Figure S1. Results of one-way ANOVA for classifying 2B finished stainless steel surface and residues of (a) honeydew, (b) orange, (c) apple, and (d) watermelon using the single waveband algorithm.
Figure S2. Results of one-way ANOVA for classifying #4 finished stainless steel surface and residues of (a) honeydew, (b) orange, (c) apple, and (d) watermelon using the single waveband algorithm.
Figure S3. Results of one-way ANOVA for classifying 2B finished stainless steel surface and honeydew residue dilutions ((a) 1:1, (b) 1:5, (c) 1:10, (d) 1:20, (e) 1:50, and (f) 1:100) using the two wavebands ratio algorithm.
Figure S4. Results of one-way ANOVA for classifying 2B finished stainless steel surface and orange residue dilutions((a) 1:1, (b) 1:5, (c) 1:10, (d) 1:20, (e) 1:50, and (f) 1:100) using the two wavebands ratio algorithm.
Figure S5. Results of one-way ANOVA for classifying 2B finished stainless steel surface and apple residue dilutions((a) 1:1, (b) 1:5, (c) 1:10, (d) 1:20, (e) 1:50, and (f) 1:100) using the two wavebands ratio algorithm.
Figure S6. Results of one-way ANOVA for classifying 2B finished stainless steel surface and watermelon residue dilutions((a) 1:1, (b) 1:5, (c) 1:10, (d) 1:20, (e) 1:50, and (f) 1:100) using the two wavebands ratio algorithm.
Figure S7. Results of one-way ANOVA for classifying #4 finished stainless steel surface and honeydew residue dilutions ((a) 1:1, (b) 1:5, (c) 1:10, (d) 1:20, (e) 1:50, and (f) 1:100) using the two wavebands ratio algorithm.
Figure S8. Results of one-way ANOVA for classifying #4 finished stainless steel surface and orange residue dilutions((a) 1:1, (b) 1:5, (c) 1:10, (d) 1:20, (e) 1:50, and (f) 1:100) using the two wavebands ratio algorithm.
Figure S9. Results of one-way ANOVA for classifying #4 finished stainless steel surface and apple residue dilutions((a) 1:1, (b) 1:5, (c) 1:10, (d) 1:20, (e) 1:50, and (f) 1:100) using the two wavebands ratio algorithm.
Figure S10. Results of one-way ANOVA for classifying #4 finished stainless steel surface and watermelon residue dilutions((a) 1:1, (b) 1:5, (c) 1:10, (d) 1:20, (e) 1:50, and (f) 1:100) using the two wavebands ratio algorithm.