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Featured Application: The multicriteria methodology for the scheduling of a hybrid EV charg-
ing station could be applied to any commercial EV charging station. The driver’s preferences
about the amount of renewable energy share can be easily implemented in a charging software
application.

Abstract: The increasing electric vehicle fleet requires an upgrade and expansion of the available
charging infrastructure. The uncontrolled charging cycles greatly affect the electric grid, and for
this reason, renewable energy sources and battery storage are getting incorporated into a hybrid
charging station solution. Adding a renewable source and a battery to the charging station can help to
“buffer” the power required from the grid, thus avoiding peaks and related grid constraints. To date,
the origin of the energy coming from the battery has not been traced. In this paper, a solution of
the hybrid electric vehicle charging station coupled with the small-scale photovoltaic system and
battery energy storage is proposed to eliminate the adverse effects of uncontrolled electric vehicle
charging, with the exact calculation of renewable energy share coming from energy stored in the
battery. The methodology for the multicriteria optimization of the charging/discharging schedule of
a battery and electric vehicle charging level is based on multi-attribute utility theory. The optimization
criteria include the minimization of charging costs, maximization of renewable energy (from both the
solar plant and the battery), and the minimization of battery degradation. The problem is solved
using a genetic algorithm optimization procedure adapted to the multicriteria optimization function.
The methodology is tested on an illustrative example, and it is proven that the decision-maker’s
preferences greatly affects the choice of the optimal strategy and the optimal battery capacity.

Keywords: electric vehicle charging; multicriteria optimization; battery-scheduling

1. Introduction

Environmental pollution, climate change, and global energy policy lead to the ac-
celerating growth of electric vehicles (EV) [1–3]. According to numerous studies related
to the EV charging technologies [4], the increased level of EV chargers and the lack of
coordination in charging schemes could lead to:

(a) Voltage dips during periods of EV charging (particularly for fast chargers);
(b) Reduction in power quality (both slow and fast charging stations are sources of

harmonic distortion);
(c) EV battery deterioration and capacity decrease (due to the battery’s voltage level or

temperature increase);
(d) Overloading of distribution network transformers;
(e) Increased energy losses (especially with larger direct current (DC) fast charging station

penetration)

Because they are clean and naturally abundant, renewable energy resources such
as solar are an important component to provide the energy for the EV charging [5,6].
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Photo-voltaic (PV) generation is often integrated into EV charging stations to lower the
cost and reduce the carbon footprint as well, and different control strategies are used
for the integration of small EVs [7]. Strategies are including a grid-connected residential
photovoltaic system with plug-in hybrid electric vehicle (PHEV) [8,9] and solar-charged
electric and fuel cell vehicles [10]. A comprehensive review of the current status and latest
technologies for the integration of EV with the PV array and wind generator is given in [11].

A major disadvantage of charging EV from PV is the variability in PV production.
To address the random nature of renewable energy, battery energy storage is often utilized.
The combination of EV charger and the battery energy system (BES) can help to reduce
adverse effects on the grid (reduce the peak load demand from the EVs, reduce grid losses
and contribute to the grid regulation and reinforcement) [12].

The energy storage is charged when there is excess in the wind or solar energy.
When this generation is insufficient, storage is used to charge the EV. In [13], three different
algorithms for charging and discharging the local storage in the presence of EV chargers
are compared. The first strategy is to discharge the battery at a constant rate during specific
times of the day, and the second is based on available solar energy and the number of
connected EVs. It was shown that a third strategy—a discharging based on the sigmoid
function of connected EVs is the best strategy, compensating 71% of EV energy requirements
from the gird. However, the amount of renewable energy coming from the battery is not
calculated. In [14], a 10 kWh Li-ion battery bank is integrated into the EV–PV charger.
It was proven that small-sized storage in the order of 10 kWh could help to alleviate the
daily solar variations and reduce the grid energy by 25%. The paper [15] focused on the
control and operation of a fast-charging station for EVs within a microgrid consisted of
a PV system, a Li-ion BES and fast charging units. It is shown that with the proper control
algorithm, the fast charging station requires the minimum amount of energy from the grid.
The analysis was focused on fast chargers only, with a 120 A charging current. The battery-
buffered EV charger can help to increase the distribution network flexibility as well. It can
provide ancillary services for supporting the power grid, such as primary and secondary
frequency and voltage control. Different smart charging schemes provide the flexibility
of EV charging to closely match the PV production. A multiobjective decision-making
methodology for the daily scheduling of EV fleet is proposed in [16,17], including the
minimization of the service waiting time, the maximization of ancillary service revenue,
and the minimization of costs incurred by vehicle charging. The number of client requests
and service waiting times are modeled by the queuing theory.

To determine the optimal size and control scheme of an EV charger supported by
BES, different optimization or control algorithms are proposed with various criteria and
constraints. An optimization model for deploying the energy storage system for minimiz-
ing the load variance from the grid point of view and cost reduction from the customer’s
perspective is given in [18]. The minimization of the operating cost using real-time electric-
ity price is developed in [19]. The financial model was also used as the objective in [20],
using a particle swarm optimization (PSO)-based optimization model to size the PV and
BES in a grid-connected PV/BES combination. EV charging cost represented as a convex
function of load demand is minimized in [21].

In [22,23], a genetic algorithm was employed to solve the optimization model for
the design of an EV fast-charging station, optimizing the number of chargers, installed
power of renewable energies and storage, and minimizing the imported power from the
grid. The uncertainty of the EV power demand is simulated by the Erlang B queuing
model. The isolation niche immune genetic algorithm (INIGA) and price-incentive model
is applied in [24] for the scheduling of generators, intelligent management of energy storage
units and optimization of operating efficiency of the network, and the ordinal optimization
theory into the microgrid operation, considering the wind power uncertainty is used in [25].

The additional criteria, as the minimization of the lifecycle cost, taking into account
environmental emissions, is presented in [26], and different energy sources such as re-
newable energy technology-based and diesel generators are considered. The number
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of chargers and capacity of PV and BES using an operator to maximize the net present
value are determined in [27], while [28] developed an energy management system to
optimize the energy flow among PV, BES, and the grid. A mixed-integer linear program-
ming (MILP) model to coordinate the charging/discharging pattern of EVs with a BES
is used in [29], and an optimization model to determine the optimal sizes of PV and BES
in a grid-connected photovoltaic/battery energy storage/electric vehicle charging station
and investigate the optimal energy management and the interaction with the utility grid
is solved by the MAPSO method in [30]. In [31], a 15 kW PV-grid system connected with
a 40 kWh Li-ion battery is tested for different load scenarios for minimizing the energy
imported from the utility, using the simulation results without any optimization algorithm.
The smart charging scheme for individual homes with EV chargers and PV installation
is presented in [32], but only on user’s preferences, not taking the grid connection into
account.

The majority of the already mentioned research is dealing with the day-ahead schedul-
ing of battery operation. In [33], real-time control is introduced besides the hour ahead
optimization. A four-stage optimization and control algorithm is proposed to minimize
total operating cost for a charging station integrated with PV, fixed battery storage and
a commercial building. Total operation costs consist of the cost of power from the distribu-
tion grid, BES and PV operating costs, cost of unsupplied demand, cost of discharging EVs,
and profits from charging EVs and selling the excess power to the grid. Chance-constrained
optimization is used to cope with the optimization parameter uncertainties. Although the
model offers higher tolerability for uncertain parameters, the origin of the energy that is
charging and discharging the battery is not taken into account.

Besides various criteria used in current optimization methodologies, the exact amount
of renewable energy in the EV charging process has not been taken into account in all
of the previous research. Another disadvantage of the current research methodologies is
the single-criterion optimization instead of the multicriteria approach. Different factors,
such as operational cost, customer satisfaction, load loss, and profit for charging station
owners, are considered only in the objective function.

In this paper, the novel charging system is proposed to eliminate the adverse effects
of uncontrolled EV charging and to track the origin of the energy for the charging of EV.
The methodology for the multicriteria optimization of the charging/discharging schedule of
a battery and EV charging level is based on multi-attribute utility theory. The optimization
criteria include the minimization of charging costs, maximization of renewable energy
share, and the minimization of battery degradation. The contribution of this paper can be
stated as:

• the simultaneous optimization of charging/discharging BES and EV charging power;
• the implementation of energy tracking methodology that monitors the origin of energy

from and to the battery;
• the multiobjective optimization of different conflicting criteria.

This problem is solved using the genetic algorithm optimization procedure adapted
to the multicriteria optimization function. After the introduction and the literature review,
the tracking of the energy origin while charging and discharging the battery is explained in
Section 2. The optimization model with objective function and constraints is presented in
Section 3, and the illustrative example for the optimization procedure is given in Section 4.
After the discussion of results in Section 5, a conclusion and further research directions are
given at the end.

2. Energy Tracking Methodology

An individual charging system for EVs connected to a public distribution network
consisting of a solar power plant and an energy storage system will be analyzed. Through
the low voltage AC lines, the vehicle is charged in the following ways: (a) only from the
network if there is no production from PV panels, (b) only from PV panels if the production
is large enough to cover the load of the individual system and vehicle charging, (c) from
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the battery if the battery is not charging and is in discharge mode, (d) in parallel from the
PV power plant, network, and battery. The principle connection scheme is given in Figure
1. Arrows are indicating the possible power direction.

Figure 1. Connection scheme of Photo-voltaic (PV)/battery energy system (BES)/electric vehicles
(EV) charging system.

As one of the desired criteria is the maximization of energy from renewable sources
(i.e., the solar power plant), it is necessary to develop a methodology for monitoring the
origin of energy. This methodology will be explained in the sequel.

2.1. Energy Tracking during Battery Charge/Discharge

The energy used to charge the battery comes from the public grid and the PV power
plant. As stated in the introduction, the possibility of monitoring and managing the origin
of the energy to charge the EV has not been considered so far. The reason for this is the
lack of the methodology of registering the origin of the energy coming out of the battery.
Therefore, it is necessary to create a system that can monitor how much energy from
renewable sources entered the battery, how much came out and finally, how much energy
is charged to the car from renewable sources or the network.

Figure 2 shows the principle of energy tracking and registration of energy origin.
Blue circles indicate the energy of unknown origin (from the distribution network), and green
indicates energy from renewable sources. When charging the battery (Figure 2a), the amounts
of energy entering the battery are determined by the state of the network and the instanta-
neous power of both sources. It can be easily determined by solving power flows equations
in the network. The maximal energy to which the battery can be charged is limited by the
battery capacity.

Figure 2. Battery charging/discharging from different sources (a) battery charging; (b) battery
discharging.

When discharging the battery, the situation is different (Figure 2b). The amount of
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energy emitted from a battery is determined by the relative ratio of available energy coming
from different sources.

Let us indicate the state of charge of the battery with SOC, the amount of accumulated
energy from renewable sources (solar) with SOCS, and the accumulated energy from the
grid with SOCG. The battery power PB, the share of battery power from solar energy PBS
and the share of battery power from the grid PBG will be positive if the battery is charging
and negative if it is discharging. The charge and discharge behavior of the battery during
the time step ∆t can be generically modeled as follows:

SOCt = SOCt−1 + ∆t · kc/d·PB,t, (1)

SOCS,t = SOCS,t−1 + ∆t·kc/d·PBS,t, (2)

SOCG,t = SOCG,t−1 + ∆t·kc/d·PBG,t (3)

SOCt = SOCS,t + SOCG,t, (4)

In Equations (1)–(3), the charging/discharging efficiency factor kc/d equals ηc when
charging and 1/ηd when discharging the battery. If the total power that discharges the
battery is PB, then the power from renewable sources (PBS) and the grid (PBG) are given by
Equations (5) and (6), respectively:

PBS,t = PB,t
SOCS,t

SOCt
, (5)

PBG,t = PB,t
SOCG,t

SOCt
, (6)

2.2. Energy Tracking during EV Charging

Figure 3 shows the charging process of an electric vehicle. The power is now coming
from three different sources (PV, public grid, and battery). Because the battery power
can be divided into different sources, EV power contains four components (Equation (7)):
power from the PV panel (PS), power from the public grid (PG), battery power originating
from the PV panel (PBS), and battery power originating from the grid (PBG).

PEV,t = PEVS,t + PEVBS,t + PEVBG,t + PEVG,t, (7)

Figure 3. EV charging.

The same logic is valid for any other load in the network: battery during the charging
process and other loads. The power flow equations are solved, and voltages and powers in
individual nodes are determined. The power flow equations in the presence of PVs, BES,
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EVs, and public grid are presented in Equations (8) to (11), where they express the active
power balance, (8), reactive power balance, (9), active and reactive power flow of lines,
(10) and (11). Equations (8)–(11) represents the general case with more power sources in
different nodes.

PS,i,t + PB,i,t + PL,i,t + PEV,i,t + PG,i,t = ∑
j∈ϕb

Aij·Pb
i,j, (8)

QS,i,t + QB,i,t + QL,i,t + QEV,i,t + QG,i,t = ∑
j∈ϕb

Aij·Qb
i,j, (9)

Pb
i,j = Gi,j·V2

i,t −Vi,t·Vj,t·(Gi,j· cos(θi,t − θj,t + Bi,j· sin(θi,t − θj,t), (10)

Qb
i,j = −Bi,j·V2

i,t −Vi,t·Vj,t·(Bi,j· cos(θi,t − θj,t − Gi,j· sin(θi,t − θj,t), (11)

2.3. Battery Degradation Model

The degradation model of energy storage batteries is based on Li-ion batteries, as the
most used resource in medium-size energy storage systems. Li-ion batteries are losing
storage capacity with calendar aging and cycling. The methodology is not taking into
account the calendar aging, which will not affect the short-term planning horizon. Cycle life
loss is related to temperature, charge and discharge rate and energy throughput [34].
The effects of discharge rates and capacity loss of a battery cell induced by cycling can be
captured by an exponential function (12).

Qloss,% = B1·eB2·Irate ·Ah
B1 = a·T2 + b·T + c

B2 = d·T + e
(12)

Qloss is the percentage of capacity loss induced by cycling. Both factors B1 and B2,
are functions of temperature. Irate is the charge/discharge rate expressed as a C-rate. Ah is
the total Ah-throughput for a given period. Coefficient values and units are given in [34].

After the determination of all necessary components, the multi-attribute objective
function can be composed.

3. Optimization Problem

The goal of the optimization problem is to optimize the hourly scheduling of bat-
tery charge/discharge and to optimize the power and time required to charge the EV.
The problem is treated as a multicriterial because three criteria will be simultaneously
taken into account. The optimization is based on the minimization of supply costs, max-
imization of renewable energy for the EV charging and the minimization of the battery
wear. The scheduling is optimized using 24 h-ahead forecasts of PV plant production,
load demand of other consumers, and expected arrivals of EVs.

The first criterion is the maximization of renewable (solar) energy charging the EV.

max(F1) =
NEV

∑
i=1

T

∑
t=1

(PEVS,i,t + PEVBS,i,t), (13)

The second criterion is the minimization of battery installation and operation and
energy supply costs. Assuming that the energy is traded at the spot market with hourly
prices ct, the criterion can be mathematically represented in (14). cB represents the levelized
daily costs of battery installation and operation (€/kWh·day).

min(F2) = cB·C +
T

∑
t=1

ct·PG,t, (14)
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The third criterion refers to the aging of the batteries (15).

min(F3) =
T

∑
i=1

B1·eB2·Irate,i ·Ahi, (15)

Optimization process constraints are related to the active and reactive power balance
in the network Equations (7)–(11), minimal and maximal battery state of charge (16),
minimal and maximal allowed charge/discharge rate (17) maximal rated power of EV
charger (18) and capacity of the grid connection supply feeder (19).

SOCmin ≤ SOCG,t ≤ SOCmax, (16)

Pmin
B ≤ PB,t, PBS,t, PBG,t ≤ Pmax

B , (17)

PEV,t ≤ Pmax
EV , (18)

PG,t ≤ Pmax
G , (19)

Multi-attribute utility theory (MAUT) defines the utilities of multiple-attribute out-
comes as a function of the utilities of each attribute taken individually. The theory specifies
several possible functions and the conditions to be met under which each of these functions
(multiplicative, additive and multilinear) would be appropriate. The multi-attribute utility
function is of the following form if mutual utility independence exists (20).

U(x1, x2, . . . , xn) =

∏
i
(1 + Kkiui(xi))− 1

K
, (20)

ui(xi) = the single-attribute utility value for attribute i with value xi (ranges from 0 to 1);
ki = a parameter from the tradeoffs for component i;
K = a normalization constant.

The utility function (20) reflects different types of interactions between individual
criteria. In the compensatory case, the performance of one criterion compensates for the
lack of performance by the other one (21). In the additive case, the performance of one
criterion does not interact with the value of the other ones (22). In the complementary
case, the balanced performance of all criteria is more important than the individual criteria
fulfillment (23).

n

∑
i=1

ki > 1 then − 1 < K < 0, (21)

n

∑
i=1

ki = 1 then K = 0 (22)

n

∑
i=1

ki < 1 then K > 0 (23)

If additive independence exists, the multi-attribute utility function is also additive (24):

U(x) =
n

∑
i=1

ki·ui(xi), (24)

The multicriteria optimization used in this paper is based on the methodology applied
for the EV charging fleet schedule presented in [17]. In this methodology, the first step
in scheduling optimization is the single objective optimization of all of the previously
explained objectives (13)–(15). The outputs of this optimization are utility functions based
on maximal renewable energy (Ures), minimal battery and energy costs (Utc), and minimal
battery degradation (Ubd). In the second step, the multiobjective optimization is performed
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applying MAUT for the utility aggregation (20). Individual utilities for renewable energy,
costs and battery degradation are represented in Equations (25)–(27), respectively.

URE(x) =
F1(x)−maxF1(x)

minF1(x)−maxF1(x)
, (25)

USC(x) =
F2(x) + minF2(x)

maxF2(x)−minF2(x)
, (26)

UBD(x) =
F3(x) + minF3(x)

maxF3(x)−minF3(x)
, (27)

Finally, the optimization problem can be reduced to the maximization of the aggre-
gated utilities (28).

maxU(x1, x2, . . . , xn), (28)

The methodology will be illustrated on a case study of a hybrid PV/BES/EV charger
for three cases: single-criterion optimization, multicriteria optimization with equal criteria
weights, and multicriteria optimization for the complementary case. The optimization
problem is solved using the continuous variable constrained genetic algorithm solver.
The genome consists of 48 variables (two vectors of 24 battery powers PB,t and 24 EV charg-
ing powers PEV,t). The fitness function is given with the Equation (22), obtained after the
calculation of (13)–(15) and (20)–(25). Equality constraints are given in Equations (1)–(4) and
(7)–(11). Inequality constraints relating to the maximal and minimal charging/discharging
powers and battery state of charge are given in Equations (16)–(19). The Matlab GA solver
was used with the size of the initial population of 200.

4. Results

The method is illustrated by the example of the hybrid system shown in Figure 1.
The system consists of a solar power plant with a rated power of P = 100 kW, one EV charger
with a rated power of 22 kW, and a battery with a capacity of C = 30 kWh. The expected
EV charging is 60 kWh from 6–12 h and 60 kWh from 16–22 h. Other input values are
presented in Table 1.

Table 1. Input values for the optimization.

SOC(0) 20 kWh PB
max 20 kW

SOCS(0) 10 kWh PEV
max 20 kW

SOCG(0) 10 kWh PG
max 70 kW

SOC min 0.1 C ηC 0.9

SOC max 0.9 C ηD 0.9

cB 0.4 €/(kWh·day) C 30 kWh

The energy price for the 24 h period is presented in Figure 4.
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Figure 4. Energy prices for the next 24 h period.

For the sake of simplification, all of the inverters are working in unity power factor
mode, without the reactive power generation. The optimization is performed in two steps:
in the first step, utility functions for each criterion are determined. In the second step,
a multi-attribute approach is used for the battery and EV charging schedules. Because the
battery capacity is not changing during the first simulation, battery costs are not taken into
account.

Single-criterion optimizations were performed for all three criteria: minimum pro-
curement costs, minimum battery aging, and maximization of car charging from solar
energy by the Equations (13)–(15). The optimization problem is solved with the genetic
algorithm in MATLAB (The MathWorks, Inc., Natic, MA, USA). The maximal generation
number for the GA algorithm is 100, with the population size set to the array length of 200.
Optimization is performed on Intel(R)Xeon(R) CPU E5-26670@ 2.90 GHz processor (Intel,
Santa Clara, CA, USA) with 32 GB RAM. The total time of optimization is 47 s.

The results are shown in Table 2.

Table 2. Single-criterion optimization results.

F1 (kWh) F2 (€) F3 (%)

max F1 103.91 12,518 0.69

min F2 46.71 11,869 0.48

min F3 63.17 12,631 0

Results of the maximization of the solar energy share in the EV charging process
are presented in Figure 5. Figure 5a presents, besides the forecasted values for the PV
production (PS) and load demand (PL)—the power from the grid (Pg), battery power (Pbat),
and the optimized EV charging power (Pev). Figure 5b represents the state of charge (SOC)
of two virtual “battery compartments”—for renewable solar energy (SOCS) and energy
from the grid (SOCg). Figure 5c gives the EV solar (Pevs) power component and grid
component (Pevg), while Figure 5d represents the share of battery power from renewables
(Pbs) and battery power coming from the stored grid energy (Pbg) in the optimized charge
and discharge battery schedule.

The weighting factors for each criteria are the same: k1 = k2 = k3 = 0.33. Results are
presented in Figure 6.

The absolute and relative values of individual criteria are presented in Table 3. Relative
values Ui for single criteria are obtained using the scalarization expressions (24)–(26).
Optimization results for the complementary multi-attribute case are presented in Figure 7.
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Figure 5. Single-criterion optimization results for the maximal solar energy criteria (a) power flows, (b) state of charge
(SOC) of battery, (c) EV charging power, (d) battery charge/discharge schedule.

Table 3. Multicriteria optimization results.

F1 U1 F2 U2 F3 U3 U

k1 = 0.2
k2 = k3 = 0.3; K = 0.3 87.7 (kWh) 0.59 12,209 (€) 0.52 0.69 (%) 0.80 0.57

k1 = k2 = k3 = 0.33; K = 0 67.2 (kWh) 0.34 11,963 (€) 0.53 0.41 (%) 0.88 0.62

Using the optimization model, the analysis of the optimal battery capacity for different
weighting coefficients in the optimization function was performed. Two cases were com-
pared: (a) greater importance is given to one of the criteria, and (b) a balanced distribution
of criteria values (complementary case). Figure 8 shows the optimization results using
an additive model (24), where preference is given to a higher share of renewable energy
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when charging an electric car. The coefficients in this case are: k1 = 0.6, k2 = 0.3 and k3 = 0.1.
The graph represents the values of the individual utility function and the total utility
function for different system configurations, starting from the case when the battery is
not installed at all (C = 0) to the maximum capacity of 70 kWh. The calculation for all
configurations was done with the same relative parameters: the initial state of charge of the
battery is equal to one half of the battery capacity (SOC0 = 0.5 C), where the initial shares
of energy from the network and solar panels are equally distributed (SOCBS,0 = SOCBG,0 =
0.5 SOC0).

Figure 6. Multicriteria optimization results for the complementary case (a) power flows, (b) SOC of battery, (c) EV charging
power, (d) battery charge/discharge schedule.
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Figure 7. Multicriteria optimization results (a) power flows, (b) SOC of battery, (c) EV charging power, (d) battery
charge/discharge schedule.

In the second case, the analysis of the change of utility function depending on the
battery capacity was performed for the complementary case (20), with the coefficients:
k1 = 0.2, k2 = k3 = 0.3; K = 0.3. The results are shown in Figure 9.
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Figure 8. Utility function dependence on battery capacity for the additive case.

Figure 9. Utility function dependence on battery capacity for the complementary case.

5. Discussion

The analysis of different cases shows significant differences between charging schemes
with single-criterion and multicriteria optimization. Differences are also noticeable in the
case of different preferences of decision-makers. In the case where battery management is
optimized only by maximizing the EV charging energy originating from renewable sources,
103.91 kWh (86.7% of required energy) comes from the solar power plant. Most of this
energy comes directly from the power plant, at the time when the greatest sunshine and
the arrival of the vehicle coincide (Figure 5c). The battery is charging and discharging more
intensively but does not exceed the battery capacity.

In the case of multicriteria optimization, the battery degradation criterion is influ-
encing the charging/discharging process, and the amount of renewable energy in the
charging process is reduced to 67.2 kWh (56%). The charging of the vehicle itself is now
more balanced and does not reach the maximum allowable value.
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Finally, in the complementary attribute case, the amount of renewable energy in the
charging process is increased in comparison with the previous case to 87.7 kW (73%).
The energy supply costs are higher, but the final solution demonstrates the balanced
performance of all criteria.

The methodology proved that the energy stored in the battery greatly depends on the
load of other consumers in the station because the amount of solar energy is proportional
to the ratio of individual load (battery, EV, consumers) and the total load of the network.
In the complementary case, the balanced performance across renewable energy amount,
total costs and battery degradation are prevalent. In the additive case, the performance of
one criterion does not interact with the value of the other ones, but two criteria are worse
than in the other two scenarios. The integral optimization of the battery size and schedule,
as well as the EV charging optimization, will be the focus of our future research.

In the case of an additive model, it can be seen that the maximum utility function is
achieved at a battery capacity of 30 kWh. In case there is no battery installed, there is no bat-
tery wear (Ubd = 1), the total costs are also close to the minimum values (Usc = 0.9), but the
share of energy from renewable sources is the lowest (Ures = 0.62). As the capacity increases,
the value of this function increases to a maximum of (Ures = 0.85). This value also deter-
mines the total maximum of the system. As battery capacity continues to grow, the share
of renewables is not increased due to constrained battery charging and discharging power.

In the complementary model, the emphasis is on the balanced values of all individual
criteria. It can be seen that preference is given to lower values of battery capacity since then
system costs and battery degradation are as important as the share of renewable sources.
The optimal value of battery capacity is achieved with C = 10 kWh.

6. Conclusions

This paper is presenting the novel multicriteria optimization methodology for the
day—ahead charging/discharging scheduling of hybrid PV/EV/BES system. Introducing
the new concept of renewable energy monitoring and tracking, it is possible to maximize the
exact renewable energy share when charging an EV. Other criteria that are simultaneously
optimized are the total costs of the system (consisting of battery installation and operation
costs, and costs of importing the energy from the grid) and battery degradation rate.

Simulations on the example of a hybrid system have shown that it is possible to
quantify the influence of different criteria on the optimal solution of the problem. In the
case of maximizing only the EV charging energy originating from renewable sources,
86.7% of the required energy comes from the solar power plant. In the case of multicriteria
optimization, the criteria for battery degradation is influencing the charging/discharging
process, and the amount of renewable energy in the charging process is reduced to 56%.

In addition, the influence of different decision-maker’s preferences was quantified.
In the complementary attribute case, the amount of renewable energy in the charging
process is increased in comparison to the additive attribute aggregation to 73%.

Finally, the battery capacity was optimized. In the case of an additive model, the max-
imum utility function is achieved at a battery capacity of 30 kWh. In the complementary
model, the emphasis is on the balanced values of all individual criteria, and the preference
is given to lower values of battery capacity since then system costs and battery degradation
are as important as the share of renewable sources. The optimal value of battery capacity is
achieved with C = 10 kWh.
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Nomenclature
SOCt Battery state of charge at time t
SOCS,t Solar energy share state of charge at time t
SOCG,t Public grid energy share state of charge at time t
C Battery capacity (kWh)
kc/d Charging/discharging efficiency
PB,t Battery power at time t (kW)
PBS, Battery power originating from solar energy at time t (kW)
PBG,t Battery power originating from the public grid at time t (kW)
PEV,t Electric vehicle charging power at time t (kW)

PEVS,t
Electric vehicle charging power originating from solar energy at time t
(kW)

PEVG,t
Electric vehicle charging power originating from the public grid at time t
(kW)

PEVBS,t
Electric vehicle charging power originating from the solar battery share at
time t (kW)

PEVBG,t
Electric vehicle charging power originating from the grid battery share at
time t (kW)

PS,i,t; QS,i,t Solar PV plant power at node i, at time t (kW)
PB,i,t; QB,i,t Battery power at node i, at time t (kW)
PL,i,t; QL,i,t Load demand at node i, at time t (kW)
PG,i,t; QG,i,t Public grid power at node i, at time t (kW)
PEV,i,t; QEV,i,t EV charging power at node i, at time t (kW)
Pb

i,j; Qb
i,j Power flow in branch b from node i to j

Vi, θi Voltage magnitude and angle at the node i
Gij, Bij Branch conductance and susceptance from node i to j
ϕb Total set of branches
Ah Energy flow in ampere-hours
Qloss Battery degradation (%)
Irate Battery charge/discharge rate expressed in capacity ratio C
ct Spot energy price at time t (€/kWh)
cB Levelized daily battery installation and operation costs (€/kWh·day)
Ures Renewable energy share utility function
Utc Total costs utility function
Ubd Battery degradation utility function
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