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Abstract: In this paper we introduce the draft of a new graph-based algorithm for optimization of
scheduling problems. Our algorithm is based on the Generalized Lifelong Planning A* algorithm,
which is usually used for path planning for mobile robots. It was tested on the Job Shop Schedul-
ing Problem against a genetic algorithm’s classic implementation. The acquired results of these
experiments were compared by each algorithm’s required time (to find the best solution) as well as
makespan. The comparison of these results showed that the proposed algorithm exhibited a promis-
ing convergence rate toward an optimal solution. Job shop scheduling (or the job shop problem) is an
optimization problem in informatics and operations research in which jobs are assigned to resources
at particular times. The makespan is the total length of the schedule (when all jobs have finished
processing). In most of the tested cases, our proposed algorithm managed to find a solution faster
than the genetic algorithm; in five cases, the graph-based algorithm found a solution at the same
time as the genetic algorithm. Our results also showed that the manner of priority calculation had
a non-negligible impact on solutions, and that an appropriately chosen priority calculation could
improve them.

Keywords: Genetic algorithms; graph-based algorithm; Job Shop Scheduling Problem; optimization

1. Introduction

Nowadays, graph-based algorithms are a popular tool for solving various optimization
problems. However, most optimization methods are only used for solving one type of
task. On the other hand, methods for optimization of several problems, in most cases, lack
sufficient computing power. There are a wide variety of different algorithms available
for the optimization of scheduling problems. One of the most well-known is the genetic
algorithm (GA).

In this article, we introduce the draft of a graph-based algorithm for scheduling
optimization problems. The proposed algorithm aims to have the flexibility and scope of
application of advanced optimization methods—such as genetic algorithms—and to retain
most of the positive characteristics of advanced graph algorithms.

We researched the literature carefully and paid great attention—though the references
contained mainly general literature reviews. Our proposed algorithm appears unique; we
could not find any other reference with comparable results for the given problem.

There are many different methods, algorithms and modifications, some of which al-
ready contain some of the required properties. Their structure allows for further adaptation.
Additionally, some algorithms are directly intended for further development into new
algorithms. From various graph-based algorithms, the Forward Version of Generalized
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Lifelong Planning A* (GLPA*) [1] —used for path planning in mobile robot navigation—
was chosen. We then attempted to modify it for use in other types of optimization and
tested it on various travelling salesman problems against the genetic algorithm (GA) [2,3].

The solution was based on a new algorithm, a hybrid between graph-based and genetic
algorithms. An algorithm was designed and implemented that combines the advantages
of graph-based and genetic algorithms. We chose the genetic algorithm for comparison
because it was suited for this purpose and remains one of the most well-known algorithms
for optimization in the planning area. The key parameters for the solution in the given area
were makespan and calculation speed. Optimization according to other parameters would
be possible; however, given the importance of the above two key parameters, it would not
make sense.

The task of developing new optimization procedures resulted from a general effort
to optimize problem solving. Our proposed graph-based algorithm has been successfully
tested on other problems (see references) and was more successful that the commonly-used
genetic algorithm in solving the Job Scheduling. The motivation for the development of
new algorithms was to obtain faster, more accurate results in the given area.

In this paper, the term “performance” refers to the success of our algorithm according
to the following parameters: makespan and calculation speed. Using those parameters,
our new graph-based algorithm was compared with a genetic algorithm (for makespan dif-
ferences, see conclusion; for calculation speed, see Table 1). These parameters were chosen
because they are key, and because, according to references, measuring other parameters
would have made little sense. For the industry, improvements in makespan and calculation
speed are economically-driven (e.g., seeking a reduction in price).

The graph-based algorithm had a better average deviation from best-known makespans
than the GA. The average deviations of the best-known makespans from the best makespans
were as follows: 5.19% for GA and 4.7% for α; 5.05% for β and 5.08% for γ, for the de-
veloped (graph-based) algorithm. The average calculation speed of the proposed graph
algorithm is two to three times higher than the GA.

When researching the new graph-based algorithm, we proceeded through five steps:
(1) analysis of graph-based algorithms, (2) analysis of genetic algorithms, (3) development
and design of new algorithm, (4) verification of algorithm on job shop scheduling problem
(JSSP), and (5) comparison with the genetic algorithm used in the given area. Let us take a
look at our new algorithm’s performance on job shop scheduling problems.
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Table 1. Comparison of algorithms on job shop scheduling problem (JSSP) by time and makespan.

Jobs Machines Instance Best Known
Makespan

Time of
Optimization Algorithm Used Makespan

Time of Finding
Best Makespan

[mm:ss]

Average
Makespan

Average Time of Finding
Makespan

[mm:ss]

10 5 la01 666 90

Graph-based α 666 00:00.04 678.18 00:07.38

Graph-based β 666 00:00.04 683.79 00:06.54

Graph-based γ 666 00:00.03 682.54 00:03.83

Genetic 666 00:00.99 666.19 00:28.65

10 5 la02 655 90

Graph-based α 672 00:00.03 728.8 00:17.91

Graph-based β 709 00:00.02 773.09 00:06.95

Graph-based γ 678 00:00.02 769.4 00:06.29

Genetic 655 00:04.44 686.67 00:50.59

10 5 la03 597 90

Graph-based α 617 00:00.04 655.23 00:11.06

Graph-based β 609 00:00.03 657.66 00:06.73

Graph-based γ 617 00:00.03 666.61 00:03.55

Genetic 613 00:02.41 638.2 00:50.81

10 5 la04 590 90

Graph-based α 604 00:00.04 634.17 00:09.94

Graph-based β 595 00:00.04 641.77 00:09.34

Graph-based γ 600 00:00.02 643.07 00:06.08

Genetic 595 00:01.32 612.89 00:48.42

10 5 la05 593 90

Graph-based α 593 00:00.02 593 00:00.04

Graph-based β 593 00:00.02 593.27 00:00.74

Graph-based γ 593 00:00.02 593.24 00:00.11

Genetic 593 00:00.01 593 00:00.12
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Table 1. Cont.

Jobs Machines Instance Best Known
Makespan

Time of
Optimization Algorithm Used Makespan

Time of Finding
Best Makespan

[mm:ss]

Average
Makespan

Average Time of Finding
Makespan

[mm:ss]

15 5 la06 926 120

Graph-based α 926 00:00.06 926.1 00:01.22

Graph-based β 926 00:00.06 926.59 00:02.22

Graph-based γ 926 00:00.06 926.27 00:02.18

Genetic 926 00:00.04 926 00:03.41

15 5 la07 890 120

Graph-based α 890 00:00.12 915.83 00:34.05

Graph-based β 903 00:00.07 957.15 00:13.01

Graph-based γ 903 00:00.08 957.43 00:08.24

Genetic 890 00:09.89 909.04 01:10.46

15 5 la08 863 120

Graph-based α 863 00:00.08 869.58 00:18.09

Graph-based β 863 00:00.07 886.27 00:09.32

Graph-based γ 863 00:00.07 883.58 00:11.99

Genetic 863 00:00.12 864.28 00:45.89

15 5 la09 951 120

Graph-based α 951 00:00.07 951 00:00.10

Graph-based β 951 00:00.08 951.48 00:00.45

Graph-based γ 951 00:00.06 951.28 00:01.40

Genetic 951 00:00.03 951 00:00.81

15 5 la10 958 120

Graph-based α 958 00:00.07 958 00:00.10

Graph-based β 958 00:00.10 958 00:00.15

Graph-based γ 958 00:00.06 958 00:01.33

Genetic 958 00:00.03 958 00:00.27

20 5 la11 1222 150

Graph-based α 1222 00:00.14 1222 00:00.82

Graph-based β 1222 00:00.14 1224.72 00:07.29

Graph-based γ 1222 00:00.13 1224.72 00:10.09

Genetic 1222 00:00.06 1222 00:08.97
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Table 1. Cont.

Jobs Machines Instance Best Known
Makespan

Time of
Optimization Algorithm Used Makespan

Time of Finding
Best Makespan

[mm:ss]

Average
Makespan

Average Time of Finding
Makespan

[mm:ss]

20 5 la12 1039 150

Graph-based α 1039 00:00.14 1039.3 00:00.75

Graph-based β 1039 00:00.13 1040.11 00:03.03

Graph-based γ 1039 00:00.13 1039.13 00:00.51

Genetic 1039 00:00.05 1039 00:09.49

20 5 la13 1150 150

Graph-based α 1150 00:00.13 1150 00:00.18

Graph-based β 1150 00:00.14 1150.25 00:02.55

Graph-based γ 1150 00:00.13 1150 00:01.27

Genetic 1150 00:00.04 1150 00:03.73

20 5 la14 1292 150

Graph-based α 1292 00:00.14 1292 00:00.16

Graph-based β 1292 00:00.13 1292 00:00.17

Graph-based γ 1292 00:00.13 1292 00:00.18

Genetic 1292 00:00.04 1292 00:00.06

20 5 la15 1207 150

Graph-based α 1221 00:00.18 1284.92 00:53.47

Graph-based β 1235 00:00.13 1341.45 00:38.72

Graph-based γ 1246 00:00.14 1344.66 00:42.69

Genetic 1227 00:01.69 1270.59 01:33.41

10 10 la16 945 120

Graph-based α 982 00:00.14 1057.65 00:31.06

Graph-based β 994 00:00.13 1068.95 00:17.09

Graph-based γ 982 00:00.19 1071.77 00:19.66

Genetic 979 00:01.57 1022.91 01:11.39

10 10 la17 784 120

Graph-based α 793 00:00.17 835.65 00:23.33

Graph-based β 793 00:00.17 841.72 00:14.33

Graph-based γ 793 00:00.14 842.9 00:17.10

Genetic 795 00:00.13 832.96 00:55.36
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Table 1. Cont.

Jobs Machines Instance Best Known
Makespan

Time of
Optimization Algorithm Used Makespan

Time of Finding
Best Makespan

[mm:ss]

Average
Makespan

Average Time of Finding
Makespan

[mm:ss]

10 10 la18 848 120

Graph-based α 849 00:00.14 917.28 00:22.30

Graph-based β 861 00:00.19 920.34 00:16.73

Graph-based γ 861 00:00.13 921.51 00:20.68

Genetic 871 00:00.16 914.83 00:47.57

10 10 la19 842 120

Graph-based α 877 00:00.13 934.03 00:21.21

Graph-based β 889 00:00.13 951.43 00:15.39

Graph-based γ 886 00:00.11 954.89 00:13.99

Genetic 875 00:02.52 925.92 01:02.01

10 10 la20 902 120

Graph-based α 921 00:00.15 976.8 00:22.44

Graph-based β 914 00:00.14 967.72 00:18.57

Graph-based γ 907 00:00.12 960.93 00:23.14

Genetic 924 00:00.68 976.04 00:57.70

15 10 la21 1046 150

Graph-based α 1144 00:01.46 1201.86 00:54.14

Graph-based β 1122 00:00.51 1230.36 00:42.71

Graph-based γ 1149 00:00.48 1230.86 00:46.21

Genetic 1140 00:06.32 1218.33 01:15.78

15 10 la22 927 150

Graph-based α 999 00:00.50 1093.93 00:44.53

Graph-based β 1051 00:00.53 1109.53 00:44.76

Graph-based γ 1027 00:01.69 1113.67 00:38.11

Genetic 1029 00:08.06 1105.7 01:25.18

15 10 la23 1032 150

Graph-based α 1068 00:00.43 1131.96 00:37.00

Graph-based β 1076 00:00.35 1144.07 00:31.82

Graph-based γ 1086 00:00.36 1141.74 00:33.06

Genetic 1046 00:01.64 1140.26 01:12.26
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Table 1. Cont.

Jobs Machines Instance Best Known
Makespan

Time of
Optimization Algorithm Used Makespan

Time of Finding
Best Makespan

[mm:ss]

Average
Makespan

Average Time of Finding
Makespan

[mm:ss]

15 10 la24 935 150

Graph-based α 1013 00:00.41 1070.53 00:55.55

Graph-based β 1029 00:01.64 1075.82 00:40.20

Graph-based γ 992 00:00.54 1082.89 00:37.05

Genetic 1024 00:01.16 1088.24 01:07.66

15 10 la25 977 150

Graph-based α 1079 00:00.50 1125.75 00:38.39

Graph-based β 1076 00:00.50 1150.38 00:44.80

Graph-based γ 1083 00:00.54 1155.49 00:34.43

Genetic 1060 00:03.24 1155.14 01:17.27

20 10 la26 1218 180

Graph-based α 1311 00:00.84 1395.86 01:06.53

Graph-based β 1340 00:02.17 1405.4 01:27.17

Graph-based γ 1328 00:04.80 1411.57 01:11.35

Genetic 1340 00:04.13 1428.12 01:36.13

20 10 la27 1235 180

Graph-based α 1368 00:00.79 1459.38 01:00.30

Graph-based β 1390 00:01.04 1486.95 01:24.53

Graph-based γ 1379 00:01.06 1483.46 01:04.60

Genetic 1411 00:04.29 1485.78 01:38.00

20 10 la28 1216 180

Graph-based α 1328 00:00.87 1399.72 01:04.58

Graph-based β 1349 00:00.71 1437.18 00:53.57

Graph-based γ 1348 00:00.90 1435.36 00:57.33

Genetic 1364 00:01.27 1431.87 01:28.75

20 10 la29 1157 180

Graph-based α 1320 00:00.77 1401.5 00:58.80

Graph-based β 1316 00:01.97 1402.03 01:13.52

Graph-based γ 1326 00:00.76 1404.5 01:15.13

Genetic 1350 00:05.84 1435.2 01:26.83
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Table 1. Cont.

Jobs Machines Instance Best Known
Makespan

Time of
Optimization Algorithm Used Makespan

Time of Finding
Best Makespan

[mm:ss]

Average
Makespan

Average Time of Finding
Makespan

[mm:ss]

20 10 la30 1355 180

Graph-based α 1467 00:00.83 1549.21 00:43.81

Graph-based β 1458 00:00.90 1560.17 00:47.64

Graph-based γ 1481 00:00.80 1558.42 00:55.33

Genetic 1472 00:04.83 1544.5 01:47.72

20 10 la31 1784 180

Graph-based α 1784 00:06.40 1837.23 02:10.06

Graph-based β 1784 00:08.73 1841.66 02:39.27

Graph-based γ 1784 00:14.42 1835.87 02:47.32

Genetic 1807 00:16.38 1898.83 02:18.27

30 10 la32 1850 240

Graph-based α 1851 00:13.64 1914.26 02:41.29

Graph-based β 1850 00:10.02 1917.62 02:39.39

Graph-based γ 1850 00:10.87 1921.69 02:30.43

Genetic 1895 00:16.50 1993.32 02:05.09

30 10 la33 1719 240

Graph-based α 1739 00:02.39 1796.38 02:08.04

Graph-based β 1725 00:05.58 1817.67 02:44.53

Graph-based γ 1744 00:02.56 1819.53 02:36.41

Genetic 1780 00:08.46 1845.43 02:12.57

30 10 la34 1721 240

Graph-based α 1819 00:02.29 1878.34 01:51.83

Graph-based β 1797 00:02.55 1889.43 02:11.28

Graph-based γ 1819 00:02.33 1897.38 01:57.48

Genetic 1846 00:11.64 1909.86 02:04.97

30 10 la35 1888 240

Graph-based α 1980 00:02.43 2115.15 02:32.74

Graph-based β 2067 00:09.87 2197.11 02:20.97

Graph-based γ 2078 00:06.73 2193.47 02:36.02

Genetic 2021 00:17.32 2143.59 02:48.95
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Table 1. Cont.

Jobs Machines Instance Best Known
Makespan

Time of
Optimization Algorithm Used Makespan

Time of Finding
Best Makespan

[mm:ss]

Average
Makespan

Average Time of Finding
Makespan

[mm:ss]

15 15 la36 1268 180

Graph-based α 1427 00:00.99 1494.55 00:51.76

Graph-based β 1387 00:00.99 1511.63 00:48.84

Graph-based γ 1419 00:01.07 1513.32 01:01.04

Genetic 1373 00:02.11 1482.9 01:30.90

15 15 la37 1397 180

Graph-based α 1576 00:01.03 1667.02 01:16.16

Graph-based β 1546 00:05.63 1664.63 01:20.99

Graph-based γ 1565 00:04.33 1663.85 01:24.34

Genetic 1549 00:08.89 1681.12 01:48.09

15 15 la38 1196 180

Graph-based α 1375 00:00.99 1448.17 00:52.06

Graph-based β 1381 00:00.99 1446.89 01:02.95

Graph-based γ 1378 00:01.15 1449.01 01:04.43

Genetic 1397 00:01.46 1469.16 01:19.78

15 15 la39 1233 180

Graph-based α 1385 00:01.04 1455.54 01:00.09

Graph-based β 1377 00:00.99 1452.02 01:21.56

Graph-based γ 1371 00:01.57 1454.57 01:12.73

Genetic 1405 00:01.16 1475.14 01:20.90

15 15 la40 1222 180

Graph-based α 1386 00:01.50 1446.41 01:16.11

Graph-based β 1356 00:03.92 1435.03 01:25.09

Graph-based γ 1364 00:05.21 1438.51 01:34.75

Genetic 1412 00:10.56 1484.72 01:40.72
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2. Job Shop Scheduling Problem

The job shop scheduling problem (JSSP) is about allocating limited resources to a
variety of tasks for the purpose of obtaining optimal scheduling solutions. These optimized
scheduling solutions are important for achieving an efficient and orderly production
process [4]. The JSSP is one of the most well-known problems in the fields of production
management and combinatorial optimization. The classical n-by-m JSSP can be described
as the flow shop problem generalization or the open shop problem specification: scheduling
n jobs on m machines with the objective of minimizing the scheduled completion time
(makespan) of all jobs. Each of n jobs consists of several operations on m specified machines,
which need an uninterrupted processing time of a given length. Operations of the same job
can be performed only on one machine at a time and each job must be processed on each
machine exactly once [5].

In order to increase production efficiency, reduce cost and/or improve product quality,
efficient methods for solving the JSSP are required. Additionally, the JSSP is acknowledged
as one of the most challenging NP-hard problems—and no algorithms that can solve the
JSSP consistently, even on small scale problems, are known to exist [5].

Nowadays, with the usage of metaheuristic algorithms, new ways of obtaining better
results than were possible with classical methods (such as greedy or dispatching heuristic
algorithms) have emerged. These metaheuristic algorithms are widely used because of their
flexibility and global optimization capabilities [4]. Algorithms for the solution of the JSSP
include population-based metaheuristic ones, including particle swarm optimization (de-
tailed description in [6,7]), genetic algorithms, artificial immune systems and their hybrids
(see [8–10]), construction and improvement heuristics including taboo search (described
in [11–13]) and simulated annealing (described in [14,15]). Also, heuristic methods can be
used for large-scale problems. These include dispatching priority rules (see [16–18]), the
shifting bottleneck approach (detailed description in [19–21]) and Lagrangian relaxation
(see [22–24]) [5].

However, each of these methods comes with their own drawback. Simulated annealing
has the tendency to generate poor designs that have a high chance of missing local minima;
its convergence is also quite slow. The taboo search uses the serial search method and is
low-efficiency. Particle swarm optimization has the tendency to become trapped in local
minima. Exact techniques, such as branch and bound (described in [25,26]) and dynamic
programming (see [27,28]) can be used to solve only modest-scale problems, because of the
complexity of the JSSP [5].

As the genetic algorithm can search efficiently through large search spaces and does
not explicitly require additional information about the objective function in order to be
optimized, it has been applied to many combinatorial problems, including scheduling [29].
Moreover, its architecture makes it well suited for parallel computation. On the other hand,
the GA considers only one new solution at a time [4].

3. Algorithm Description

The proposed algorithm was developed based on the Generalized Lifelong Planning
A*, which is the forward algorithm and framework that generalizes Lifelong Planning
A* (LPA*) (described in detail in [30]) and its non-deterministic version of the Minimax
LPA* (described in detail in [31]). Additionally, it is designed to allow further development
of efficient versions of LPA* and Minimax LPA*, including versions that use inconsistent
heuristics or good tiebreaking. That is described in detail in [32].

There are only two differences between LPA* and GLPA* algorithms—and those
differences are the reason why GLPA* was chosen over the classical implementation of
LPA*. One difference is that GLPA* generalizes the calculation of RHS values and priorities,
which enables a considerable amount of adaptability in determination of the optimization
criterion and the order in which new states are expanded. Another difference is that
the priority queue of GLPA* does not contain all locally inconsistent states—only locally
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inconsistent states that have not yet been expanded as overconsistent during the current
run of the function ComputePlan(). This difference can considerably speed up a search [32].

The first major modification made was the change in data representation. This change
was heavily inspired by the genetic algorithm. Although the data representation in GLPA*
is very suitable for solving path planning problems, it is less effective for other types of
optimization—and for some problems, it is completely useless. For this reason, data of
the proposed algorithm is now represented by the usage of bit strings. In most cases,
this means that numerical parameters are represented by integers. When solving complex
problems, a representation using Gray code can be used, which causes even greater changes
in data of possible solutions when expanding new states and further reduces the possibility
of converging on local extremes. Real numbers usage is not recommended, because it tends
to cause problems for the expansion of new states [3].

The second significant change we made stems from the first; since the algorithm
uses a different data representation, the values of newly acquired states may no longer
depend on the values of their predecessors. Furthermore, the calculation of the RHS value
may now vary depending on the problem—meaning the old way of calculation is not
always possible. Therefore, a new function—StateEvaluation() [2]—was introduced, which
calculated the RHS value of the given problem. This is basically an objective function used
to determine how close the obtained solution is in order to achieve the goals of optimization.
In order to prevent the algorithm from converging on an unsuitable solution or even not
converging at all, the function must be appropriately chosen and must correlate with the
goals of optimization. Additionally, this function must be rapidly calculated, because the
calculation must be repeated many times in order to generate useful results for nontrivial
problems. Therefore, the speed of calculation is very important [3]. The priority K(u) of
the state u in the priority queue is a two-element vector: K(u) = [K1(u); K2(u)]. For basic
application, K1(u) = rhs(u) and K2(u) = g(u) can be used. However, for better performance,
more appropriate priority calculations can be chosen.

The method of calculating priorities K(u)—especially in the context of makespan—has
a significant impact on the result. Making the appropriate choice in priority calculation
will improve the result, and choosing inappropriately will impair the result. This further
improved the performance of our algorithm.

Pseudo-code excerpts from our proposed algorithm are shown in Algorithms 1. The
first difference is that the optimization of logistic problems may have more than one initial
state, which is represented in {04–05}. Additionally, this type of optimization problem
does not usually have a defined target state, represented by the while loop removal in
ComputePlan(). Main() now continuously calls ComputePlan(), and therefore the algorithm
tries continuously to improve the solution. However, we can easily add a new termination
condition by replacing the forever loop in Main() by a while/until loop that terminates
the optimization algorithm when a predetermined amount of time has elapsed, or after a
certain number of repetitions of the procedure [2]. Also, the new state of the parameter ssol
was introduced, see line {02} which represents the best-found state {13} and contains the
current solution of the given optimization problem.
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Algorithms 1: The pseudo-codes use the following functions to manage the priority queue: U.Insert(s, k)
inserts state s into priority queue U with priority k. U.Remove(s) removes state s from priority queue U.
U.Update(s, k) sets the priority of state s in the priority queue to k. U.Remove(s) removes state s from priority
queue U. U.Pop() deletes the state with the smallest priority in priority queue U and returns the state. Insert(s,
k) inserts state s into priority queue U with priority k. The predicate NotYet(s) is shorthand for “state s has not
been expanded yet as overconsistent during the current call to ComputePlan().” Finally StateEvaluation()
returns the value of optimized logistic problem.

procedure Initialize()
{01} U = Ø;
{02} rhs(ssol) = g(ssol) = ∞;
{03} for all s ∈ S rhs(s) = g(s) = ∞;
{04} for all sstart∈ Starting vertexes
{05} rhs(sstart) = StateEvaluation();
{06} UpdateState(sstart);

procedure UpdateState(u)
{07} if (u 6= sstart) rhs(u) = StateEvaluation();
{08} if (u ∈ U and g(u) 6= rhs(u)) U.Update(u,K(u));
{09} else if (u ∈U and g(u) = rhs(s)) U.Remove(u);
{10} else if (u /∈ U and g(u) 6= rhs(u) and NotYet(u)) U.Insert(u,K(u));

procedure ComputePlan()
{11} u = U.Pop();
{12} if (g(u) > rhs(u))
{13} if (rhs(u) < rhs(ssol)) ssol = u;
{14} g(u) = rhs(u);
{15} for all s ∈ Succ(u) UpdateState(s);
{16} else
{17} g(u) = ∞;
{18} for all s ∈ Succ(u) ∪ {u} UpdateState(s);

4. Computational Result

The algorithms were implemented in C# language on a personal computer with Intel
Core P7550.

For these experiments, a variation of operation-based representation was chosen,
wherein all operations for a job are named by the same symbol in the sequence and
interpreted according to the order of occurrence in the given sequence. Therefore, each job
appears in the sequence exactly m times and each repetition refers to a unique operation,
which is dependent on the context and does not indicate a predetermined operation of
the job. This way, any permutation of elements in a sequence always yields a feasible
schedule [33].

Although the values of newly acquired states may no longer depend on their prede-
cessors, the position of symbols in the sequence of the newly acquired states does. As for
this problem, we changed the symbols position in the sequence only if it was not changed
in one of their predecessors.

Experiments performed by means of the graph-based algorithm used three different
methods of calculation of priority K(u). The results of experiments marked α were obtained
by using the basic calculation of priority K(u): K1(u) = rhs(u) and K2(u) = g(u). For β,
priority K(u) consisted of K1(u) = h(u) and K2(u) = rhs(u). Results for experiments marked
γ used K1(u) = h(u) and K2(u) = −rhs(u), where rhs(u) represents the makespan and h(u)
is the sum of completion times of all machines, calculated by the function StateEvaluation()
as a byproduct.

Experiments solved by the genetic algorithm were performed using roulette wheel
selection, one-point crossover with the corresponding repair process and reciprocal ex-
change mutation. All tests used the same crossover rate (0.8) and population size (100).
The mutation used was relatively low (1/n), where n represents the number of genomes in
a chromosome. These parameters were chosen because they showed the best results for
this problem type.
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Instances of problems for the job shop scheduling problem were commonly used as
benchmarking instances [34] and were taken from the database of scheduling problems,
OR-Library [35]. One hundred tests on each instance were performed for each algorithm.
For a better variation of results, starting states of the graph algorithm were randomly
generated.

These experiments were compared by several factors: the time taken to find the best
solution, makespan, the average value of makespans found and the average time taken
to find these makespans. The results of these tests are summarized in Table 1, which also
lists number of jobs, number of machines, instances [36], the best-known solution and the
overall time of optimization for the given problem.

We did not test the problem of limiting the proposed algorithm with respect to the
number of jobs or machines. Limiting the algorithm by comparison through the most
well-known makespans was sufficient enough for the given application area. An example
of Gantt graphs for the instance la09 can be found in Figures 1 and 2.
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The purpose of the performed experiments was not necessarily to reach the best-
known makespan, but rather to show what makespan could be found by our proposed
algorithm in an allocated time; to how fast it performed and compare it to results reached
under the same conditions by an unmodified GA. For this reason, we let each of the tested
algorithms run for a certain amount of time—unless the best-known makespan was found.

The results of comparative experiments showed that our proposed graph-based al-
gorithm was able to find the same or better solutions compared to the genetic algorithm—
and managed to find them faster. The graph-based algorithm also managed to find the
same average makespan as the GA on eight benchmarking instances, and a better aver-
age makespan on eighteen instances. However, detailed examination of the experimental
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results showed that with an increase in the number of parameters and iterations, the time re-
quired for the execution of each iteration will gradually start to rise; under those conditions,
the proposed algorithm will perform its iterations slower than the tested genetic algorithm.

Table 1 shows that some of the operations sequences are not similar in order, but are
very similar in calculation time. At times, the time to find the best makespan was the same
as the time to test various best-known makespans (Table 1, fourth column). We did not
discuss this fact in detail, but we do not expect a significant reason.

Despite this fact, the tested graph-based algorithm converged on the optimal solution
quickly and obtained better results than the tested genetic algorithm, proving that the
behavior shown on several travelling salesman problems in [2,3] can apply to different
types of scheduling problems as well.

5. Conclusions

In this article, we proposed a graph-based algorithm that can be used for scheduling-
related optimization problems. It was based on the Generalized Framework for Lifelong
Planning A*. This algorithm was then tested against the classic genetic algorithm on forty
benchmarking instances for the job shop scheduling problem.

The experimental results on the JSSP showed that our proposed algorithm reached
the best known makespan in thirteen instances while the genetic algorithm did so only
in twelve. The graph-based algorithm found a better solution than the genetic algorithm
on twenty-two tested benchmarking instances, found a solution with at least the same
makespan as the GA on another twelve instances, and ended in optimality in eleven of
these instances. The best-known makespan’s average deviation from the best makespan
acquired by the graph-based algorithm was 4.7% for α, 5.05% for β and 5.08% for γ; the
genetic algorithm had an average deviation of 5.19%, and on all but fourteen instances,
the proposed algorithm managed to find the solution faster (on average, about 200–300%
faster) than the genetic algorithm. Additionally, on all remaining instances, the graph-based
algorithm managed to find a solution in the same time frame as the GA.

The average makespan’s average deviation from the best-known makespan was 9.63%
for the genetic algorithm, while the graph-based algorithm’s variations had an average
deviation of 9.22% for α, 10.39% for β and 10.48% for γ. Additionally, on all but six
benchmarking instances, the proposed algorithm managed to find a solution faster (on
average, about 100%-200% faster) than the genetic algorithm; on five of these instances, the
graph-based algorithm managed to find a solution in the same time frame as the GA.

Therefore, we can state that our proposed algorithm generally gives the same or better
results—in comparison with the genetic algorithm’s basic implementation—on the job
shop scheduling problem. The practical consequences of the identified improvements
(in makespan and calculation speed) are economic; these improvements will bring a
price reduction.

The manner of priority calculation has a nonnegligible impact on solutions. An appro-
priately chosen priority calculation can improve results, and an inappropriately chosen
priority calculation can worsen them. Therefore, the proposed algorithm’s performance
can be further improved by proposing new methods of priority calculation.
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