 Plan 5

Initial percentage subscribed, θi,1 11.0% 12.1% 10.4% 6.3% 5.2%
Churn rate qP

i 60% 60% 60% 70% 70%
Churn rate qE

i 15% 18% 21% 24% 27%
Willingness to buy SDP, wi 50% 50% 50% 60% 60%

5.1. Results of the Base Case

The optimization problem of the service provider’s revenue is solved, and the optimal
control policy is shown in Table 5. In addition, we compare the optimal revenue under two
methods. One method is the dynamic plan control (DPC) proposed in our study, and the
other method is to keep all plans always open (APAO). The results of this comparison are
listed in Table 5.

Figure 5 shows the trends of market share across periods under two methods. As il-
lustrated in Figure 5, if the SP uses APAO, network congestion occurs in Period 4. When
network congestion occurs, many customers leave the network, and the total market share
of the five data plans drops dramatically. With DPC, the service provider opens data plans
in a more reasonable way. Network congestion is avoided, and the total market share never
decreases. A detailed analysis shows that before Period 4, the SP’s revenue is 1.02% less if
using DPC rather than APAO. However, the revenue of SP using DPC is 31.44% higher
than APAO after a total of seven periods. Note again that DPC enables the SP to balance
the benefit of earning more revenue in the short term and the cost of network congestion
due to too much data traffic. Within the limited network capacity, DPC helps the SP reach
a more reasonable allocation of resources.

Table 5. Results of the base case. APAO, all plans always open; DPC, dynamic plan control.

Optimal Dynamic Plan Control Policy Maximum Average Revenue Per Customer

1 2 3 4 5 6 7 APAO: DPC:

Plan 1 0 1 1 1 0 0 0 e 170.253 e 226.404
Plan 2 1 0 1 1 1 0 0 Revenue increment
Plan 3 0 1 0 0 0 0 0 e 54.151
Plan 4 1 0 0 0 0 0 0 Increased percentage
Plan 5 1 0 0 0 0 1 1 31.44%
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Figure 5. Trends of the market share under APAO and DPC.

5.2. Sensitivity Analysis

To obtain a sense of which parameters affect the service provider’s revenue most, we
conduct a sensitivity analysis. In the following, we list the two most significant results and
then derive some managerial suggestions based on our analysis.

Figure 6 shows how the SP’s revenue changes with network capacity. For both APAO
and DPC, the network capacity τ takes values over [2.05,2.35], and the other parameters
are set the same as in the base case. As network capacity changes, the SP’s revenue changes
under both DPC and APAO, but the revenue under DPC is more robust than that under
APAO. This is because network congestion occurs only under APAO. The service provider
using DPC can take the limited network capacity into consideration and change the control
policy accordingly. In addition, we note that the revenue under APAO is not necessarily
continuous in network capacity. This can be explained by the shifts in network congestion
from one period to another. Take the jump at τ = 2.13 for instance. When τ takes values
over [2.05, 2.13), network congestion continues to occur in Period 2. Within the interval
[2.05, 2.13), the small change in network capacity is not enough to shift network congestion.
However, when τ exceeds 2.13 (and <2.20), network congestion shifts from Period 2 to
Period 3. Note again that network congestion pulls down the SP’s total market share and,
in turn, decreases revenue. Therefore, the later network congestion occurs, the less the
loss in revenue is. Analogously, as τ exceeds 2.20 (and <2.25), network congestion shifts
from Period 3 to Period 4, etc. As a result, the curve for APAO jumps from one segment to
another and is not continuous in network capacity.
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Figure 6. Relationship between revenue and network capacity.

Figure 7 shows how the SP’s revenue is affected by potential customers’ willingness to
join the network. For both APAO and DPC, the willingness λ takes values over [5.8%,11%],
and the other parameters are set the same as in the base case. Again, DPC provides more
robust revenues than APAO.

As one might expect, revenues should be monotonically increasing in the willingness
λ under both APAO and DPC. To our surprise, this occurs only for the SP using DPC.
In Figure 6, we observe the non-monotonicity of the curve of APAO: revenue is increasing
in each segment of the curve, but decreasing from one segment to another. As λ increases,
additional potential customers join the network in each period. When λ takes values over
[5.8%, 6.2%), revenue increases in λ because network congestion continues to occur in
Period 6. However, when λ exceeds 6.2% (and <6.6%), network congestion does not occur
in Period 6, but shifts from Period 6 to Period 5. The earlier network congestion occurs,
the greater the loss in revenue is. Analogously, as λ exceeds 6.6% (and <7.1%), network
congestion shifts from Period 5 to Period 4, etc. Therefore, the curve of APAO drops from
one segment to another, which explains the non-monotonicity of the curve of APAO. This
leads to an interesting finding: a service provider using DPC can always benefit from an
increase in potential customers’ willingness to join the network, but a service provider
using APAO cannot.

One practical implication is that the dynamic plan control method can help service
providers increase their revenue. Specifically, based on the results of the sensitivity analysis,
it is highly recommended that mobile service providers with small network capacity use
DPC. Small network capacity makes the network more prone to congestion. By using
DPC, the service provider allocates the limited network capacity in a more reasonable way
and thus avoids network congestion as much as possible. service providers faced with
a high level of potential customers’ willingness (usually service providers who have a
good reputation and use advertising) will benefit more by utilizing DPC than other service
providers. One explanation could be that the service provider of potential customers
with high willingness has a large data demand in each period. Under APAO, the service
provider satisfies all the data demand. Too much data traffic at the same time leads to
network congestion. With DPC, the service provider can avoid network congestion by
satisfying only a portion of the customers’ data demand.
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Figure 7. Relationship between revenue and potential customers’ willingness to join the network.

6. Conclusions

Due to the rapid growth of mobile data traffic, limited network capacity has become a
bottleneck that affects the ability of service providers to satisfy customers’ data demands.
When the network handles too much data traffic at the same time, network congestion
occurs. In turn, the customers feel unsatisfied and may leave the network. Once a customer
leaves the network, it is difficult to induce her/him to re-join the network, which induces
a revenue loss to the service provider and influences the performance of this service
supply chain.

The pricing scheme used for mobile data plans has evolved in recent decades. Under
connection-speed-restriction pricing, the service provider imposes a restriction on data
speed rather than data usage. A customer is allowed to buy the supplementary data
package to keep using data service at full speed, which also brings more data traffic to
the network.

The aim of this paper is to manage demand and to maximize the mobile service
provider’s revenue under connection-speed-restriction pricing. First, we propose a dy-
namic plan control method, which allows the service provider to dynamically set the data
plans’ availability for new subscriptions in each period. With this method, the service
provider can balance the benefit of satisfying the increase in data demand and the cost of
network congestion caused by too much data traffic. In other words, while attracting new
customers to join the network, the service provider also manages to avoid network conges-
tion. Second, we provide a framework to model the behaviors of the service provider and
customers, which involves a high-dimensional stochastic dynamic programming problem.
Third, to find the optimal control policy, we adapt it to an equivalent mixed linear integer
programming, where the market is featured with a near-infinite number of customers.
Fourth, we validate our model and framework based on the empirical data from a large
European mobile service provider.

We conclude our findings as follows: (1) After introducing the realistic mechanism
of dynamic plan control, we are able to formulate a stochastic dynamic programming
problem based on mild and reasonable assumptions about data plan settings and customers’
decision-making procedures. (2) According to Theorem 1 and 2, the dynamic programming
problem can be transformed to an equivalent mixed integer linear programming problem,
so that the dimension is significantly reduced for efficient computation. (3) The result of
numerical evaluation shows that the dynamic plan control method helps a large European
mobile service provider manage demand considering congestion and increase its revenue
by 31.44%. (4) Compared with the “all plans always open” policy, the proposed dynamic
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plan control method is able to provide more robust revenue for the service provider when
network capacity or the potential customers’ willingness to join the network changes. If a
mobile service provider has a small network capacity or its potential customers have a
high level of willingness, then it can benefit more from the dynamic plan control method.

Although we summarized three important contributions of this study in Section 1,
we suggest the following directions for future research based on current limitations. First,
this paper only assumes the connection-speed-restriction pricing scheme, so it would be
interesting to implement the dynamic plan control under other types of pricing schemes.
Second, our model considers only one mobile service provider. Based on our research,
a model with competing mobile service providers would be an interesting extension,
especially if these service providers employ different pricing schemes. Finally, since our
approach succeeds in the context of wireless telecommunication management, we consider
exploring its applications in other similar systems.
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Appendix A

Proof of Theorem 2
This proof consists of four steps: the first two steps show that Z(θ1) ≥ V1(θ1), and

the last two steps show that Z(θ1) ≤ V1(θ1).
Step 1:

Given the optimal solution (θ∗, C∗) to (DP2), we show that there exists a feasible
solution (θ∗, C∗, G∗, α∗, β∗) to (MILP).

As the optimal solution to (DP2), (θ∗, C∗) satisfies the following constraints.

θ∗t+1 = At(θ
∗
t , C∗t ) · θ∗t , ∀ t, (A1)

θ∗i,t ≥ 0, ∀ i, t (A2)

θ∗1 = θ1 (A3)

Recall the definitions αi,t = θ0,t · λpi,t and βi,t = θi,t · qi,t; then, (DP2) can be reformu-
lated as:

θ∗i,t+1 = θ∗i,t + α∗i,t − β∗i,t, ∀ i, t

Next, we prove that α∗i,t satisfies the constraint (6) in (MILP).

αi,t ≤ M · Ci,t, ∀ i, t, (A4)

αi,t ≤ θ0,t · λ
[
F
(
Xi,j2

)
− F

(
Xj1,i

)]
+ M

(
2− Cj1,t − Cj2,t

)
, ∀ 1 ≤ j1 < i < j2 ≤ m, ∀ t, (A5)

αi,t ≤ θ0,t · λ
[
F
(
Xi,j2

)
− F(X0,i)

]
+ M

(
1− Cj2,t

)
, ∀1 ≤ i < j2 ≤ m, ∀ t, (A6)

αi,t ≤ θ0,t · λ
[
1− F

(
Xj1,i

)]
+ M

(
1− Cj1,t

)
, ∀1 ≤ j1 < i ≤ m, ∀ t, (A7)

αi,t ≤ θ0,t · λ[1− F(X0,i)], ∀ i, t, (A8)
m

∑
i=1

αi,t = θ0,t · λ, ∀ t. (A9)
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Equation (A4) is verified by the fact that α∗i,t = 0 if C∗i,t = 0 and α∗i,t ≥ 0 if C∗i,t = 1.

To verify (A5), recall the definition pi,t = Pr

(
Ci,t = 1, ri(D̂) ≤ min

j:Cj,t=1
rj(D̂)

)
. When

Ci,t = 1 and there exists j1 and j2 satisfying 1 ≤ j1 < i < j2 ≤ m and Ij1,t = 1, Ij2,t = 1,
we have:

pi,t

= Pr

(
ri(D̂) ≤ min

i:Cj,t=1
rj(D̂)

)

≤ Pr

(
bi +

⌈
(D̂− vi)

+

vs
i

⌉
bs

i ≤ bj1 +

⌈
(D̂− vj1)

+

vs
j1

⌉
bs

j1, bi +

⌈
(D̂− vi)

+

vs
i

⌉
bs

i ≤ bj2 +

⌈
(D̂− vj2)

+

vs
j2

⌉
bs

j2

)
= Pr

(
Xi1,j ≤ D̂ ≤ Xj,i2

)
= F

(
Xi,j2

)
− F

(
Xj1,i

)
,

and αi,t = θ0,t · λpi,t ≤ θ0,t · λ
[
F
(
Xi,j2

)
− F

(
Xj1,i

)]
. Hence, (A5) is verified.

Equations (A6)–(A8) can be verified in a similar manner.
Then, we proceed to the constraint (8),

−M · (1− Gt) ≤
m

∑
i=1

θi,t ·E[U
f
i ]− τ ≤ M · Gt, ∀ t, (A10)

and the constraint (9),

βi,t ≥ θi,t · F̄i(vi)(1− wi)qE
i,t −M · Gt, ∀ i, t, (A11)

βi,t ≤ θi,t · F̄i(vi)(1− wi)qE
i,t + M · Gt, ∀ i, t, (A12)

βi,t ≥ θi,t ·
{

qP
i,t + [F̄i(vi)(1− wi)qE

i,t]− qP
i,t · [F̄i(vi)(1− wi)qE

i,t]
}
−M · (1− Gt), ∀ i, t, (A13)

βi,t ≤ θi,t ·
{

qP
i,t + [F̄i(vi)(1− wi)qE

i,t]− qP
i,t · [F̄i(vi)(1− wi)qE

i,t]
}
+ M · (1− Gt), ∀ i, t. (A14)

Equation (A10) ensures that Gt = 1 if network congestion, i.e., ∑m
i=1 θi,t · E[U

f
i ] > τ,

occurs in period t and Gt = 0 if not.
Recall Equation (1) in Section 3.3. We can reformulate (1) with Gt as:

qi,t ≥ F̄i(vi)(1− wi)qE
i,t −M · Gt, ∀ i, t, (A15)

qi,t ≤ F̄i(vi)(1− wi)qE
i,t + M · Gt, ∀ i, t, (A16)

qi,t ≥ qP
i,t + [F̄i(vi)(1− wi)qE

i,t]− qP
i,t · [F̄i(vi)(1− wi)qE

i,t]−M · (1− Gt), ∀ i, t, (A17)

qi,t ≤ qP
i,t + [F̄i(vi)(1− wi)qE

i,t]− qP
i,t · [F̄i(vi)(1− wi)qE

i,t] + M · (1− Gt), ∀ i, t. (A18)

With the definition βi,t = θi,t · qi,t, (A11)–(A14) can be easily derived from (A15)–(A18).
In sum, (θ∗, C∗, G∗, α∗, β∗) satisfies all the constraints of the (MILP) problem. We

conclude that (θ∗, C∗, G∗, α∗, β∗) is a feasible solution to the (MILP) problem.
Step 2, Z(θ1) ≥ V1(θ1):
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Because (θ∗, C∗) is the optimal solution to (DP2),

V1(θ1)

=
m

∑
i=1

θ∗i,1 · [Fi(vi) + F̄i(vi) · (1− wi) + ρi · wi] · bi

+ (1−
m

∑
i=1

θ∗i,1) ·
m

∑
i=1

λpi,1(C∗1 ) · [Fi(vi) + F̄i(vi) · (1− wi) + ρi · wi] · bi + V2(θ
∗
2 )

=
T

∑
t=1

m

∑
i=1

θ∗i,t · [Fi(vi) + F̄i(vi) · (1− wi) + ρi · wi] · bi

+
T

∑
t=1

(1−
m

∑
i=1

θ∗i,t) ·
m

∑
i=1

λpi,t(C∗t ) · [Fi(vi) + F̄i(vi) · (1− wi) + ρi · wi] · bi

=
T

∑
t=1

m

∑
i=1

(θ∗i,t + α∗i,t) · [Fi(vi) + F̄i(vi) · (1− wi) + ρi · wi] · bi.

The second equal sign holds by recursion, and the third equal sign holds with the definition
of αi,t.

Because (θ∗, α∗) is a feasible solution to (MILP), we have:

Z(θ1) ≥
T

∑
t=1

m

∑
i=1

(θ∗i,t + α∗i,t) · [Fi(vi) + F̄i(vi) · (1− wi) + ρi · wi] · bi

= V1(θ1).

Step 3: Given the optimal solution (θ∗, C∗, G∗, α∗, β∗) to (MILP), we show that there exists
a feasible solution (θ∗, C∗) to (DP2).

As the optimal solution to (MILP), (θ∗, C∗, α∗) satisfies the constraint (6).

αi,t ≤ M · Ci,t, ∀ i, t, (A19)

αi,t ≤ θ0,t · λ
[
F
(
Xi,j2

)
− F

(
Xj1,i

)]
+ M

(
2− Cj1,t − Cj2,t

)
, ∀ 1 ≤ j1 < i < j2 ≤ m, ∀ t, (A20)

αi,t ≤ θ0,t · λ
[
F
(
Xi,j2

)
− F(X0,i)

]
+ M

(
1− Cj2,t

)
, ∀1 ≤ i < j2 ≤ m, ∀ t, (A21)

αi,t ≤ θ0,t · λ
[
1− F

(
Xj1,i

)]
+ M

(
1− Cj1,t

)
, ∀1 ≤ j1 < i ≤ m, ∀ t, (A22)

αi,t ≤ θ0,t · λ[1− F(X0,i)], ∀ i, t, (A23)
m

∑
i=1

αi,t = θ0,t · λ, ∀ t. (A24)

Equations (A20)–(A23) imply that:

αi,t ≤ Ci,t · θ0,t · λ · min
{j1, j2 :

Ij1,t = 1,
Ij2,t = 1}

{
F
(
Xi,j2

)
− F

(
Xj1,i

)
, F
(
Xi,j2

)
− F(X0,i), 1− F

(
Xj1,i

)
, 1− F(X0,i)

}
(A25)

For any Ct, we have:

pi,t = Pr

(
Ci,t = 1, ri(D̂) ≤ min

j:Cj,t=1
rj(D̂)

)
= Ci,t · min

{j1, j2 :
Ij1,t = 1,
Ij2,t = 1}

{
F
(
Xi,j2

)
− F

(
Xj1,i

)
, F
(
Xi,j2

)
− F(X0,i), 1− F

(
Xj1,i

)
, 1− F(X0,i)

}
(A26)

Combining (A25) and (A26), we have αi,t ≤ θ0,t · λ · pi,t. Then, with (A24) and the
property that ∑m

i=1 pi,t = 1, we have:

yαi,t = θ0,t · λ · pi,t, ∀ i, t. (A27)
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With an analogous proof for the constraints (8) and (9) in Step 1, we can show that
if ∑m

i=1 θi,t · E[U
f
i ] > τ, then Gt = 1, and if ∑m

i=1 θi,t · E[U
f
i ] ≤ τ, then Gt = 0. No

matter whether network congestion occurs or not in period t, the equation βi,t = θi,t · qi,t
always holds.

Then,
θ∗i,t+1 = θ∗i,t + α∗i,t − β∗i,t, ∀ i, t,

can be reformulated as:
θ∗t+1 = At(θ

∗
t , C∗t ) · θ∗t .

We conclude that given the optimal solution (θ∗, C∗, G∗, α∗, β∗) to (MILP), there exists
a feasible solution (θ∗, C∗) to (DP2).
Step 4, Z(θ1) ≤ V1(θ1):

Because (θ∗, α∗) is the optimal solution to (MILP),

Z(θ1)

=
T

∑
t=1

m

∑
i=1

(θ∗i,t + α∗i,t) · [Fi(vi) + F̄i(vi) · (1− wi) + ρi · wi] · bi

=
T

∑
t=1

m

∑
i=1

θ∗i,t · [Fi(vi) + F̄i(vi) · (1− wi) + ρi · wi] · bi

+
T

∑
t=1

(1−
m

∑
i=1

θ∗i,t) ·
m

∑
i=1

λpi,t(C∗t ) · [Fi(vi) + F̄i(vi) · (1− wi) + ρi · wi] · bi

=
m

∑
i=1

θ∗i,1 · [Fi(vi) + F̄i(vi) · (1− wi) + ρi · wi] · bi

+ (1−
m

∑
i=1

θ∗i,1) ·
m

∑
i=1

λpi,1(C∗1 ) · [Fi(vi) + F̄i(vi) · (1− wi) + ρi · wi] · bi + V2(θ
∗
2 )

Because (θ∗, C∗) is a feasible solution to (DP2), we have:

V1(θ1) =
m

∑
i=1

θ∗i,1 · [Fi(vi) + F̄i(vi) · (1− wi) + ρi · wi] · bi

+ (1−
m

∑
i=1

θ∗i,1) ·
m

∑
i=1

λpi,1(C∗1 ) · [Fi(vi) + F̄i(vi) · (1− wi) + ρi · wi] · bi + V2(θ
∗
2 )

= Z(θ1).

In conclusion, we have Z(θ1) = V1(θ1). Theorem 2 holds.
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