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Featured Application: The results of the work may find application in the stability analysis of
devices for active body weight support during gait re-education.

Abstract: This article concerns the stability analysis of a control system for a dynamic body weight
support system in a rehabilitation device for the re-education of human gait. The paper presents a
physical model of the device, which characterizes the most important physical phenomena associated
with the movement of the system, i.e., inertia, damping, and elasticity. The device has one active and
one passive element. They are connected by a connector with elastic and damping properties. This
solution provides the kinematic chain required due to interactions with humans, while at the same
time ensures that the device is an underactuated system. The article also presents the methodology
used to verify the stability of the control system while acting as an active body weight support
system. The paper formulates the mathematical model of the system that was used in the synthesis
of control using the Lyapunov theory of stability. The results of simulation and experimental tests are
also presented.

Keywords: body weight support; rehabilitation engineering; robot-assisted gait training; dynamics
modeling; control systems; stability analysis; Lyapunov theory

1. Introduction

The analysis of devices for rehabilitation purposes related to kinesitherapy designed
during the last dozen years has indicated that body weight support systems are a crucial
component. At present, there are many simple devices available on the market that are
passive systems, as well as technologically advanced equipment fitted with an active,
mechatronic body weight support system. Active systems enable a defined support load to
be maintained, giving high accuracy, whereas passive systems (load value manually ad-
justed with a lever, counterweight, spring, etc.) often cause overload and a large difference
between the adjusted load setting and recorded load setting during training. Therefore,
devices fitted with an active body load support system are more favorable for the proper
performance of exercises [1–3]. During the re-education of human gait, these systems are
used to reduce body weight and reduce leg loading at the same time. A person performing
exercises is clamped to the rope end of a winch with an orthopedic harness.

When comparing rehabilitation devices fitted with an active load support system, the
stationary element is mostly related to the fixed load bearing structure (it does not follow
patient movements) and human gait is forced by mechanical orthosis or a treadmill [4–11].
In devices with a treadmill, training is recommended for persons who have restored their
gait to a degree, enabling unaided movement, but who still require assistance, or when gait
manner, pace, and strength need improvement [12,13]. Such devices provide technological
advancements related to virtual reality and biofeedback [14–18].
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One of the latest kinesitherapy devices is a mechatronic treadmill with a body weight
support system developed by the Silesian University of Technology [19]. The active
body weight support system is similar to other technologically advanced winches in
rehabilitation devices for the re-education of human gait [1,20–22]. It has two independent
drives: a linear drum and series elastic actuator (SEA)-type drive. Because the range of
vertical human body movements is rather small during gait, this system is only a body
weight dynamic compensation system. Specifically, the SEA drive maintains the load
according to the programmed settings, whereas the rotating drum operation is used when
big vertical movements occur, e.g., upright standing, knee bends, walking up stairs.

The SEA system features a specific design including the kinematic chain adaptability
required due to interactions with humans, and it protects against overloading resulting
from a delayed servodrive response [23–25]. The SEA system includes one active part
(controlled) and one passive part, which are connected by a connector with elastic and
damping properties. Thanks to this solution, the device is an underactuated system,
whereby the number of generalized variables is greater than the number of programmable
variables [26–29].

Note that the SEA drive minimizes offset-related support load errors in a reliable and
quick manner to prevent overload during the performance of exercises. Moreover, any
hazards to human health are prevented. The development of a control system that meets
both requirements poses an interesting engineering problem. Considering the necessity to
ensure the reliable operation of the device during any situation, control systems used for
that purpose offer stability.

An analysis of current papers on similar devices for the re-education of gait indicated
that these systems most often employ a classic feedback loop and the settings of controllers
are programmed by way of experiments. No previous paper focused on studies regarding
stability. Therefore, the current paper is innovative as it looks at the development of
a control algorithm for a body weight support system that takes into account stability
analysis according to the Lyapunov theory of stability.

Determining control system stability is a very difficult task that sometimes requires
a non-standard mathematical description of the tested object to be formulated. Relevant
experience in this field is invaluable. This paper presents the methodology used to verify
a control system that can act as a dynamic body weight support system, where instead
of the typical task of maintaining a constant body support force value, it maintains a set
trajectory. The methodology applied for the analysis of stability provided a motive for
verifying a new approach (not yet described in the literature) regarding the control system
of a rehabilitation device for the re-education of human gait, where patient gait kinematics
are forced by the body weight support system. The novelty of the presented control system
is related to the possibility of using the function describing a patient’s gait pattern. This
approach is particularly interesting due to the results of previous studies, which despite
their high effectiveness also suggest that an incorrect gait pattern can be consolidated while
training on a treadmill under unloaded conditions when the active body weight support
system works only in the constant force mode [30–33].

Contrary to the control algorithms used previously, the novelty of this article is the use
of the proportional-derivative (PD) controller with compensation related to the dynamic
properties of the passive part in the body weight support system. The use of PD regulators
with dynamic compensation is a well-known issue, but their use in devices intended to
support gait re-education has not been presented in the literature so far. This publication
shows the successive stages involved in designing such a control algorithm, starting from
the formulation of the object equations of motion and moving on to the definition of the
control law and the determination of the set motion trajectory of the active part of the
system. Due to the use of an underactuated SEA drive, the proposed control system for the
dynamic body weight support system performs better than the standard feedback loop
provided with the PD controller.
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Chapter 2 describes the test bench, considering in particular the sensors and method
used for the processing of measurement signals in real time. Next, a mathematical model
for the system is presented and applied for the analysis of the control system on the basis
of the Lyapunov theory of stability. Then, certain mathematical calculations that follow the
design phase of the control system and stability tests are presented. The next part of the
paper includes the results of simulation tests, empirical studies, and conclusions.

2. Methodology and Research Object

The purpose of this paper is to present the methodology used for the stability analysis
of a control system for a dynamic body weight support system. A PD controller with
compensation was proposed to control the drive system. As an example of a device for the
re-education of gait, a body weight support system coupled with a treadmill was used [19].
The main components of the electromechanical part of the rehabilitation system are shown
in Figure 1.

Figure 1. Mechatronic device for gait re-education.

The structure of the body support system was analyzed in detail in [34]. Although the
body support system is fitted with two independent drive systems, the presented analyses
assumed that the dynamic compensation system operated only when gait was measured
on a treadmill due to the little vertical movement of the patient during gait, with values
falling within the range of SEA drive parameters.

For maintenance of a constant body support load, one sensor that controls the drive
operation with a feedback loop according to a signal indicating load offset is sufficient. The
method proposed for the verification of the control system stability requires all general-
ized coordinates to be measured. For this purpose, additional adapters were developed
for spring deflection measurement of the SEA system and determination of the drive’s
passive component position. Measurements were performed with a linear variable dif-
ferential transformer sensor. Figure 2 presents the crucial components of the dynamic
compensation system.

Control was measured in real time using MATLAB/Simulink branded software.
Transmission of the control and measurement signals was done with two RT-DAC4 cards
provided by the Spartan II series Field-Programmable Gate Array (FPGA) system. Commu-
nication with the system was done with system Peripheral Component Interconnect (PCI)
bus and external input/output accelerator (PLX 9030). FPGA along with programming
languages enabled us to transfer operations related to complicated digital processing of
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measurement data and control signal modulation onto hardware. An interface for analogue
signal conditioning was an additional part of the measuring system. Drive control signals
generated by the control application were sent to particular servodrives in the form of
voltage at an appropriate level. The servomotors were controlled in speed mode. The signal
sent from the computer was proportional to the set rotational speed and the servoinverter
controlled the motor torque [35].

Figure 2. Body weight support system.

To demonstrate the stability of the control system, it was necessary to formulate a set
of equations regarding the movement of mechanical parts, develop a control algorithm,
determine relevant errors, and define the control method. Next, determination of the
Lapunov function was necessary. These steps are described in the following chapters of
this paper.

3. Dynamic Equations of Motion

The formulation of equations regarding motion development was necessary to con-
struct the physical model of the device. The performed calculations were based on an
essential simplifying assumption that considered the rope to be a stiff and non-tensile
component. This is due to the complexity of the rope modeling process (especially using
synthetic ropes as multi-fiber bodies) and the fact that the ropes were characterized by
very high stiffness with increasing tension and number of load cycles [36–40]. The adopted
assumption is justified only in the case of a control system that performs well and ensures
that constant load support related directly to rope tension and deformation is maintained.
If the control system does not perform the desired motion with a high level of accuracy, this
assumption cannot be made and the physical model must also include the rope. Figure 3
presents the physical model adopted for the body weight support system.

The dynamic performance of the adopted physical model can be described by dif-
ferential equations of motion. The mathematical model was developed using Lagrange’s
equations of the second kind, which can be written as:{

IZ
..
ϕ +

(
bZ + bs

h2

4π2

) .
ϕ − bs

h
2π

.
x + ks

h2

4π2 ϕ − ks
h

2π x = MZ

mZ
..
x + bs

.
x − bs

h
2π

.
ϕ + ksx − ks

h
2π ϕ = 2F

(1)

where ϕ is the drive motor shaft rotation angle, x is the displacement of the passive part, IZ
is the reduced moment of inertia of the active part, mZ is the reduced mass of the passive
part, bZ is the simplified ratio of the active part’s motion resistance, bs is the damping
system ratio, ks is the spring stiffness modulus, h is the thread size of the screw drive
system, MZ is the servomotor torque, and F is the set load of the body weight support.

The system is determined with variables ϕ and x, whereas the rotation angle ϕ is the
programmable variable.
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The mathematical model for the relieving system with 3 degrees of freedom is de-
scribed in [34].

A problematic issue is related to the impact of patient body inertia. During training,
the patient’s body is supported with a vertical load (rope tension) that provides weight
reduction. Considering the patient’s inertia related to their whole body mass is an incorrect
approach, as such a system cannot be considered synonymously to the patient’s whole-
body support. Ignoring their mass is also not justified, as mass has a significant impact on
the device’s dynamic performance. Therefore, calculations were performed to determine
whether the patient’s mass affected the reduced mass of the passive part proportionally to
the adjusted body support force.

Figure 3. Physical model of the dynamic body weight support system.

4. Control System Modeling

The actual purpose of the control system of a support load system is to maintain
constant load support. Constant rope tension relates to constant deflection of the rope.
Therefore, an assumption may be made that the issue related to keeping a constant support
load is synonymous to follow-up motion related to vertical movement of the patient.
According to the presented model, these movements directly impact the movement of the
passive part, namely generalized coordinate x.

Further calculations were based on an adjusted trajectory of the passive part xd(t)
featuring continuous derivatives, and an assumption was made regarding the existence of
the adjusted trajectory of the active part ϕd(t) with continuous derivatives [41]. Next, the
trajectory error was determined: {

ea = ϕd − ϕ
ep = xd − x

(2)

where ea is the follow-up movement error of the active part and ep is the follow-up move-
ment error of the passive part. The generalized follow-up movement error was determined
using: {

sa =
.
ea + λaea

sp =
.
ep + λpep

(3)

where λa and λp indicate positive design constants related to the ratio of proportional and
differential gains in the PD controller.
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Equation (3) considers Equation (2). Through conversion and derivation, the accelera-
tion was determined: { ..

ϕ = − .
sa +

..
ϕd + λa

.
ea = − .

sa +
.
va..

x = − .
sp +

..
xd + λp

.
ep = − .

sp +
.
vp

(4)

where va =
.
ϕd + λaea and vp =

.
xd + λpep are additional variables applied to simplify

recording.
The application of (4) to (1) resulted in a description of the generalized follow-up

movement error function:{
IZ

.
sa = IZ

.
va +

(
bZ + bs

h2

4π2

) .
ϕ − bs

h
2π

.
x + ks

h2

4π2 ϕ − ks
h

2π x − MZ

mZ
.
sp = mZ

.
vp + bs

.
x − bs

h
2π

.
ϕ + ksx − ks

h
2π ϕ − 2F

(5)

Expressions related to the system’s condition were determined with the following
functions: {

fa = IZ
.
va +

(
bZ + bs

h2

4π2

) .
ϕ − bs

h
2π

.
x + ks

h2

4π2 ϕ − ks
h

2π x

fp = mZ
.
vp + bs

.
x − bs

h
2π

.
ϕ + ksx − ks

h
2π ϕ − 2F

(6)

Finally, the following set of Equation (5) was determined:{
IZ

.
sa = fa − MZ
mZ

.
sp = fp

. (7)

To obtain the adjusted trajectory of motion, an assumption was made regarding the
control inputs of the proportional-derivative controller with compensation:{

ua = kasa + fa
up = kpsp + fp

(8)

where ua is the control of the active part equal to ua = MZ and up is the fictional control of
the passive part equal to up = 0 [42]. Here, kasa = ka

( .
ea + λaea

)
and kpsp = kp

( .
ep + λpep

)
describes the PD controller for the active and passive parts, respectively, where ka and kp
improve the derivation.

The assumed control method in (8) includes two components, whereas the second
equals zero as the passive part is not controlled. This component is called fictional control,
as it does not have a direct impact on the movement of the second part of the system.
However, it determines the dynamic performance of the passive part as it contains function
fp. Therefore, it can be used to determine the adjusted trajectory of the active part ϕd(t),
which will ensure the desired performance of the passive part is achieved, namely trajectory
xd(t).

The equation used to determine fictional control considering the fp function deter-
mined with Equation (6) is as follows:

kpsp + mZ
.
vp + bs

.
x − bs

h
2π

.
ϕ + ksx − ks

h
2π

ϕ − 2F = 0. (9)

This provides the basis to determine the speed of the active part:

.
ϕ =

1
bs

h
2π

(
kpsp + mZ

.
vp + bs

.
x + ksx − ks

h
2π

ϕ − 2F
)

(10)

with velocity applied in (10) as a set speed of motion:

.
ϕd =

.
ϕ (11)
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The integration of Equation (11) results in determination of the set trajectory of the
active part:

ϕd =
∫ t

0

.
ϕddt. (12)

The control system ensures that the trajectory of the active part is adjusted, namely
that it controls the motor shaft rotation angle.

5. Closed System Stability

The stability of the closed system was determined on the basis of the Lyapunov theory
of stability. For this purpose, a square form of the generalized follow-up motion error was
applied using the Lapunow approach:

L =
1
2

IZs2
a +

1
2

mZs2
p. (13)

Because simplified inertia and simplified mass relations are constants, a derivative of
Equation (13) in relation to time is equal to:

.
L = IZsa

.
sa + mZsp

.
sp. (14)

Considering the description of the controlled object, namely Equation (7), a derivative
of the L function for determining the system’s trajectory was determined:

.
L = sa( fa − MZ) + sp fp. (15)

Considering the control law MZ = ua = kasa + fa, Equation (15) was formulated as
the following:

.
L = −kas2

a + sp fp. (16)

Function fp, determined with (6) and taking into account (10), is expressed as:

fp = −kpsp. (17)

This also results from the equation determining the fictional control up = kpsp + fp =
0. Applying the above in Equation (16) resulted in:

.
L = −kas2

a − kps2
p ≤ 0. (18)

Because function L is positive with reference to the generalized follow-up movement
error and the conducted analysis indicated that derivative

.
L is a negative semidefinite,

variables sa and sp are limited pursuant to the Lyapunov theory of stability. On the basis of
Barbalat’s lemma, you can determine the convergence to zero of sa and sp as the result of
the convergence to zero of errors ea and ep.

6. Simulation Research

In terms of numerical research, some simulation tests were performed regarding the
motion of the rehabilitation device on the basis of Equations (1) and (8). Tables 1 and 2
present the data applied during the simulation tests.
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Table 1. Model parameters applied during simulation and experimental tests.

Parameter Unit Value

IZ kg m2 0.00018
mZ kg 10.5 + 2F/g
bZ kg m2/s 0.0005
bs kg/s 300
ks N/m 96,800
h mm 0.005

Table 2. Control system parameters applied during simulation and experimental tests.

Parameter Unit Value

λa 1/s 120
λp 1/s 6200
ka kg m2/s 3
kp kg/s 120

The trajectory of the passive part was specified on the basis of two variants. In the
first case, simulation tests were based on an analysis regarding the kinematics of the gait
patterns of persons diagnosed with neurological diseases. The averaged motion along the
vertical axis for one tested person was determined with (19). Therefore, this motion may be
considered to be a gait template for a disabled person at a given phase of rehabilitation. This
motion relates to the rope end displacement also. Pursuant to the device structure, a value
of the generalized variable x, which determines the chair movement within the passive
part of the body weight support system, is reduced twice compared with the patient’s
vertical movement. Consequently, Function (20) determines the adjusted trajectory of the
body weight support system’s passive part.

Fp(t) = 0.016(sin(2πt)− sin(4πt)) (19)

xd(t) = 0.008(sin(2πt)− sin(4πt)). (20)

In the second case, based on literature data [43,44], the function that determines the
adjusted trajectory of the body weight support system’s passive part related to vertical
movement during a healthy person’s gait (gait template) was defined. This function was
determined with Equation (21):

xd(t) = 0.006(sin(4πt)). (21)

The trajectory of the body weight support system’s active part is generated on an
ongoing basis during device operation.

The performed simulation tests considered three cases:

• Variant 1: A person during rehabilitation performs movements pursuant to (19)
without body weight support;

• Variant 2: During rehabilitation, a person performs movements pursuant to (19) with
body weight support of 300 N;

• Variant 3: During rehabilitation, a person performs movements with body weight
support of 300 N.

The simulation tests assumed that the body weight of the person undergoing rehabili-
tation was 70 kg (the device has a load capacity of 150 kg).

6.1. Variant 1

Figure 4 shows the adjusted and recorded movements of the active and passive parts,
while Figure 5 presents the adjusted and recorded movement speeds. Figure 6 presents the
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total control signal along with the PD controller signal and compensation control signal.
Figure 7 specifies the follow-up movement errors.

Figure 4. Trajectory: (a) adjusted ϕd and realized ϕ positions of the active part; (b) adjusted xd and realized x positions of
the passive part.

Figure 5. Trajectory: (a) adjusted dϕd/dt and realized dϕ/dt speeds of the active part; (b) adjusted dxd/dt and realized
dx/dt speeds of the passive part.

Figure 6. Control signals: (a) overall control system and control signal components; (b) control
during the initial phase of gait; (c) control graph with customized scales.



Appl. Sci. 2021, 11, 905 10 of 20

Figure 7. Follow-up movement errors: (a) position error of the active part eϕ; (b) position error of the
passive part ex; (c) speed error of the active part edϕ/dt; (d) speed error of the passive part edx/dt.

The presented results relate to a situation where a person undergoing re-education
maintains a vertical position on an unaided basis and performs the template gait during
a given phase of rehabilitation. In this way, no disruption follows. In this situation, the
device is not exposed to human body weight and the patient’s mass does not affect the
system’s inertia. This example relates to a human aiming to improve their gait pattern. The
adjusted trajectory errors result from the system’s dynamic performance only. This case,
however, needs to undergo verification with regard to the control system’s operation.

6.2. Variant 2

The results of the second simulation test relate to the use of a rehabilitation device
with a body weight support system that stimulates movement in the vertical direction.
In this case, the patient’s body mass affects the inertia of the system, which is exposed to
additional loading caused by the human body weight. During kinesitherapy treatment, a
body weight support load that reduces the effective load to 50% of the patient’s body mass
is applied [45–48]. Higher loads are not used in practice. The described simulation tests
were performed with a load of 300 N. Therefore, an assumption was made that the system’s
inertia affected by the patient’s body mass was 30 kg. Figure 8 shows the adjusted and
recorded movements of the active and passive parts, while Figure 9 presents the adjusted
and recorded movement speeds. Figure 10 presents the total control signal along with the
PD controller signal and compensation control signal and Figure 11 specifies the follow-up
movement errors.

Figure 8. Trajectory: (a) adjusted ϕd and realized ϕ positions of the active part; (b) adjusted xd and
realized x positions of the passive part.
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Figure 9. Trajectory: (a) adjusted dϕd/dt and realized dϕ/dt speeds of the active part; (b) adjusted dxd/dt and realized
dx/dt speeds of the passive part.

Figure 10. Control signals: (a) overall control system and control signal components; (b) control during the initial phase of
gait; (c) control graph with customized scales.
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Figure 11. Follow-up movement errors: (a) position error of the active part eϕ; (b) position error of
the passive part ex; (c) speed error of the active par edϕ/dt; (d) speed error of the passive part edx/dt.

6.3. Variant 3

The third analyzed case related to a situation analogous to variant 2, whereby a person
undergoing rehabilitation tries to move and follow their natural gait. For this variant
Figure 12 shows the adjusted and recorded movements of the active and passive parts,
while Figure 13 presents the adjusted and recorded movement speeds. Figure 14 presents
the total control signal along with the PD controller signal and compensation control signal.
Figure 15 specifies the follow-up movement errors.

Figure 12. Trajectory: (a) adjusted ϕd and realized ϕ positions of the active part; (b) adjusted xd and realized x positions of
the passive part.

Figure 13. Trajectory: (a) adjusted dϕd/dt and realized dϕ/dt speeds of the active part; (b) adjusted dxd/dt and realized
dx/dt speeds of the passive part.
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Figure 14. Control signals: (a) overall control system and control signal components; (b) control
during the initial phase of gait; (c) control graph with customized scales.

Figure 15. Follow-up movement errors: (a) position error of the active part eϕ; (b) position error of
the passive part ex; (c) speed error of the active part edϕ/dt; (d) speed error of the passive part edx/dt.

6.4. Analysis of the Results

The results of simulation tests indicate that the designed control system meets our
objectives and ensures stable operation, regardless of patient movement and the adjusted
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weight support load. For the demonstrated approach, the trajectory of the passive part
is adjusted over time and the trajectory of the active part can be calculated on the basis
of (10)–(12). Control method (8) enables the adjusted trajectory of the passive part to be
determined, because the dynamic performance of this system in the adjusted trajectory of
the active part is considered. Comparing the results of the simulation tests for the first two
variants, we observed differences mainly in the calculated set trajectory of the active part.
For the variant with a support force of 300 N, the position of the active part corresponded
to the deformation of the spring in the body weight support system, which is needed to
compensate for this support force. We also identified differences in the values of the control
signal corresponding to the servomotor torque. For the no-load variant, the motor torque
values fluctuated around zero, while for the variant with load, negative values during
operation (ignoring the start-up phase) were assumed. The negative values here result
from the assumed turning of generalized coordinates.

Application of the assumed control method requires the determination of certain model
parameters (inertia, damping, elasticity) and the system’s status (movement and speed).

The system settings selected by way of experiments had small errors. Due to the
knowledge of the dynamics of the controlled object, in numerical studies the compensation
function ensures very precise control; therefore, the control signal from the PD controller
had much lower values. In real objects, with unknown disturbances, the level of compensa-
tion will not provide such perfect control and greater influence of the PD control should be
expected. Moreover, the simulation did not consider signal processing delays that occur in
real conditions, therefore, analysis of the results of empirical studies is necessary [49–53].

7. Experimental Research

Due to the use of a prototype test bench and the lack of appropriate certificates,
empirical studies were performed on healthy people only. During tests, the trainees moved
on a treadmill at a speed of 1.5 km/h. The set trajectory of the passive part was adjusted
according to Equation (21). Before starting the device, an initial unloading of 100 N was
applied. This preload force was obtained in manual control mode by controlling the drive
system through the control panel. In the position obtained in this way, the coordinates of
the motor shaft angle of rotation were reset. In the next step, the device was started and
the trainee tried to move synchronously with the set trajectory of movement acting on the
body weight support system with a variable load force. An increase in loading force was
achieved by lowering the center of gravity of the trainee. The following parameters were
recorded during the experimental tests:

- Set and realized positions of the passive and active parts of the body weight support
system;

- Set and realized speeds of the passive and active parts of the body weight support
system;

- Values of control signals;
- Follow-up movement errors;
- The value of the body weight support force (from the force sensor).

The parameters of the control system were the same as those obtained in the numerical
research. The following figures present the results of the performed empirical studies.

The results of experimental research are shown in Figures 16–22. The adjusted and
realized movements of the active part and passive parts in dynamic body weight support
are shown in Figures 16 and 17. Figures 18 and 19 presents the adjusted and recorded
movement speeds. Figure 20 presents the total control signal along with the PD controller
signal and compensation control signal. Figure 21 specifies the follow-up movement errors.
Figure 22 shows the value of body weight support force during the experiment as a function
of time.
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Figure 16. Set ϕd and realized ϕ positions of the active part as functions of time.

Figure 17. Set xd and realized x positions of the passive part as functions of time.

Figure 18. Set dϕd/dt and realized dϕ/dt angular speeds of the active part as functions of time.

Figure 19. Set dxd/dt and realized dx/dt speeds of the passive part as functions of time.

Figure 20. Signals of overall control and control signal components as functions of time.
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Figure 21. Follow-up movement errors: (a) position error of the active part eϕ; (b) position error of the passive part ex;
(c) speed error of the active part edϕ/dt; (d) speed error of the passive part edx/dt.

Figure 22. Value of the trainee’s unloading force as a function of time.

The performed empirical studies confirmed the conclusions from the simulation tests
related to the stable operation of the developed control system, regardless of disruptions
caused by patient movements.

In the real object, servodrives are controlled in speed mode; therefore, the values of
control signals cannot be directly compared with the results of numerical tests. Optimiza-
tion of the regulator settings in a real facility will be possible after the implementation of a
complete servodrive in the numerical model. The selection of settings during experimental
tests is a time-consuming process; therefore, no further attempts were made to select them
because the purpose of this study was only to demonstrate the stability of the proposed
control system.

8. Summary and Conclusions

This paper includes the results of studies regarding the methodology used for tests on
the stability of a control system for a dynamic body weight support system. It also describes
the object of tests for which equations were formulated regarding a motion and control
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method. The device has a control system based on a PD controller with compensation,
which is essential considering its classification as an underactuated system. This work
presents the complete algorithm for calculations used to describe the control system and to
analyze the stability. The Lyapunov theory of stability function was also determined.

The presented methodology of calculations may be employed to analyze the stability of
similar devices. However, knowledge of the mathematical model is required to determine
the dynamic performance of a device and its parameters, as well as its control method.

The proposed control system features the trajectory of the active part, which is de-
termined on the basis of movement of the passive part. During the performed tests, the
trajectory of the passive part related to the adjustable function is formulated on the basis of
previous studies of the gait kinematic parameters. It is also possible to modify the control
system and use the measurement of the position of the passive part as the set trajectory.
Alternatively, the force sensor, which is equivalent to an approach applied previously in
similar devices, can be used [21,25,34]. In this case, the device performs a movement that
follows the vertical movement of the patient only.

During the conducted tests, it was the body weight support system that forced patient
gait thanks to the passive part movement. The use of such a control system in a rehabil-
itation device for the re-education of human gait is a new approach. Therefore, it is not
possible to directly compare the obtained results with other works and the quality of control
systems used so far in similar devices, e.g., with the control system of the ZeroG device,
where only force controller occurs [21]. However, we know from the literature review that
for underactuated mechanical systems, the use of the PD controller with compensation
ensures better operation than the feedback loop with the PD controller itself; this has been
shown inter alia on underactuated systems such as inverted pendulums, ball and beam
systems, overhead cranes, or robots with flexible joints [54–60]. However, it is necessary
to demonstrate the stability of such a control system so that the term associated with the
compensation of the dynamics of the passive part does not cause destabilization [61–63].
The unstable control algorithm may result in dangerous movements of the drive in the
body weight support system, which is particularly important due to the cooperation of
the device with patients during rehabilitation. In the presented approach, the stability
of the developed system has been demonstrated, which has not been proven so far in
other studies on body weight support systems. However, in future studies it will be pos-
sible to compare the proposed algorithm with more advanced controllers, such as active
disturbance rejection control, sliding mode control, or with adaptive algorithms.

On the basis of the results of empirical studies and the subjective opinion of the person
performing the training, it is concluded that the use of this control system in a dynamic
body weight support system forces the patient to adjust their walking cadence to the rope
movement. Consequently, this control system has a significant impact on the person’s gait
kinematics. However, tests did not verify any real movements of the patient, which may
be different in practice, e.g., due to the flexibility of the rope or harness. The usefulness of
the proposed control method for rehabilitation purposes shall be determined by experts in
the field of physiotherapy.

The proposed control system offers many possibilities for further modifications. Fu-
ture work will focus on an extension to obtain a cascade whereby the control of the active
part provides a compromise between the adjusted movement trajectory and the adjusted
body weight support force. Similar force–position control solutions are widely employed
in advanced mechatronic systems, e.g., in devices for upper and lower limb rehabilita-
tion [64–67].

Another limitation of the conducted research was the performance of tests for the con-
trol system with experimentally selected settings. It should be noted that the operation of
the device will be more accurate after the optimization process, for which the development
of verified numerical models of servodrives are necessary.
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