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Abstract: This paper provides an overview of latest progress on the novel advanced digital signal
processing (DSP) techniques for long-haul mode division multiplexing (MDM) systems with high
capacity. Space-division multiplexing (SDM) techniques have been developed for a period to increase
the capacity of optical communication system by at least one order of magnitude through MDM
techniques using few-mode fibers (FMFs) or multi-core multiplexing (MCM) using multi-core fibers
(MCFs). The signals in MDM links are mainly impaired by the linear and nonlinear effects in FMFs,
making DSP techniques become necessary to undo these impairments. In this paper, we not only
review the advanced multiple-input multiple-output (MIMO) DSP techniques for compensating
linear impairments in FMFs, but also enclose the state of the art of novel DSP techniques to deal
with nonlinear effects. Firstly, we introduce the MIMO schemes for equalizing modal crosstalk
and modal dispersion. Then, we focus on the fast tracking of time-varying (TV) channels in FMF
links through frequency-domain (FD) recursive least square (RLS) algorithm. Besides, we also cover
the mainstream DSP solutions for mode-dependent loss (MDL) and several possible methods to
compensate nonlinearity in FMF. Moreover, artificial intelligence (AI) technologies are also discussed
for its high nonlinearity tolerance and may bring a revolution in MDM systems on the process of
channel equalization, link monitoring, etc. In the end, a brief conclusion and perspective will be
provided.

Keywords: optical fiber communication; digital signal processing; multi-input multi-output; mode-
division multiplexing; least mean squares; frequency-domain equalization; recursive least squares;
time-varying channel; mode-dependent loss; nonlinearity compensation; machine learning; neu-
ral network

1. Introduction

SDM has gained great attention over the last decades as a potential technology to
accommodate the demand for future long-haul and power-efficient optical fiber communi-
cation systems with extremely high capacity [1,2]. In SDM transmission systems, fibers
with parallel spatial transmission channels are used to carry independent data-streams in
the same frequency band, which can be either uncoupled multi-core fibers (MCFs) or few-
and multi-mode fibers (FMFs and MMFs) [3].

Each type of fiber for SDM systems has its own special advantages. Uncoupled
MCFs are easy to be expanded from current single mode fiber (SMF) schemes [4] since
each core is used as an independent spatial channel where crosstalk from other cores
is well suppressed [5]. While strongly coupled MCFs have been proved with better
nonlinear tolerance compared to SMFs, which makes longer transmission distance or
higher transmitting power possible [6]. FMFs or MMFs on the other hand can support
much high spatial channel-count in a fixed cross-section area compared with other type
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of fibers, using additional DSP to undo the linear, nonlinear and other impairments that
recoverable after several kilometers of transmission.

The impairments over long-distance FMF systems mainly include modal dispersion
(MD), linear coupling or crosstalk (XT) among different fiber modes, time-varying (TV)
effect in transmission channels, mode dependent loss (MDL) and nonlinear effects.

A combination of MD and linear coupling causes visible inter-symbol interference
between different modes and different time slots. Accumulated MD is also called differ-
ential mode group delay (DMGD), which means different spatial modes propagate along
the fiber with different speed. While linear coupling either appears at discrete points like
fiber splices and connectors or is distributed along the fiber due to bends or fabrication
imperfections. Generally, linear coupling and MD are mitigated by multiple-input-multiple-
output (MIMO) equalizers [7]. To decrease the high computational complexity of MIMO
equalizers, frequency-domain equalization (FDE) algorithms were utilized to recover the
signals that have experienced impairments in fibers [8–10]. The FDE methods can reduce
the computational complexity dramatically, holding the same performance compared with
the time-domain equalization (TDE). What’s more, when it refers to the specific updating
methods of weighting matrix, the least mean squares (LMS) and recursive least squares
(RLS) algorithms are two most widely adopted and studied methods [11–13]. Compared
with LMS algorithm, faster convergence and better performance can be accomplished by
applying RLS at the cost of higher complexity [14–16].

It should also be noticed that linear coupling between different modes can be easily
influenced by a random temperature fluctuation or mechanical perturbation [17], so the
transmission matrix of fiber channels is actually time-varying with a certain speed related
to the perturbation rate. To achieve timely signal recovery, the equalizer on the receiver
needs to re-estimate the transmission matrix more frequently at the maximum speed of the
fiber channel evolution [18]. Moreover, if the speed of the fiber channel fluctuation is too
fast to track for the equalizer, the quality of the recovery would be degraded, leading to
decrease in transmission capacity [19]. So, the TV effect will not only increase the burden
on a receiver but also degrade the quality of channel equalization. Thus, aside from the
computational complexity and performance, the tracking capability or adaptation time of
the equalizers also becomes important for SDM systems, which naturally means RLS-based
MIMO algorithm with faster convergence is much valuable as a possible solution for TV
effects.

Long-haul SDM systems are also impaired by MDL arising from the imperfections or
mode-dependent difference of inline components such as fibers, amplifiers and multiplex-
ers, who are inducing modal loss/gain disparities [20–23]. It is a fundamental limitation
for a desirable data-rate or transmission distance. MDL causes the difference in optical
signal to noise ratio (OSNR) degradations among fiber modes, which finally reduce the
system capacity [24]. Thus, to suppress MDL effectively, specific optical devices such
as mode scramblers and strongly-coupled fibers are utilized to mix different modes and
balance the differences between them [25,26]. MDL-induced penalty is also found can be
mitigated by advanced DSP techniques such as receiver-side maximum-likelihood (ML)
detection and interference cancellation (IC) as well as transmitter-side space-time coding
(STC) techniques.

Another fundamental limitation for SDM systems is Kerr-effect-caused nonlinear
signal distortions. Because of the inevitable mode overlap, nonlinear effects will not only
happen between different frequencies in the same eigen mode (intramodal nonlinearity),
but also between different eigen modes (intermodal nonlinearity) [27–29]. Intermodal
nonlinear coupling will further degrade the signal quality. The digital back-propagation
(DBP) algorithm is the most common DSP method to compensate the fiber nonlinearities
in single mode fiber. And fortunately, the extension of DBP based single-mode split-step
Fourier method (SSFM) has recently been proposed to solve the multimode propagation
problem in FMFs [30–32].
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Recently, artificial intelligence (AI) technologies have also attracted great interest in
optical fiber communication, for its high nonlinear representation ability. Many neural
network models are provided by deep learning to handle various optical communication
problems. We will also review the recent applications of AI in optical communication.

The outline of this review article is organized as follows: Section 2 sets forth the
principles of MIMO equalizers, the main challenges and applications of MIMO equalizers.
Section 3 introduces the significance and principle of RLS techniques in MIMO equalizers,
and the tracking performance in MDM TV channels based on frequency-domain variable
forgetting factor RLS algorithm (FD-VFF-RLS). In Section 4, the mainstream DSP solutions
for mitigating MDL effects are reviewed. Then, Section 5 explores the novel DSP schemes to
compensate nonlinear effects in MDM systems and enlightens the advanced AI techniques
that could be introduced in MDM systems. A brief conclusion and some perspectives will
be provided in the last section.

2. Linear DSP MIMO Technique for MDM Systems

An optical MIMO system with NT transmitting channels and NR receiving channels
can be linearly modeled as Equation (1).

y = Hx + n (1)

where x, y, n, and H denote the NT × 1 transmitted symbol vector, the NR × 1 received
symbol vector, the NR × 1 zero-mean complex noise vector, and the NR × NT channel
transmission matrix, respectively. To reconstruct the signal x̂ from the received symbols y,
MIMO processing must be used to achieve the inverse transmission matrix which can be
expressed as Equation (2):

x̂ = Wy (2)

where W is the weight matrix of MIMO equalizer. Zero-forcing and minimum mean
square error method are usually utilized to achieve W if transmission matrix H is already
known [33,34] Generally, there is always no priori information of MIMO channel, so
adaptive filters are widely used to solve out the weight matrix in iteration process. So
far, two main linear equalization schemes have been investigated in detail: adaptive
TDE [35,36] and FDE [37,38].

Taking LMS algorithm as an example, LMS-FDE has significant advantage on the
computational complexity compared with LMS-TDE. The computational complexity of
MIMO equalizers increases with the number of finite impulse response (FIR) filters length.
The transmitted signal suffers a large amount of DMGD constantly accumulating with the
transmission distance, which finally leads to a large time spread or delay. Thus, a longer
FIR filter will be required, which means a corresponding higher computational complexity.
In order to relax the complexity of the equalizers, FDE is well adopted by utilizing fast
Fourier transform (FFT) to achieve complex convolutions in a block-by-block way [37] as
shown in Figure 1 [10,39].

Figure 1. Block diagram of the proposed FDE for one mode channel.
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The computational complexity for the equalization algorithm could be measured by
the number of complex multiplications per mode per symbol. The complexity of TDE
increases linearly with the filter length, while the FDE scales logarithmically with the taps
number. The complexity except for carrier recovery for these two types of algorithms can
be expressed as Equations (3) and (4) [40]:

CTDE = 3m∆τLRs (3)

CFDE = (4 + 4m) log2(2∆τLRs) + 8m (4)

where ∆τ is the fiber DMGD, L is the fiber link length, Rs is symbol rate, m is the number of
channels for transmission. The computational complexities as a function of number of taps
are shown in Figure 2, in which we assumed m equals 10. We could see that FDE reduce
the complexity dramatically compared with TDE. For long MDM transmission link, the
advantage of FDE will be more significant because the required taps number will be higher.

Figure 2. Number of multiplies per symbol vs. filter tap length for TDE and FDE. FDE can signifi-
cantly reduce the computational complexity (m = 10).

As the complexity of LMS-TDE and LMS-FDE has been compared above, we could
also discuss complexity of the RLS algorithm by the way to prove that the complexity of
RLS-FDE is not so sophisticated as it seems to be for per symbol per mode.

RLS algorithm is also a main receiver-side equalization candidate for SDM systems,
which utilizes iterative updating to minimize the exponentially weighted cost function,
whose convergence speed is nearly independent on the input vectors. In the simulation
of [9], the RLS algorithm was demonstrated through a cyclic prefix (CP) for each data block
in MDM systems. The CP could reduce the complexity per symbol at the cost of throughput
spectrum efficiency. We also previously proposed an overlap-save based FD-RLS algorithm
for MDM systems with a fixed forgetting factor. It proved that RLS has the ability to achieve
higher convergence speed, faster adaptation, better performance at the cost of moderately
higher computational complexity compared with LMS algorithm [41].

The higher convergence speed of RLS leads to higher throughput efficiency. Generally,
for a conventional MIMO-FDE, training sequence is required for initial weight matrix
updating to ensure the decision-directed (DD) equalization after training symbols for
continuous tracking. Therefore, slower convergence speed will result in a longer training
sequence and then lower spectral efficiency. While RLS algorithm owns faster convergence
speed compared with LMS algorithm, less training sequences are required so that higher
spectrum efficiency would be achieved, especially in the long-haul MDM systems.
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What’s more, as mentioned above, less training sequences are required for RLS algo-
rithm to perform update processing. The computational complexity per mode per symbol
of RLS algorithm is comparable with LMS, which is shown in Table 1. Table 1 is the
complexity comparison between the FD-RLS and the conventional FD-LMS algorithms,
in which m is the mode number and N f is the FIR filter length for each even/odd block
equaling 2LRs∆τ. Let us consider a 15 spatial modes transmission system [42] where
m = 30 and N f = 1024, the complexity ratio CRLS/CLMS coulde be derived to be around
1.33. The complexity ratio for different channels number m is shown in Figure 3, which
indicates that the complexity of RLS-FDE is comparable with, or rather slightly higher
than LMS-FDE. Moreover, considering that RLS-FDE requires less training symbols as
compared to that for the LMS algorithm and RLS can be switch into DD-LMS algorithm
after initial weight matrix equalization, the computational complexity per training symbol
of RLS algorithm is much lower than LMS.

Table 1. Complexity comparison between the FD-RLS and FD-LMS.

Operation Number of Complex Multiplications

LMS RLS

Compute output 4m 4m
Update filter coef. 4m 4m

FFT/IFFT (4 + 4m) log2 N f (4 + 4m) log2 N f
Update Kalman vector - 8 + 4m

Update correlation matrix - 12m

Figure 3. Complexity ratio of FD-RLS and FD-LMS.

3. RLS MIMO Algorithms and Its Application on Equalization of TV Effects

The procedure of an overlap-based FD-RLS algorithm is shown schematically in
Figure 4 for a MIMO MDM system with m degrees of freedom. Here, yi(n) and xi(n)
represent the time-domain input signal vectors and output signal vectors of mode i with
1 ≤ i ≤ m. After parallelization from serial sequences, two consecutive blocks of TD input
vectors are concatenated into FFT with an overlap rate of 0.5 to obtain the FD input signal
vector Y(k) and the FD output signal vector X(k) would be equalized in frequency domain
through the overlap-save method. The prosses of this algorithm is similar to that of the
FD-LMS algorithm shown in Figure 1 [37] except the correlation matrix updating process
contained in the dotted box. The RLS algorithm is intended to minimize its exponentially
weighted cost function with iterations in frequency domain, which utilizes the assumption
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of mutual independence between different frequency components. The iterative matrix
updating can be formulated mathematically as Equations (5)–(7):

K(k)← λ−1R(k)Y(k)

1 + λ−1Y(k)HR(k)Y(k)
(5)

W(k)←W(k) + K(k)E(k)H (6)

R(k)← λ−1R(k)− λ−1K(k)Y(k)HR(k) (7)

Figure 4. Block diagram of the RLS FDE.

In the Equations (5)– (7), R(k) is an m × m inverse matrix of the correlation of input
signals at the k-th frequency component, which can be initialized as a unit matrix multiplied
by a constant inversely proportional to the signal to noise ratio (SNR) of the input data;
λ is a forgetting factor satisfying 0� λ < 1 and the superscript H denotes the conjugate
transpose operator. Kalman vectors, K, which is the key parameter to update the filter
coefficients, always is computed based on the frequency domain signal input vector Y(k)
and the inverse correlation matrix R(k) of the previous block. Besides, the even and odd
tributaries should be updated separately because they use different input vectors and
naturally different correlation matrix. Generally, RLS could exploit more information from
the input signals by the Kalman vector compared to typical LMS algorithm based on
stochastic gradient descent [43].

It is noteworthy that variable λ could be time-varying to further improve the perfor-
mance of RLS. Since a fixed λ leads to a trade-off between a faster convergence speed and
a lower misadjustment error, this compromise could be balanced well with a variable λ,
which algorithm is referred to VFF-RLS. Lots of work around VFF-RLS has been done for
different signal processing applications [44–46]. However, calculating the specific value
of λ is always operated by division or extraction of a root, which leads to rather higher
computational complexity compared that with fixed forgetting factor. To avoid higher
complexity while still holding the advantages of VFF, we proposed a FD-RLS schemes with
an exponential VFF in Equation (8) [47]:

λ(n) = λmax − γ× 10−nτ (8)

where n represents the FD-block index. λ decreases with the increasing of n. So, at the
beginning of the equalization, we set λ to be a lower value for faster convergence. When the
filter matrix converges to near steady-state solution through enough iterations, λ reaches
λmax to ensure low misadjustment. Our proposed VFF-RLS-FDE algorithm was utilized
to a 6 × 6 MIMO-MDM transmission data. The experimental results showed that the
algorithm achieve better performance than conventional LMS and the RLS has a fixed
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λ equaling 0.9. It can maintain faster convergence speed as shown in Figure 5a, which
plots the mean square error (MSE) curves in a 600-km MDM transmission. The part of
beginning convergence is zoomed in in the inset, where the green line of dashes stands for
the target MSE level. For better comparison under the same standard, the desirable MSE
is fixed to 1.9 × 10−5, which represents an MSE level that could be achieved by both the
VFF-RLS/RLS and LMS algorithms even through 1000-km MDM transmission.

Figure 5. Convergence speed comparison between VFF-RLS/RLS and LMS: (a) MSE convergence at 600-km vs. symbols;
(b) Ratio of convergence speed of LMS and VFF-RLS/RLS vs. Distance.

In order to further highlight the improvement of the convergence speed of VFF-
RLS/RLS, we defined the ratio of convergence speed (RCS) as the ratio of the number
of training symbols needed by LMS algorithm to that by VFF-RLS or RLS algorithm
for converging to achieve the same MSE. Figure 5b shows the RCS values at different
transmission distances for conventional RLS and VFF-RLS, where the solid and dotted
lines are cubic polynomial fits for RLS and VFF-RLS, respectively. Faster convergence
speed was obtained for VFF-RLS/RLS at longer transmission distance. The advantage in
convergence speed could be explained by that lower SNR caused by longer transmission
distance requires more robust performance to reach the target MSE, which condition
could be satisfied by VFF RLS or RLS. In particular, after transmission excessing 800-km,
compared to conventional LMS algorithm, the convergence speed is improved over 90% by
the VFF-RLS and RLS algorithm. Most notably, the RCS of VFF-RLS-FDE is 15.3% higher
than conventional RLS-FDE at 600 km, which means that the VFF-RLS algorithm can also
obtain a significant RCS improvement over the conventional RLS algorithm.

In addition to the computational complexity, performance and convergence speed, the
tracking speed of the equalization algorithms also attracts much attention for long-haul
and high-dimension MDM transmission, due to the TV effects in FMF. On the one hand, the
evolution rate of transmission matrix of FMFs scales with the number of spatial modes [18].
Compared with SMFs, the evolution speed of two-mode fiber is one order of magnitude
faster. What’s more, the rotation speed of Stokes vector of four-core coupled-core fiber
on the Poincare sphere may exceed 100 krad/s [48]. On the other hand, the evolution
rate of transmission matrix also scales with fiber length [18]. Therefore, for long-haul
MDM transmission, which are easier to be disturbed by perturbations, dealing with TV
MDM channels and developing faster-tracking MIMO equalizers are more necessary. In
addition, there are no effective optical devices to control or compensate the time varying
modal dynamics of MDM system. Therefore, people will rely more on DSP techniques
to deal with TV MDM channels. Since RLS algorithm has been proposed theoretically
for the MDM system to achieve a fast convergence speed and tracking capability, we had
further extended the VFF-RLS algorithm to the equalization of TV channels in FMF links to
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track the constantly changing transfer matrix [49], which is FD error-dependent VFF-RLS
algorithm (ED-VFF-RLS).

The forgetting factor of our previously proposed ED-VFF-RLS algorithm could be
decided automatically by error signals. With regard to algorithm schemes, the procedure
of ED-VFF-RLS is similar with the above conventional FD-RLS algorithm except for the
forgetting factor updating process. Figure 6 shows schematically the procedure of the
ED-VFF-RLS algorithm of an m×m MDM system. The forgetting factor λ is decided by
the estimation of the power of noise signal and priori error signal. Specifically, λ would be
recalculated at each frequency-domain block as Equation (9) [44]:

λ(n) =

λmax i f σ̂e(n) ≤ γσ̂v(n)

min
{

σ̂q(n)σ̂v(n)
ξ+|σ̂e(n)−σ̂v(n)| , λmax

}
i f σ̂e(n) ≥ γσ̂v(n)

(9)

where λmax ∼= 1, 1 ≤ γ ≤ 2, ξ is a small positive number preventing division by zero
and q(n) = YH

ev,od(n)P
H
ev,od(n)Yev,od(n). In addition, σ2

q (n) = E
[
q2(n)

]
, while σ̂2

e (n)
and σ̂2

v (n) is the mean power of the priori error signal and the noise signal, respec-
tively. For convenience of calculation, an exponential window [50] was adopted to com-
puted the three mean powers in Equation (9) with σ̂2

e (n) = ασ̂2
e (n− 1) + (1− α)E

[
e2(n)

]
,

σ̂2
q (n) = ασ̂2

q (n− 1) + (1− α)E
[
q2(n)

]
and σ̂2

v (n) = βσ̂2
v (n− 1) + (1− β)E

[
e2(n)

]
, where

the weight factors α and β meet the condition of α < β < 1.

Figure 6. Block diagram of the FD-VFF-RLS algorithm.

We use two sets of parameters to represent the different trade-off between misalign-
ment error and tracking capability, respectively. And Figure 7a,b have compared the
tracking capability of ED-VFF-RLS with that of conventional LMS under the two sets of
parameters. First of all, Figure 7a shows that the proposed ED-VFF-RLS has the nearly
same performance as LMS under the first set of parameters when the angular frequency of
rotation matrix is low. When angular frequency is further increased to over 100 krad/s, the
Q2 factors of the ED-VFF-RLS algorithm have more than 2.2-dB improvement, in compari-
son with LMS algorithm adopting a smaller unnormalized step-size. It can be observed that
the consistency of FD algorithms agrees well with TD algorithms. While in Figure 7b, the
ED-VFF-RLS algorithm with smaller α factor displays nearly identical tracking capability
as the conventional LMS algorithm using a larger unnormalized step-size, but the former’s
Q2 factor is improved around 0.5-dB as compared to LMS. It is worth noting that at the
cost of a minor Q2 penalty in static environment, the performance of equalizers could be
significantly promoted in fast time-varying situations.
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Figure 7. Mean Q2 factor vs. rotational angular frequency for different algorithm: (a) A lower steady-state misalignment
with a poorer tracking capability; (b) A higher steady-state misalignment with a better tracking capability.

4. DSP Techniques on Compensation of MDL Effects in FMF Links

Transmitted signals in SDM links are also impaired by different gain or loss between
different spatial modes, which phenomenon could be collectively referred to as MDL
effect. MDL mainly arises from the imperfections of inline components such as splices and
micro-bends of fibers, amplifiers and multiplexers.

MDL causes different OSNR degradations between different modes, which finally
reduce the system capacity. For an optical MIMO system modeled as Equation (1), if
there is not any prior information of the SDM links at transmitter, the capacity, C, of a
MIMO-SDM system with equal transmitted power between different modes is given by
Equation (10) [51,52]:

C =
NR

∑
i=1

log2

[
1 +

P
NT N0

λi

]
(10)

where P is the total power of all transmitted signal, N0 is the noise power of each received
channel, and λi is the eigenvalues of the NR × NR positive semidefinite Hermitian matrix
HH† that satisfy λi ≥ 0 (i ∈ {1, 2, . . . , NR}).

Equation (1) indicates that the available MIMO system capacity is the summation of
the capacity of respective parallel NR single channels, each of which has a power gain or
loss of λi [52]. Since MDL could be defined as the ratio between the maximum eigenvalue
(max (λi)) and the minimum eigenvalue (min (λi)) of HH†, the capacity of MIMO system
is naturally reduced due to the presence of MDL.

On the other hand, in terms of DSP, unlike DMGD which could be compensated
totally by MIMO detection, MDL has a serious damage on linear MIMO equalization
performance as a result of the non-unitary transfer matrix induced by MDL. Much effort
on DSP techniques has been explored to mitigate the MDL-induced capacity loss or to
suppress MDL-impaired non-unitary channels.

4.1. Maximum-Likelihood (ML) Detector

A receiver-side ML detection scheme was firstly reported in [53] to compensate MDL in
FMFs. The ML detector is designed to maximize the probability P(x | y) for all transmitted
hyper-symbols. In an additive white Gaussian noise (AWGN) channel model, the typical
form of ML detection principle [54] is given by Equation (11):

x̂ML = arg min
x∈ANT

‖y−Hx‖2 (11)

where A is the set of value of ideal constellation symbols, x is the transmitted symbols
vector, y is the received symbols vector, and x̂ML is the estimation of transmitted symbols
of ML detector. The ML detection seeks for the transmit symbols vector multiplied by
transmission matrix H which has the minimum Euclidean distance from the received signal.
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The search is conducted over all possible symbol combinations from all spatial channels
and possible modulation symbols.

As shown in Figure 8, ML detection is the optimal receiver detector among all the
simulation results compared with other linear equalizers such as zero-forcing (ZF) and
minimum-mean-square-error (MMSE) equalizer [53]. The advantages of ML detection
make it a powerful tool to reduce MDL in combination with strong-coupling fibers or mode
scramblers [33,53].

Figure 8. (a) OSNR penalty vs. distance and (b) normalized histogram of the OSNR penalty (320 km) for weakly and
strongly coupled modes, MMSE equalizer and ML detection, 200 channel realizations.

However, its complexity grows exponentially with both the number of modes and
the order of the modulation constellation with regard to Figure 9, forcing us to consider
the compromise between its performance to and the extremely high computational com-
plexity. Thus, for MDL reducing, few DSP methods were proposed to achieve near-ML
performance without being impacted by the huge computational complexity, such as the
improved reduced-search (IRS) ML detection [55,56], the sphere decoding (SD) [56] and
complex lattice reduction aided detection (CLR) [57]. Each algorithm outperforms the
linear equalizer MMSE to improve the tolerance of MDL for MDM system with acceptable
computational complexity gain.

Figure 9. Number of complex multiplications per bit as a function of the number of tributaries NT
for the MMSE equalizer, IRSML and ML detector for different modulation formats.

4.2. Interference Cancellation (IC)

Linear MIMO equalizers are also attractive to mitigate MDL effect because of its
relative low complexity, adaptive schemes and high compatibility. The performance of
these equalizers could be further enhanced by introducing more prior information of the
channels which indicates that the SNR of each mode can be considered to utilize. Inspired
by this idea, the interference from higher-SNR channels to the lower-SNR ones can be
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cancelled by equalizing stronger modes in advance. Each channel is equalized one by
one from the highest- to the lowest-SNR modes by estimating the interference from other
channels, which equalizer is called successive interference cancellation (SIC) schemes.

In order to realize longer-distance SDM transmission in [58,59], an unreplicated suc-
cessive interference cancelling (U-SIC) equalizer that mitigates MDL-induced intermodal
interference were proposed and successfully demonstrated. Through the corresponding
experiments, an MDL tolerance improvement of 3.3 dB and an OSNR gain of >4.5 dB
were demonstrated even under high DMGD up to 39 ns. As shown in Figure 10, as com-
pared to the conventional SIC algorithm, channel estimation is no more required for the
proposed U-SIC.

Figure 10. Schematic structures of U-SIC detectors comprising two stages.

Figure 11 shows the advantages of U-SIC scheme on the improvement of Q factor
and lower requirement of OSNR to achieve hard-decision (HD) forward error correction
(FEC) (FEC) limit for bit error ratio (BER) in comparison with conventional linear MIMO
algorithms. What’s more, in [60] the combination of U-SIC technique and mode scramblers
enable the demonstration of the 2500-km long-haul MDM transmission with more than
2-dB Q-factor gain.

Figure 11. (a) Required OSNR to achieve HD-FEC limit BER under FMF links with various DMD
values. And LP11a-X signals detected through a linear MIMO equalization (b) or through a U-SIC
scheme (c) after transmission over 15-km FMF at OSNR of 8 dB.

For higher performance in MDL-impaired MDM systems, a novel unreplicated paral-
lel interference cancellation (U-PIC) scheme was proposed in [61] by increasing the number
of iterations compared with U-SIC. By iterative utilization of the soft information of trans-
mitted symbols from decoders, the U-PIC equalizer successfully cancel the MDL-induced
intermodal interference among the channels with similar SNR. Experiment demonstrated
that the U-PIC algorithm could achieve better performance than both the conventional
linear MIMO equalizers and the above U-SIC algorithm.

4.3. Space-Time Coding Technique (STC)

A few studies have also shown that STC technique in transmitter can effectively
suppress MDL effects in SDM systems, which was originally proposed to suppress spatial
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channel fading in wireless MIMO communications [62]. Instead of directly multiplexing
different M modes to transmit independent symbols stream SM×1. MIMO scheme could be
beneficial from the space and time degrees of freedom at once by making multiple copies of
an input symbol over different channels at different time slots. Naturally, through various
channel propagation, these copies could be exploited to have a better estimation of the
transmitted symbols at receiver side and the MDL effect would be further mitigated. The
schematic structure of SDM MIMO system applying STC technique is shown in Figure 12,
where XM×T is a space-time transmitted codeword. YM×T is the codeword at receiver side
where M denotes the number of channels and T is the length of the code. NM×T denotes a
white Gaussian noise.

Figure 12. SDM transmission system with STC technique.

The effectiveness of STC for MDL suppression in SDM systems has already been
demonstrated by various simulations and subsequent experiments. In [63] and [64], it
was shown that the combination of redundancy-free STC with inline mode scramblers
and ML detector can thoroughly eliminate the SNR penalties caused by the MDL at most
10 dB. Moreover, two reduced-complexity STC detectors achieving a near-ML performance
were also proposed: a sub-optimal decoding scheme and a multiblock STC approach
in [64]. What’s more, two more simple schemes were proposed for STC applications to
decrease coding complexity in SDM systems. In [65], Hadamard transform (HT) was
utilized in STC technique to disperse the power of each symbol over all modes for identical
channel equalization performance. Then, a dense 627-km SDM transmission experiment
were demonstrated to prove the HT’s advantage of improving MDL tolerance, where the
transmission distance was increased by 20%. While in [66], a mode-interleaving method
was also presented to simplify STC schemes, which method could improve the transmission
reach by 40% through simulation, as well as saving O

(
M2) computation complexity

compared with conventional space-time block coding (STBC) method. The numerical
conclusions of the benefits of STC were soon confirmed in [67] through experimental
measurements, where lower BER at the same OSNR condition was achieved and the Q-
factor in FMF transmission systems was improved by 3.4 dB in an absence of 10-dB MDL
as shown in Figure 13a,b, respectively.

Figure 13. (a) BER vs. OSNR for ST coded and uncoded transmission for MDL = 0, 6, 10 dB (b). Q penalty vs. MDL at
OSNR = 14 dB with regards to the MDL-free transmission.
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Since STC with mode scramblers was shown to be a powerful tool to mitigate MDL
effect, more efforts were adopted to explore possible techniques for further improved
performance of the SDM systems that apply STC technique. In [68], an upper bound
of the error probability of the optical channel induced by MDL was derived, this upper
bound leads to a design criterion of space-time codes which is able to totally mitigate
MDL in SDM systems. In [69] and [70], the combination of STC and FEC was studied to
suppress the MDL effect. Numerical simulation results showed that, through guidance of
the aforementioned upper bound of error probability, the obtained gain of the combination
is equal to the summation of both coding gain.

Moreover, the DSP techniques at the receiver for MDM systems were also widely
studied to better suite with STC schemes. In [71] and [72], a STBC-aided RLS algorithm
was developed for MDL mitigation in MDM systems to achieve quasi-RLS convergence
speed as well as quasi-LMS complexity, with which assistance a 7.8 dB OSNR tolerance
was obtained for polarization-division multiplexed (PDM) 64QAM system. In [73], a
receiver-side linear decoding schemes was proposed for the orthogonal STBC-aided MDM
system to achieve near-ML performance with reducing decoding complexity, which grows
linearly with the order of constellations. In [74], a novel hybrid detection with combination
of the IRS method and the decision feedback equalizer (DFE), was realized for the threaded
algebraic space-time codes (TAST) assisted system, where the proposed detector achieved
near-ML performance with a lower computational complexity.

We have concluded the above three DSP solutions for suppressing or mitigating MDL
effect in Table 2 to help readers understand their advantages and disadvantages. As we can,
see ML detector and IC techniques are receiver-side equalizers while STC is a transmitter-
side coder technique which means it is easy to cooperate with other receiver-side solutions.

Table 2. Comparison between different digital solutions for mitigating MDL effect.

Classification Receiver-Side Transmitter-Side

Name ML IC STC

Complexity High Low Moderate (excluding
equalizer)

Advantages Optimal equalizer Suboptimal equalizer
Easily compatible

with other solutions;
Coder technique

Disadvantages High complexity Worse performance

Loss of multiplexing
gain; Required for

extra coder and
equalizer

5. Novel DSP Techniques for MIMO Systems

With the fast improvement of data processing capacity, many novel DSP algorithms
have been proposed in the last few years. This section focuses on the recent emerged DSP
techniques for MIMO systems, including the extended DBP algorithm to handle nonlinear
effects in FMFs, AI techniques to achieve MIMO equalization, and so on. In comparison
with the conventional methods, these novel DSP algorithms have the potential to replace
them for better performance.

5.1. Digital Back-Propagation Algorithm (DBP)

It is well known to us that the DBP algorithm is the most common DSP method to
compensate nonlinearities in single mode fiber. However, as mode coupling exists in
FMFs, traditional DBP cannot be successfully used. The extension of single-mode split-step
Fourier method (SSFM) based DBP has recently been proposed to solve the multimode
propagation problem over FMFs [30,31]. As illustrated in Figure 14, a symmetric SSFM
is implemented, where the nonlinear effects are considered in the middle of the segment
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instead of the segment boundary. By utilizing this structure, the generalized nonlinear
Schrödinger equation (GNLSE) can be simplified according to the strength of the linear
mode coupling.

Figure 14. The symmetric SSFM for FMFs with linear coupling.

Following the strategy above, two original Manakov-like equations with nonlinear
coefficients are derived for FMFs in two extreme coupling regimes. In the weak coupling
(WC) regime, we only need to consider the average value over birefringence fluctuations,
which leads to a reduced intramodal degeneracy factor of 8/9 and a reduced intermodal
degeneracy factor of 4/3 [75]. In the strong coupling (SC) regime, all propagation modes
are included on average.

A 19 channels wavelength-division multiplexed (WDM) MDM system is simulated
to study the performance as shown in Figure 15 [31]. There are six LP modes with dual-
polarization in each channel, as 14 Gbaud polarization-multiplexed 16QAM, the overall
data rate of 12.8 Tb/s is transmitted over 12 spans of 20 km 6-mode FMF. In the receiver
side, DBP is implemented by utilizing a fixed step size of 100 m, subsequently, chromatic
dispersion (CD) compensation, time synchronization, channel estimation is performed,
and finally Q-factor is calculated.

Figure 15. Simulated WDM-MDM system based on new DBP.

Figure 16 shows the Q-factor performance with launched power in three different
case. In Figure 16a, both WC-DBP and SC-DBP have a Q-factor improvement at low XT,
which means that the Manakov approximations are reasonable. But it can be found that
only SC-DBP can perform well at high XT shown in Figure 16b, which can be explained
by the nonlinear coefficients in WC-DBP is larger than the actual channel leading to
overcompensation. As shown in Figure 16c, when GD management with high DMD is
utilized, WC-DBP can still perform well in low XT.

Recently, DBP is realized in a deep neural network architecture [32]. The architecture
of this deep neural network (DNN) is shown in Figure 17, where the inputs are the received
signal samples and the outputs are the estimated symbols. The weight Wk represent linear
effects in transmission, such as mode dependent loss and chromatic dispersion. And σk is
the nonlinear operator which represents the nonlinear phase derotation. A polarization
rotation matrix Rk is appended at the k-th stage of the DBP operation and can be optimized
from training data without any knowledge of the principle states of polarization (PSP).
Thus, all the linear and nonlinear parameters in traditional DBP can be optimized in
the DNN.
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Figure 16. Q factor vs. launched power per channel in three different cases. (a) low XT and DMD free; (b) high XT and
DMD free; (c) low XT and high DMD with GD-managed.

Figure 17. The architecture of DNN to implement DBP and PSP derotation.

The PDM-WDM transmission system is experimentally constructed to investigate
the performance of this DNN [32]. The experiment setup is shown in Figure 18, where
a 5 channel 50-GHz-spaced WDM system with 28 Gbaud 16-QAM modulation format is
utilized. Ten fiber spans with different length are cascaded. At the receiver side, the signal
is sampled and then processed in offline.

Figure 18. Experiment setup for PDM-WDM system.
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The Q factors of the center channel is shown in Figure 19a, it can be found that the DNN
based DBP outperforms traditional DBP even in 1 step per span (StPS). Figure 19b shows
the “M”-shaped amplitude responses of the filter, which exhibits some high-pass feature
at the later staged in DNN. This phenomenon can be attributed to that the “M”-shaped
filter tries to compensate an additional undesired term with a “∩” shaped spectrum. The
optimized nonlinear coefficients with a “U” shape are shown in Figure 19c, which suggests
that the nonlinear-phase derotation is larger in the middle stages than the beginning and
end of the DBP. Figure 19d shows the optimized rotation angles for PSP, which agree with
the theoretical expectation.

Figure 19. Transmission results for PDM-WDM system. (a) Q-factors vs. launch power in different algorithm; (b) Optimized
amplitude spectra after linear operation in different fiber segment; (c) Optimized nonlinear coefficients in different fiber
segment; (d) Optimized rotation angle for PSP.

5.2. Artificial Intelligence (AI) Technology for MIMO Equalization

Recently, AI technologies have also attracted great interest in optical fiber communica-
tion, for its high excellent ability. Deep learning, as a main branch of AI, provides many
neural network models to handle various optical communication problems. For example,
artificial neural network (ANN) is widely utilized in nonlinear equalization [76–78] and
optical performance monitoring [79,80], convolutional neural network (CNN) has the
ability to get high accuracy of output images in MMF [81] and enabled high-spatial-density
SDM framework [82]. And DNN, which is more complex than ANN, shows its excellent
performance in end-to-end learning [83]. What’s more, the applications of deep learning
in DSP bring a revolution in MIMO transmission systems. In this part, several neural
networks are introduced to achieve MIMO equalization, and better performance can be
obtained compared with the traditional methods.
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As mentioned above, mode coupling is inevitable in MDM system which causes
channel crosstalk and DMD. Thanks to deep learning, ANN can be used as a MIMO
equalizer to mitigate these channel impairments [84]. A two mode MDM transmission
system with an ANN equalizer is illustrated in Figure 20a, the ANN equalizer is placed at
the receiver side and consists of three layers as depicted in Figure 20b. Meanwhile, a novel
feed-forward and back propagation algorithm is employed to update the weight, in which
the back propagation retrieved the feed-forward output as an input to the hidden layer.

Figure 20. (a) MDM transmission system with ANN equalizer; (b) The structure of ANN.

Channel impulse response is analyzed to characterize the ANN performance. Figure 21a
shows the input channel impulse response for two channels, in which both channels are
coupled with each other significantly. Figure 21b,c are the target and output channel
impulse response, respectively. There is a high similarity between these two pictures where
the impulse response of both channels is separated clearly. Hence, this ANN equalizer has
a good performance in compensating mode coupling and DMD.

Figure 21. (a) Input channel impulse response; (b) Target channel impulse response; (c) Output channel impulse response.
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Based on the fact that deep learning neural networks are highly nonlinear and have
an ability to form arbitrarily nonlinear decision boundaries, a supervised deep learning
neural network (DLNN) is employed in MIMO detection [85]. A schematic diagram is
shown in Figure 22, where an MDM optical transmission system with N input modes and
N output modes is adopted. At the receiver side, the received signals are fed to the DLNN
to implement MIMO detection.

Figure 22. MDM transmission system based on DLNN.

Figure 23 shows the detailed structure of the proposed DLNN. In this scheme, N
complex signals are decomposed into the real parts and imaginary parts. And then, these
2N real signals are fed into a feed-forward neural network with M layers. For N × N
MIMO system, 2N input neurons and 2N output neurons are required in the DLNN, which
means that the complexity of DLNN increases with the polynomial time complexity of the
MIMO dimension.
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The performance of DLNN, traditional ZF detector and advanced Semi-Definite
Relaxation Row-by-Row (SDR-RBR) is compared in a 2 × 2 MDM system. Figure 24 shows
the BER curves versus channel condition number. It can be seen that DLNN has a better
performance than the other two detectors with Q-factor greater than 15 dB.
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Figure 24. The BER performance of DLNN, ZF and SDR-RBR.

It is generally known that the nonlinear Shannon limit has become the basic barrier of
a channel maximum capacity in communication. To mitigate various nonlinear effects, DSP
can be utilized. Recently, deep-learning-based MIMO equalization has been adopted to
tackle the interplay of FWM interference and parametric amplified noise in coherent optical
communication [86]. Meanwhile, inter-carrier crosstalk effects even without frequency
stochastic variations can also be compensated by this novel MIMO neural network, which
has hitherto been considered impossible.

In orthogonal frequency division Multiplexing (OFDM) system, the frequency depen-
dent deterministic distortion leads to the center subcarriers suffering from higher nonlinear
distortion than edge subcarriers, which leads to a lower signal-to-interference-plus-noise
ratio (SINR). Consequently, as shown in Figure 25, a more complex ANN is employed in
center subcarriers than edge subcarriers. Following this strategy, the SINR difference be-
tween each subcarrier is suppressed, resulting in a more robust equalization performance.

Figure 25. Conceptual diagram of the neural network-based MIMO equalization strategy.

Figure 26 illustrates the structure of this mentioned equalizer. The hidden layer
is adaptively adjusted by a set of electronic frequency sub-carriers which represent the
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third dimension of different frequencies. The complexity of this adaptive neural network
depends on the hidden layers counts which is 3 or 4 and the modulation format level which
is 4 for QPSK or 16 for 16-QAM. Therefore, compared with traditional methods, this 3D
MIMO neural network will not increase the computational complexity.

Figure 26. The architecture of MIMO deep learning equalizer.

In order to explore the performance of the MIMO deep learning equalization algorithm,
as shown in Table 3, four different cases with different number of central subcarrier blocks
were used for comparison. Figure 27a shows the result in a 3200-km QPSK WDM-CO-
OFDM system, it can be seen that the performance under case 2 is better than the other
three cases. And compared with the commercial single-carrier/polarization QPSK system
for a 3200 km multi-channel configuration, the MIMO deep learning under case 2 brings a
record 3.8-dB Q factor improvement. Such performance enhancement is maintained for a
2000-km single channel 16-QAM CO-OFDM system as is shown in Figure 27b.

In case 2, MIMO deep learning equalizer with traditional ANN and deterministic DBP
in different transmission systems is compared: (a) WDM QPSK CO-OFDM at 3200 km and
(b) Single channel 16-QAM CO-OFDM at 2000 km. It can be found from Figure 28a that
compared with the ANN and DBP methods, at the optimal launched optical power (LOP)
of −5 dBm, the Q-factor is improved by 1.4 dB and 2.1 dB, respectively. This is due to the
fact that the DBP cannot accurately know the absolute position and relative spacing of
the channels and subcarrier frequencies. From Figure 28b, it can be found that compared
with linear equalization and ANN, the maximum allowable LOP of this MIMO equalizer is
increased by 4 dB, and at the optimal LOP of 6 dBm, the Q factor 2.1 dB is improved in
comparison to DBP.

Table 3. Different cases of block-size for middle subcarriers and number of hidden layers.

Cases Block-Size for Middle Subcarriers Hidden Layers

1 50 3
2 100 3
3 150 3
4 2 × 54 (middle groups), 2 × 51 (edge groups) 4
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Figure 27. Transmission performance of MIMO equalizer in different cases. (a) WDM QPSK CO-OFDM at 3200 km; (b)
single-channel 16 QAM CO-OFDM at 2000 km.

Figure 28. Transmission performance comparison among MIMO deep leaning, ANN and deter-
ministic DBP. (a) WDM QPSK CO-OFDM at 3200 km; (b) single-channel 16-QAM CO-OFDM at
2000 km.

In Table 4, different structures of neural network were summarized in terms of their
respective applications in DSP techniques of MDM systems, which you could find that
each type has its own speciality in mitigation of certain impairments in MDM links.
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Table 4. Applications of neural network in MIMO system.

Structures of NN Applications

ANN Compensating mode coupling and DMD

DLNN MIMO detection

3D-ANN MIMO equalization in the presence of FWM

6. Conclusions

In this paper, we presented an overview of recent progress on advanced DSP tech-
niques for MDM systems. Methodologies of digital approaches were reviewed that can
mitigate the impact of MD, XT, MDL and nonlinearity on the system performance in long-
haul MIMO-MDM transmissions. What’s more, AI technologies were also mentioned for its
advantage to handle various optical communication problems, and we believe that machine
learning would bring more possibilities on equalization, monitoring and characterization
of MDM systems. In particular, the TV channels for MDM transmission also attract more
attention in recent years, so our DSP techniques of FD-VFF RLS for MIMO-MDM systems
were firstly reviewed to enlighten more works on tracking TV effect in FMF links.
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