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Abstract: Outliers are observations suspected of not having been generated by the underlying
process of the remaining data. Many applications require a way of identifying interesting or unusual
patterns in multivariate time series (MTS), now ubiquitous in many applications; however, most
outlier detection methods focus solely on univariate series. We propose a complete and automatic
outlier detection system covering the pre-processing of MTS data that adopts a dynamic Bayesian
network (DBN) modeling algorithm. The latter encodes optimal inter and intra-time slice connectivity
of transition networks capable of capturing conditional dependencies in MTS datasets. A sliding
window mechanism is employed to score each MTS transition gradually, given the DBN model. Two
score-analysis strategies are studied to assure an automatic classification of anomalous data. The
proposed approach is first validated in simulated data, demonstrating the performance of the system.
Further experiments are made on real data, by uncovering anomalies in distinct scenarios such as
electrocardiogram series, mortality rate data, and written pen digits. The developed system proved
beneficial in capturing unusual data resulting from temporal contexts, being suitable for any MTS
scenario. A widely accessible web application employing the complete system is publicly available
jointly with a tutorial.

Keywords: multivariate time series; outlier detection; dynamic bayesian networks; sliding window
algorithm; score analysis; web application

1. Introduction

In recent times, the machine learning community has boomed coupled with the always-
expanding desire to acquire maximum benefit from collected data, apparent in sectors
such as biomedicine, socio-economics, and industry. Grubbs [1] has defined anomalies as
observations that deviate appreciably from the sample in which they occur. In the current
study, an outlier is described as a data element or segment which there is no explanation for
it, being suspected of not have been generated by the data’s underlying processes. Outliers
can mislead analysts to altogether different insights. However, their discovery is crucial in
acquiring a better understanding of the behavior of the data, leading to the development
of more efficient methods.

Multivariate time series (MTS) are defined as sets of observations measured along time,
being a representation for time series analysis. Each observation depicts a collection of
variables, which the combined evolution over time is the object of study. In this context,
we propose METEOR—MultivariatE Time sEries OutlieR—an outlier detection method to
identify abnormal entities among real-world MTS datasets. Outlier detection algorithms
in MTS are typically not found in existing literature, which solely considers univariate
case [2,3], overlooking anomalies arising from inter-variable temporal contexts.
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Within the vast world of anomaly detection [4,5] extensity and versatility are craved
traits. In time series (TS) data, temporal trends play a crucial role in anomaly discovery,
where data patterns are not assumed to change abruptly through time. Most of the
existing techniques do not take these temporal dependencies into account, leaving them
less effective. When time is taken into consideration, mostly univariate temporal data
is considered [6]. An example is autoregressive models, extensively used in TS data.
In such cases, data points typically depend linearly on previous values and a stochastic
term, representing a random process. Alternative procedures consider that outliers are
high residual entities with respect to a model expressing the time-varying process [5,7].
Outlierness can be evaluated according to a distance or similarity measure. Anomalies are
usually considered to be isolated from the rest of the data. An example is to use the distance
of an element to its k-th nearest neighbor as a score [4]. Such reasoning can be applied to
measure the distance between discrete sequences [8], which can easily represent TS data.
Similarly, certain methods create a boundary between an anomalous and normal class.
Data instances are scored given their distance to the boundary, typical in clustering and
classification methods [9,10]. Recent efforts have been invested trying to satisfy the existing
gap in MTS anomaly detection [11–13]; however, a complete and available implementation
of such approaches is non-existing. This forces analysts to use typical univariate strategies.

Temporal dependencies within and between variables can be modeled using dynamic
Bayesian networks (DBN) which extend traditional Bayesian networks to temporal processes
described by MTS. These are probabilistic graphical methods capable of encoding con-
ditional relationships of complex MTS structures via transition networks. A modeling
technique, so-called tree-augmented DBN (tDBN) [14], is used to provide a network pos-
sessing optimum inter and intra-time slice dependencies between discrete variables for
each transition network, verified to outperform existing methods in the literature. DBNs
already proved to benefit anomaly detection [15] and gene expression data modeling [16].
Analogous to unsupervised learning, our fully automatic system, called METEOR, ex-
empts the need for any prior knowledge. The latter resides in the statistical paradigm,
providing a tDBN representing a normality standard for anomaly detection, where ob-
servations are scored using the transition networks. Both stationary and non-stationary
tDBNs are studied.

Within METEOR, a tDBN is acquired to shape the general behavior of the data (a set
of MTS). Each MTS is then scored according to a sliding window mechanism capable of
capturing compelling patterns encoded by temporal dependencies amid variables, absent
in existing literature. Outliers are ruled out as those with lower scores; these scores are
based on the likelihood given by the joint probability distribution induced by the tDBN
transition networks. The system can detect as outlier both an entire MTS, called a subject,
or only some subject transition (a partial MTS comprising contiguous observations of the
subject variables in a certain period of time).

In detail, data is comprised of a set of MTS known as subjects. For example, time series
taken at discrete time with monthly temperature and humidity measurements at major
cities would be composed of observations of both variables (temperature and humidity)
where each city depicts a different subject. In its turn, each subject encompasses several
observations of these two variables along time, where contiguous observations define
transitions. For simplicity, consider a transition with lag 2, i.e., covering both temperature
and humidity observations at time t and previous lagged observations at time t− 1 and
t− 2. Low scores depict transitions that are not explained by observation at time t and its
lagged observations, according to the tDBN model. Likewise, whole subjects are scored
using the average of all its transition scores.

Hence, METEOR is adapted to detect anomalous portions or entire MTS, fitting into
numerous scenarios. A score-analysis phase is available to classify each score. Two main
strategies are studied, namely Tukey’s Method [17,18] and Gaussian Mixture Models
(GMM) [19]. A threshold is automatically selected to determine the outlierness disclo-
sure boundary.
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The system is validated through synthetic and real-world data sets demonstrating
its performance in multiple scenarios. Furthermore, a multivariate probabilistic suffix
tree (PST) technique is built and compared with METEOR, illustrating the contrast of the
current system with typical univariate existing techniques. Due to the increasing demand
for data science-related appliances aspiring not only promptness but also easily adaptable
mechanisms, the current implementation of METEOR is made entirely free and accessible
through a web application [20] available at https://meteor.jorgeserras.com/ (accessed
on December 2020). The latter does not require any download and is accompanied by a
tutorial video.

This paper is organized as follows. Theoretical background regarding dynamic
Bayesian networks modeling is made available in Section 2 before the description of
each phase of the proposed system from pre-processing to score-analysis in Section 3. The
developed web application and software along with experimental validation are showcased
in Section 4. Finally, we draw some conclusions in Section 5.

2. Theoretical Background

In this section we introduce some notation, while recalling relevant concepts and
results concerning discrete Bayesian networks and their dynamics counterparts.

2.1. Bayesian Networks

Let X be a discrete random variable that takes values over a finite set X . We denote an
n-dimensional random vector by X = (X1, . . . , Xn) where each component Xi is a random
variable over Xi. We denote the elements of Xi by xi1, . . . , xiri , where ri is the number of
values Xi can take.

A Bayesian network (BN) is a probabilistic graphical model which encodes conditional
relationships among variables. It is composed by a directed acyclic graph (DAG) defined as
G = (V, E), where the vertices V coincide with a set of random variables X = (X1, . . . , Xn),
also known as nodes, and the edges E with their conditional dependencies. Variables are
independent of all its non-descendant nodes given its parents. A node Xi contains a local
probability distribution, encoding the probabilities of every possible configuration of node
Xi given its set of parents ΠXi ,

P(Xi = xik|ΠXi = wij), (1)

where xik ∈ Xi is the k-th possible value from the domain of Xi and wij the j-th configu-
ration of ΠXi . The set of conditional probabilities associated with each node denotes the
BN parameters.

The joint probability distribution of the network is composed by several local proba-
bility distributions associated with each variable, as

P(X1, ..., Xn) =
n

∏
i=1

P(Xi|ΠXi ), (2)

and can be used to compute the probability of an evidence set.
Learning the structure of a BN [21] can be summarized as finding the DAG which

better fits a training dataset. The goodness of fit of a network is measured using a scoring
function. If the scoring function is decomposable over the network structure then local score-
based algorithms can be employed, turning the DAG search extremely efficient [22–24].
A known decomposable scoring criterion is the log-likelihood (LL) [25]. Network parameters
are computed by using the observed frequencies of each configuration.

2.2. Dynamic Bayesian Networks

The proposed method is designed to handle discrete multivariate temporal data.
In this case, consider the discretization of time in time slices T = {0, . . . , T}. Moreover,
as for the BN case, variables are always discrete-valued.

https://meteor.jorgeserras.com/
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A discrete multivariate time series (MTS) is a set of observations from n time-dependent
variables. Consider a set of subjects H of size N. Observations for each variable are
measured over T time instants, gathered in a MTS dataset D = {xh[t]}h∈H,t∈T where
xh[t] = (xh

1 [t], . . . , xh
n[t]). Hence, the overall size of D is given by (n × T) × N single-

valued observations.

Definition 1 (Subject observations). Given a dataset D, the observations of a subject h constitute
the set Dh = {xh[t]}t∈T of n variables measured throughout time T .

To model MTS we considered inter-variable as well as temporal dependencies.
DBNs [26] are BNs which relate variables over adjacent time slices, modeling proba-
bility distributions over time, and therefore can be used to model MTS. A time-dependent
discrete random vector, X[t] = (X1[t], . . . , Xn[t]), expresses the value of the set of variables
at time t. From a graphical perspective, nodes represent the variables Xi at specific time
slices t, Xi[t], and possess time-dependent parameters. Unlike standard BNs, DBNs are
composed by a prior network B0, denoting the distribution of initial states, and multiple
transition networks. A transition network has two types of connectivity among variables
noted as inter-slice and intra-slice connectivities. The latter refers to variable dependencies at
the same time frame. Inter-slice connectivity is responsible for the temporal aspect relating
variables of different time slices, allowing only dependencies that follow forward in time.

Let X[t1 : t2] denote the set of random vectors X for the time interval t1 ≤ t ≤ t2.
In addition, let P(X[t1 : t2]) denote the joint probability distribution over the trajectory of
the process from X[t1] to X[t2]. Using the chain rule, the joint probability over X is given by:

P(X[0 : t]) = P(X[0])
T

∏
i=1

P(X[t]|X[0 : t− 1]).

Common simplifying assumptions consider m-th order Markov and stationary pro-
cesses, which we describe next.

Definition 2 (m-th order Markov DBN). A DBN is said to be a m-th order Markov DBN if,
for all t ≥ 0,

P(X[t]|X[0 : t− 1]) = P(X[t]|X[t−m : t− 1]). (3)

In a m-th order Markov DBN, m is called the Markov lag. Considering both inter
and intra-slices connectivity, attributes X[t] can admit parent nodes from t−m to t, being
transition networks expressed by Bt

t−m.

Definition 3 (Stationarity DBN). A m-th order Markov DBN is said to be stationary if, for all
t ≥ 0, the structure and parameters of each Bt

t−m are the same.

For the stationary case, the only transition network Bt
t−m is thus invariant over time,

being unrolled through time. To address the non-stationary case, a different network Bt
t−m

for each transition t→ t−m is required.
In Figure 1, a stationary first-order Markov DBN is depicted, composed by a prior

network B0, over t = 0, and a transition network Bt
t−1, for all 1 ≤ t ≤ T. The connections

X1[t] → X2[t] and X2[t] → X3[t] represent the intra-slice connectivity of the transition
network Bt

t−1 which correlates the attributes in the same time frame. Temporal relations are
present in the inter-connectivity, being connections X1[t− 1]→ X1[t] and X2[t− 1]→ X2[t].
The transition network is unrolled for every slice t ∈ T . Considering Figure 1, the
conditional joint probability of the attributes at slice t, given the attributes at slice t− 1, is

P(X[t]|X[t− 1]) = P(X1[t]|X1[t− 1]) · P(X2[t]|X2[t− 1], X1[t]) · P(X3[t]|X2[t]).
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When learning a DBN, state-of-the-art algorithms focus mainly in modeling inter-slice
dependencies, neglecting intra-slice connectivity or simply structuring it as a detached
approach. The latter comes from the fact that obtaining an unrestricted network is NP-
hard [27], contrary to learning solely the inter-connectivity [28]. In METEOR, an optimal
tDBN structure learning algorithm [14] is used, providing an optimal inter/intra-slice
connectivities simultaneously for each transition network. In this case, an attribute node at
a certain time slice has a tree-like network structure, therefore containing at most one parent
at that same slice, as seen in Figure 1. Furthermore, in each node, the maximum number
of parents from preceding time slices is bounded by a parameter p. The tDBN learning
algorithm limits the search space to tree-augmented networks, attaining polynomial-time
bounds. These have proven to be effective, being one example the tree-augmented naive
Bayes classifier [29]. Moreover, tDBN has motivated further research concerning the
efficient learning of optimal DBNs [30,31].

Figure 1. Example of a stationary first-order Markov DBN. On the left, the prior network B0, for t = 0,
and on the right, the transition network Bt

t−1 over slices t− 1 and t, for all t ≥ 1.

3. Methods

METEOR is portioned in four phases including pre-processing, modeling, scoring,
and score-analysis, which together form a complete and automatic anomaly detection
system. Data is assumed to be complete, lacking missing values or hidden variables.
A diagram comprising all phases is depicted in Figure 2. The pre-processing phase studied
is comprised by (an optional) discretization and dimensionality reduction technique dis-
cussed in Section 3.1, especially relevant when considering data descendant from sensor
devices. Discrete MTS datasets are then employed to the tDBN modeling algorithm, which
generates a DBN according to the parameters chosen: the Markov lag m, the maximum
number of parents p from preceding slices and a flag s deciding the stationarity of the
model. Afterward, the MTS dataset, together with the trained model, are delivered to
a scoring phase. The aforementioned capitalizes on the structure and parameters of the
DBN to analyze each subject transition using a sliding window algorithm. Entire series
are likewise scored. Subsequently, scores are delivered to a score-analysis strategy which
creates a threshold differentiating abnormal and normal scores. Two possible strategies are
discussed in Section 3.5 and later compared; both output a threshold for the final binary
classification. Observations associated with scores below the threshold are classified as
outliers, being suspected of not have been generated by the learned model.
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Figure 2. Scheme of the proposed outlier detection approach comprised of four phases. Datasets
formed by MTS data can be directly applied to the modeling phase when discrete; otherwise, the
pre-processing phase is applied before modeling. Discrete data is delivered to the modeling phase
along with parameters p, m, and s of the DBN to be modeled. Afterward, a sliding window algorithm
outputs a score distribution for the data (scoring entire MTS, called subjects, or only portions of it,
called transitions, depending on the user’s choice). The score-analysis phase considers two distinct
strategies providing thus two possible routes for outlier disclosure.

3.1. Pre-Processing

METEOR modeling phase requires a discrete MTS. In the presence of an already
discrete series, this phase can be skipped and follow directly to modeling (Section 3.2); the
user can also pre-discretize its MTS with meaningful domain values or any other approach
outside METEOR. However, if a continuous series is fed to METEOR, a representation
known as Symbolic Aggregate approXimation (SAX) [32] is enforced prior to the modeling
phase. SAX has already been validated in anomaly detection scenarios [33] providing
discretization and dimensionality reduction. The procedure is applied separately to each
univariate TS belonging to a continuous MTS. The processed series are then combined to
form a discrete MTS dataset. The pseudo-code for the SAX pre-processing mechanism is
available in Algorithm 1.

For each real-valued TS xh
i [t]0≤t≤T of length T (steps 2–3), normalization (steps 4–5),

dimensionality reduction (steps 5–11) and symbolic discretization (steps 12–14) are per-
formed. Normalization is done to present zero mean and a standard deviation of one by
employing Z-normalization. The mean of each TS is subtracted from every data point.
The result is then divided by the TS standard deviation. The dimensionality reduction
compresses the TS into an equivalent sequence of size w� T. Such is assured by piecewise
aggregate approximation (PAA). The latter subdivides the normalized TS into w equally sized
blocks. The mean of the data points in each block is computed, being the w mean values the
new TS. Finally, symbolic discretization is done. In many applications, these normalized
time series have a Gaussian distribution [34]. Hence, the TS domain can be divided into
ri equiprobable regions according to a Gaussian distribution N (0, 1), where ri denotes
the size of the alphabet Xi = {xi1 , . . . , xiri

}. Regions are identified by boundaries, known
as breakpoints β. The goal is to resolve in which of the regions each data point resides.
A value falling in interval (β j−1, β j) is associated with the symbol xij , 1 ≤ j ≤ ri.



Appl. Sci. 2021, 11, 1955 7 of 22

Algorithm 1 Data Pre-Processing

Input: A MTS dataset D of n variables along T instants; an alphabet size ri for each
attribute Xi[t], 1 ≤ i ≤ n; desired length w� T of the resulting MTS.

Output: The set of input MTS discretized.

1: procedure SAX(D,ri for all i,w)

2: for each subject h in D do

3: for each TS {xh
i [t]}0≤t≤T , with 1 ≤ i ≤ n do

4: for each t, with 0 ≤ t ≤ T do

5: Normh
i [t]← z_Norm(xh

i [t]) . Normalization

6: function PAA(Normh
i , w) . Dimensionality reduction

7: k← 0

8: Partition the Normh
i in contiguous blocks of size T/w

9: for each block BLk do

10: x̂h
i [k]← (w/T)∑t∈BLk

Normh
i [t] . Compressed slices

11: k← k + 1

12: function DISCRETIZATION(x̂h
i [k], ri) . Symbolic discretization

13: β← SegmentGaussianDistrib(ri)

14: for each value val in x̂h
i [k] do

15: Discreteh
i [k]← ToSymbolic(val, β)

16: return(Discrete) . Return discretized MTS dataset

When choosing the most suitable value for the alphabet size ri, experiments
conducted [32] demonstrate that a value in the range of 5 to 8 is optimal in most datasets.
The latter means that the information loss during discretization is minimized. However, it
is always advised to test different values when possible and consider the particularities of
each domain.

3.2. Modeling

In the modeling phase, a DBN is learnt from data. The algorithm for non-stationary
networks is sketched in Algorithm 2 as proposed in [14]. Since we want to model the
distribution underlying the MTS discretized data the log-likelihood (LL) score is used to
measure the fitness of the transition networks to the data. The output is a tree-like DBN
allowing for one parent in the current time slice (intra-slice network) and at most p parents
from the preceding m time slices (inter-slice network).

For each transition from time slices {t−m, . . . , t− 1} to time slice t a complete directed
graph is built at time t (steps 3–4). Each edge Xi[t] in this graph is then weighted with a
local LL score given by the optimal set of parents: up to p parents from the previous m time
slices and the best parent from time slice t (step 5). Having the completed graph weighted,
Edmond’s algorithm [35] is applied to obtain a maximum branching for the intra-slice
network from which a transition network is easily extracted (step 6). In non-stationary
DBNs, transition networks Bt

t−m are collected in each for-loop iteration (step 7). In the case
of a stationary network only one transition network is retrieved.
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Algorithm 2 Optimal Non-Stationary m-Order Markov tDBN Learning

Input: A set of input MTS discretized over w time slices; the Markov lag m; the
maximum number of parents p from preceding time slices.

Output: A tree-augmented DBN structure.

1: procedure TREE-AUGMENTED DBN(MTS,m,p)

2: for each transition {t−m, . . . , t− 1} → t do

3: Build a complete directed graph in X[t]

4: Calculate the weight of all edges and the optimal set of p + 1 parents

5: Apply a maximum branching algorithm

6: Extract transition t−m→ t network and the optimal set of parents

7: Collect transition networks Bt
t−m to obtain a tDBN structure

3.3. Scoring

After the pre-processing and modeling phases, the proposed method starts a scoring
phase. Outliers are considered to be observations that do not fit well the DBN trained model.
The goal is to score portions or entire subject observations according to the tDBN structure.

Definition 4 (Window). Given subject observations Dh, a m-th-order window Dh
t−m:t is defined

as the subset of the h-th subject observations concerning time transition t−m→ t in D.

Please note that m-th-order windows have a size equal to n × (m + 1). Given a
m-th-order DBN, a window is scored according the its transition network Bt

t−m as

sh
t−m:t =

n

∑
i=1

log P(Xi[t] = xh
i [t]|ΠXi [t] = wh

i [t]), (4)

where xh
i [t] ∈ Xi is the value of Xi observed at time t for subject h and wh

i the observed
configuration of the set of parents ΠXi [t] which comprises observations ranging from
slices t − m to t according to Bt

t−m. Equation (4) is referred as a transition score, repre-
senting the log-likelihood (LL) of the observed window computed using the network’s
conditional probabilities. Every procedure is akin when considering both stationary and
non-stationary DBNs.

If a window possesses a configuration unseen in the modeling phase, the probability
of that configuration is zero, nullifying the LL score associated to it. A technique known as
probability smoothing is thus employed to prevent score disruption [36]. Probabilities are
transformed according to

Ph
i = (1− ri · ymin)ph

i + ymin, (5)

where ph
i is a conditional probability P(Xi[t] = xh

i |ΠXi [t] = wh
i ), ymin a parameter express-

ing the degree of probability uncertainty and ri the granularity of the Xi. Such means
that when pi is zero, the new probability will be equal to ymin, which is typically 0.001.
Additionally, Equation (5) ensures that probabilities with value 1 are decreased according
not only to ymin but also the size of the alphabet ri related to that attribute, reducing thus
overfitting. Consequently, the LL scores are computed using the smoothed probabilities.

To acquire the outlierness of every MTS transition, a sliding window is employed. The
mechanism gradually captures all equally sized windows, Dt

t−m with t ∈ T , of a subject
to compute the LL scores sh

t−m:t for each transition. Since the trained model possesses an
initial network B0, time frames t ≤ m cannot be explained by windows of size n× (m + 1).
Hence, according to the order of the model, only transitions from slice m + 1 forward are
captured. However, the initial frames influence the scores of the next consecutive windows



Appl. Sci. 2021, 11, 1955 9 of 22

which include them, having the ability of inducing anomalies. The whole procedure is
depicted in Algorithm 3. It is worth noting that the stationarity of the DBN modeled
influences the way data is scored. Non-stationary models adapt to each transition, meaning
that windows are not scored according to the series general behavior. Such allows the
adaptation of the system to data whose behavior is time variant.

Algorithm 3 Transition Outlier Detection

Input: A tDBN storing conditional probabilities for each transition network Bt
t−m,

a (discretized) MTS dataset D, and a threshold thr to discern abnormality.

Output: The set of anomalous transitions t−m→ t with scores below thr.

1: procedure

2: for each time slice t do

3: for each subject h ∈ H do

4: function SCORING(Dh
t−m:t, Bt

t−m, t)

5: for each variable Xi[t] do

6: ΠXi [t] ← GetParents(Xi[t], Bt
t−m)

7: wh
i [t]← GetParentsCon f ig(ΠXi [t], Dh

t−m:t)

8: ph
i ← GetProbability(xh

i [t], wh
i [t], Bt

t−m)

9: Ph
i ← (1− ri · ymin)ph

i + ymin . Probability smoothing

10: sh
t−m:t ← ∑n

i=1 log Ph
i . Transition score

11: if sh
t−m:t < thr then

12: outliers← outliers.append(Dh
t−m:t)

Furthermore, subject outlier detection can be easily computed from Algorithm 3,
offering the detection of anomalous entire subject observations. In this case, a subject h
outlierness is measured by the mean of every transition score of that subject. A subject is
scored as

sh =
1

T −m

T

∑
t=m+1

sh
t−m:t, (6)

where sh
t−m:t represents the transition scores of all windows captured from subject h. The

algorithm is straightforward, and so we do not present it, but it is available in the current
implementation of METEOR.

With the computation of all transition/subject scores, a strategy must now discern
normal and anomalous ones. The score-analysis phase is discussed next.

3.4. Parameter Tuning

A qualitative sensitivity analysis is presented to aid users in selecting the optimal
set of parameters when employing METEOR with their own datasets. The Markov lag m
is the most significant parameter when modeling a DBN structure. Increasing m causes
the complexity of the network to increase, causing each window captured to include
information of m+ 1 time slices, which decreases the number of windows available. Longer
MTS analysts are thus advised to model a high order DBN correctly. Users should avoid
a high value of m, being common values m = 1 or m = 2. It is presumed that attributes
are better explained by their immediate previous values, for most scenarios, than from
long memory.

Also, for each node, the maximum number of connections from previous time slices,
parameter p, is useful in datasets where there is a high temporal dependency between
attributes, i.e., when a certain attribute is better explained by a set of values from previous
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time slices. These connections form the inter-slice dependencies of the transition network.
Conducted experiments in Section 4 demonstrate that p = 1 is sufficient in most cases;
this typically leads for each attribute Xi[t] to have a connection to its previous value
Xi[t− 1] which is easily understandable. Inter-slice connections are normally between the
same variable at different time slices. Please note that by using tDBNs, besides inter-slice
connections, there are also intra-slice ones. Therefore, a large p value can easily cause
overfitting since each network node begins to be allowed to connect with multiple nodes.
Users are advised to experiment with p = 1 or p = 2, yielding favorable results for the
majority of the datasets tested.

The value s conveys the stationarity of the system and indicates if transitions should be
modeled according to their temporal position on the series. In other words, if it is important
that certain patterns occur on specific time slices. It is worth noting that the complexity
is much larger in non-stationary models, and the learning phase could take a long time
resulting in a large DBN encompassing the whole series time domain. Additionally, the
trained model is more probable of overfitting to certain patterns at specific transitions.
On the contrary, in a stationary DBN, every window captured is scored according to the
general network modeling the whole MTS. Stationarity should always be active unless
the analyst knows for sure that in its specific dataset, observations can be considered
anomalous for occurring in specific time frames and not for their observed values.

3.5. Score-Analysis

Two score-analysis strategies are studied to elect an optimum threshold for outlier
disclosure amid score arrays.

3.5.1. Tukey’s Strategy

Abnormal scores can be defined as values that are too far away from the norm,
presuming the existence of a cluster comprising normality. The current technique has
inspiration in John Tukey’s method [17,18], which determines the score’s interquartile
range (IQR) as

IQR = Q3−Q1, (7)

where Q1 and Q3 are the first and third quartiles, respectively. The IQR measures statistical
dispersion, depicting that 50% of the scores are within ±0.5× IQR of the median. By ig-
noring the scores mean and standard deviation, the impact of extreme values does not
influence the procedure. Hence, IQR is robust to the presence of outliers.

Tukey exploits the notion of fences [18], frontiers which separate outliers from normal
data. METEOR typically generates negatively skewed score distributions. Hence, a lower
fence computed as Q1− (1.5× IQR) is used. The reason behind choosing 1.5× IQR is that
for most cases, a value of IQR labels too many outliers (too exclusive) while 2× IQR begins
to classify extreme values as normal (too inclusive), being such value fruit of conducted
experiments [18]. Transition and subject scores are classified as anomalous if their value
subsists below their respective lower fence. Formally, a score s holding inequality

s ≤ Q1− (1.5× IQR) (8)

is considered anomalous, being Q1− (1.5× IQR) the threshold.
Tukey’s procedure prefers symmetric score distributions with a low ratio of outliers,

having a breakdown at about 25% [37]. The aforementioned arises from the fact that the
score distribution starts to be increasingly asymmetric with the increase of more extreme
scores, and such has been confirmed in existing literature [38]. It is also worth noting that
the nature of the outliers can influence Tukey’s assumptions. If outliers are generated
by a different underlying process, the score distribution may display multiple clusters,
causing Tukey’s threshold to avoid the main distribution and rising the number of false
negatives. On the other hand, in scenarios with absence of anomalies, this mechanism is
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capable of completely eliminate false positive occurrences, since fences are not forced to be
in the scores’ observed domain.

3.5.2. Gaussian Mixture Model

To handle disjoint score distributions, a method based on a Gaussian Mixture Model
(GMM) [19] is employed. Commonly used in classification and clustering problems, GMMs
are probabilistic models that assume data is generated from a finite mixture of Gaussian
distributions with unknown parameters, a reasonable assumption in most scenarios [34].

Score distributions are modeled as mixtures of two Gaussian curves. Labeling each
score becomes a classification problem among two classes C1 and C2, representing abnor-
mality and normality, respectively. The problem is defined as uncovering the value of
P(C1, C2|s) for each score value s, which can be obtained by Bayes’ rule

P(Ci|s) =
P(s|Ci)P(Ci)

P(s)
, i ∈ 1, 2, (9)

where P(s|Ci) is the likelihood of score s belonging to class Ci, P(Ci) the priors for each
class and P(s) the evidence. The threshold is defined as the boundary that better separates
both curves, which describes the point of maximum uncertainty. Evidence P(s) for each
score is calculated according to

P(s) = P(s|C1)P(C1) + P(s|C2)P(C2). (10)

Combining Equations (9) and (10) leads to the conclusion that for a score s be classified
as anomalous, it must hold inequality

P(s|C1)P(C1) > P(s|C2)P(C2). (11)

Such is known as the Bayes’ classification rule which provides the desired boundary.
The GMM is defined as the sum of the two Gaussian distributions, i.e.,

α1N (Y|µ1, σ2
1 ) + α2N (Y|µ2, σ2

2 ). An Expectation-Maximization algorithm [39] is used to
determine the values of parameters αi, µi and σ2

i . In the current study, GMM is employed
with the aid of the available R package mclust [40].

The GMM strategy can handle discontinued score distributions, however, it assumes
the existence of an outlier cluster which may not always be appropriate. Thus, both Tukey’s
and GMM strategies should be contemplated.

4. Experimental Results

With the intention of providing a fully automatic and adaptable outlier detection
mechanism, the developed implementation is freely available online [20]. Most figures from
undertaken experiments in the current study derive from the built web application. The
latter offers support from data-formatting to score-analysis, together with a tutorial video.
Sample datasets are likewise accessible for immediate usage. Results can be downloaded
in each phase.

A score-analysis tab regarding subject/transition outlierness is available. The latter
offers automatic thresholds considering the studied strategies as well as manual regulation.
Users are capable of adjusting parameters in the midst of each phase influencing the
outputted results. The graphical interface is adapted in real time. Furthermore, source code
is available, allowing the installation of the application in any setup while supporting the
adaptation of each phase for a particular endeavour.
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To outline the performance of METEOR, several experiments are conducted using
simulated as well as real-world datasets from distinct sources. To support the importance of
the intra-slice connections in the modeling phase via tDBN, a comparison with a univariate
outlier detection method is also provided.

4.1. Simulated Data

First, the performance is validated using simulated data, the latter consists of MTS of 5
variables (n = 5) with a domain of 3 symbols (ri = 3 for all i) along 10 time frames (T = 10).
More specifically, the present experiments subsist on training two separate stationary
first-order DBNs, one for generating normal data and another to produce outliers. All data
is mixed together in a single dataset and fed to the system. A DBN is trained using the
combined dataset, with the aim of locating the anomalous subjects.

To evaluate the performance of each experiment, the number of true positives (TP),
false positives (FP) and false negatives (FN) is measured. Such are used to determine
the Positive Predictive Value (PPV), representing precision, and True Positive Rate (TPR),
representing recall. To conjointly consider both metrics, the F1 score is computed along
with the accuracy (ACC) of each test.

Experiments are identified by their outlier ratio PO, indicating the percentage of
anomalous subjects in the dataset, the anomalous model, DBN B or C, used to generate
anomalous subjects and the total number of subjects in the dataset D of size N. The
transition networks of the anomalous models are displayed in Figure 3 together with their
dissimilarities with respect to the normal model A.
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Figure 3. Transition networks of stationary first-order DBNs (m = 1). The network (a) on the
left represents the transition network of DBN A which generates normal subjects. Networks (b,c)
represent DBN B and C, respectively, which generate anomalous subjects. Dashed connections
represent links which are removed with respect to the normal network (a), while red links symbolize
added dependencies. Solid black edges are connections which are common with respect to (a).

Experiments are divided in two groups according to the strategies in the score-analysis
phase. Such means that both strategies are validating the proposed approach. Experiments
considering a different approach are carried out afterwards.

4.1.1. Tukey’s Score-Analysis

Results employing Tukey’s method in the score-analysis phase are shown in Table 1,
each row depicts an experiment. Every value is rounded down to two decimal places and
represents an average among 5 trials.
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Table 1. Subject outlier detection of METEOR on simulated data using Tukey’s strategy.

Model B Model C

PO N PPV TPR ACC F1 N PPV TPR ACC F1

5
100 0.88 0.70 0.98 0.78 100 0.89 0.73 0.98 0.80

1000 0.93 0.96 0.99 0.94 1000 0.91 0.98 0.99 0.94
10,000 0.95 0.98 0.99 0.96 10,000 0.94 1.00 0.99 0.97

10
100 0.96 0.38 0.94 0.54 100 0.89 0.73 0.97 0.80

1000 0.99 0.87 0.99 0.93 1000 0.97 0.87 0.98 0.92
10,000 0.99 0.91 0.99 0.95 10,000 0.99 0.87 0.98 0.93

20
100 1.00 0.19 0.83 0.32 100 0.90 0.22 0.84 0.35

1000 1.00 0.20 0.84 0.33 1000 1.00 0.37 0.87 0.54
10,000 1.00 0.16 0.83 0.28 10,000 1.00 0.29 0.86 0.45

The outcomes demonstrate that datasets with solely 100 subjects (N = 100) perform
generally poorly, since these do not possess enough information about the data’s under-
lying processes. Accuracy as well as F1 scores tend to decline with the increase of outlier
ratios, due to less normal data available for a correct modeling phase. The latter is ob-
served by the decrease of TPR measurements. The computed thresholds converge to more
stable values with the increase of data, hence outputting more reliable values for every
performance measure.

Discussing the impact of outlier ratios, Tukey’s method is recognized to be more
effective in the presence of lower anomaly percentages due to the increasingly asymmetric
score distribution when increasing the number of outliers, as already confirmed in [38].
Moreover, when PO is high enough and the majority of outliers are generated by a common
process, the score distribution of abnormal data becomes visible, causing poor performance
in experiments with 20% of outliers. Such explains why, for the same PO, F1 scores may
decrease with the increase of subjects. The breakpoint of Tukey’s method [37] prevents
favorable results when in the presence of abundance outlierness. However, FP tend to
disappear, reflecting high precision measurements.

Comparing experiments from both anomalous networks B and C, accuracy is in
general higher in experiments with C, since the latter has fewer connections in common
with the normal model A, resulting in a more dissimilar structure. However, such is not
always true, since asymmetric distributions perturb Tukey’s analysis.

Control experiments performed using datasets solely comprised by normal subjects
demonstrated favorable results with Tukey’s score-analysis, contrary to the GMM strategy,
which divides the distribution in two classes creating an high number of FP.

4.1.2. Gaussian Mixture Model

Inspecting results using Tukey’s analysis, the performance of experiments with larger
anomaly ratios bear low F1 values due to high counts of FN. The main reason for the
aforementioned is the presence of an outlier curve in the scores’ distribution. The latter
occurs due to the high proportion of outliers formed by a specific mechanism, in this
case an abnormal DBN. GMM score-analysis is thus employed in the same experiments,
affecting solely the threshold computation in the score-analysis phase.

Results are available in Table 2, being noticeable the considerable increase in recall for
experiments with PO of 20% when compared to results from Table 1. Such is confirmed
in existing literature [38]. In general, the count of FP is higher when employing GMM.
Such is caused by the GMM’s assumption of the existence of an abnormal model even
in its absence. Due to similarities between DBNs, especially when considering model B,
scores from both networks tend to mix together around the threshold being thus difficult
to discern them. The GMM approach has typically higher recall but lower precision with
thresholds smaller in module. The latter is more noticeable in higher outlier ratios, since in
the presence of fewer anomalies Tukey’s method displays higher F1 scores.
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Table 2. Subject outlier detection of METEOR on simulated data using GMM’s strategy.

Model B Model C

PO N PPV TPR ACC F1 N PPV TPR ACC F1

5
100 0.82 0.70 0.98 0.76 100 0.64 1.00 0.96 0.78

1000 0.91 0.97 0.99 0.94 1000 0.86 0.99 0.99 0.92
10,000 0.95 0.98 0.99 0.96 10,000 0.98 1.00 0.99 0.99

10
100 0.77 0.68 0.93 0.72 100 0.92 0.78 0.97 0.84

1000 0.94 0.96 0.99 0.95 1000 0.89 0.97 0.98 0.93
10,000 0.91 0.98 0.99 0.94 10,000 0.93 0.96 0.99 0.95

20
100 0.66 0.49 0.85 0.56 100 0.75 0.58 0.88 0.65

1000 0.86 0.89 0.94 0.87 1000 0.91 0.92 0.96 0.92
10,000 0.86 0.94 0.96 0.90 10,000 0.93 0.94 0.97 0.94

4.1.3. Comparison between GMM and Tukey’s Score-Analysis

With the aim of giving additional insight on which method to choose when performing
score-analysis and summarize the conclusions derived from the experimental results using
simulated data, the F1 scores for each method are compared in the presence of different
outlier ratios.

In Figure 4, the average F1 scores of every experiment using a specific method and
outlier ratio is shown. Tukey’s method performs very poorly in datasets with 20% of
anomalies while outperforming the GMM strategy in datasets with 5% of anomalies as
well as control experiments.

Figure 4. Comparison between GMM and Tukey’s score-analysis F1 scores for multiple outlier ratios.
Each value is an average of all 15 trials performed for each outlier ratio.

To determine a priori which method will excel in the score-analysis of a specific dataset,
analysts should understand the underlying process generating normal data and the ability
to anticipate the type of outlier expected. Tukey’s method expects score distributions to be
negatively skewed, meaning that anomalies are generated by the same underlying process
as normal data but present the lowest distribution scores. These scenarios are the most
common, being real-world examples studied in Sections 4.2 and 4.3. Alternatively, if a
different external process is generating abnormal data that contaminates the rest of the
data, the score distribution of the whole dataset will present multiple clusters requiring
the employment of the GMM method to separate both classes. An example is seen in the
experiments using simulated data where GMM performs well regardless of the outlier ratio.
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Although the present synthetic experiments seem to endorse the use of a GMM
strategy, one should note that both normal and abnormal data are generated according to
two defined models, which can, by some degree, be separated. Such is a favorable scenario
for GMM. When considering other scenarios, Tukey’s method is not so susceptible to well-
defined curves being thus always a strategy to consider. With that said, it is advised for the
analyst to apply as much knowledge as possible with both strategies’ experimentation.

4.1.4. Comparison with Probabilistic Suffix Trees

To contrast the proposed system, an additional outlier detection mechanism is studied.
The latter adopts probabilistic suffix trees (PST) [41], variable length Markovian techniques,
with the aim of mining abnormal values in MTS. These structures are only capable of mod-
eling univariate data, perceiving a discrete TS as a sequence of symbols Si = (si

1, . . . , si
T).

The temporal component is encoded in the position of each symbol, which assumes a value
from the discrete set Xi.

To tackle MTS, datasets are divided into multiple sets, each one containing data
concerning one variable. Every set is used to model a PST Pi. Subjects are seen as sets of
sequences Si for each variable 1 ≤ i ≤ n associated to its corresponding PST. Thus, subjects
with five variables are modeled using five independent trees. Each PST Pi computes an
univariate score logloss(Si) [42] for all subjects considering its variable, according to

logloss(Si) =
1
T

log2 P(Si), (12)

where T is the maximum length of sequence Si. The probability of a sequence is computed
using the short-memory property as

P(Si) = P(si
1)P(si

2|si
1) . . . P(si

T |si
1...si

T−1), (13)

with each state in the sequence, si
t, being conditioned on its past observed states, also known

as contexts. The conditional probabilities are retrieved efficiently from a tree structure.
Scores, computed using Equation (12) for each PST Pi 1 ≤ i ≤ n, concerning every TS from
a common subject are stored in an array. The mean of the array is the multivariate score for
the subject, being obtained by

1
n

n

∑
i=1

logloss(Si
h), (14)

where Si
h is the sequence concerning variable i from subject h ∈ H.

An existing PST modeling software [42] was adapted to a MTS scenario. Each ex-
periment using simulated data is compared with METEOR. Likewise, score-analysis is
employed posterior to scoring, selecting one of the two considered strategies. Tests are
available in Table 3, being models A, B and C the same used in Section 4.1. Results demon-
strate the low performance of the PST approach when discerning anomalies generated by
DBN B. Such is explained by the fact that B is much similar to the normal model A when
compared with C. Furthermore, since inter-variable relations are not considered, subjects
become identical when seen by the PSTs. Hence, the resulting score distributions display
a single curve blending both classes. One exception are experiments considering 5% of
anomalies, which indicate that with the increase of outlier ratios, the few dissimilarities
among classes are modeled, causing outliers to fit each PST. Additionally, the superior
results with model C can be explained by the its higher discrepancy with the normal
model A.
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Table 3. PST results using Tukey and GMM strategies on simulated data for experiments with
N = 10,000.

Tukey’s Strategy

Model B Model C

PO PPV TPR ACC F1 PPV TPR ACC F1

5 0.96 0.73 0.98 0.83 0.96 0.94 0.99 0.95
10 0.70 0.02 0.90 0.04 0.98 0.39 0.94 0.56
20 0.42 0.00 0.80 0.00 1.00 0.03 0.81 0.06

GMM Strategy

Model B Model C

PO PPV TPR ACC F1 PPV TPR ACC F1

5 0.86 0.88 0.99 0.87 0.94 0.95 0.99 0.94
10 0.20 0.87 0.65 0.33 0.88 0.68 0.96 0.77
20 0.25 0.67 0.53 0.36 0.763 0.883 0.92 0.82

In Figure 5, a comparison between the METEOR and the PST approaches for a same
experiment with 20% of outliers from model C is shown. The PST system cannot separate
both classes as well as the DBN approach, blending normal and anomalous scores. Results
demonstrate the importance of the inter-variable relationships present in model C for
outlier disclosure in MTS data, of which the PST technique neglects. Moreover, the PST
approach scales poorly with the increase of outlier ratios and never outperforms METEOR
in the experiments conducted.

Figure 5. Subject outlierness using METEOR (a) and PST approach (b) for a same experiment of
a dataset of 10,000 subjects (N = 10, 000) with 20% anomalies generated by model C. Histograms
display thresholds using both score-analysis strategies. Scores below the threshold are classified
as abnormal (in red) while the rest are classified as normal (in green), being the presented color
representation for the Tukey’s thresholds.

4.2. ECG

A common application of anomaly detection in medical scenarios is in electrocardio-
gram (ECG) alert systems [33]. These have the capability of detecting unusual patterns in
signals measured from patients. Data is usually continuous and present expected patterns
in healthy patients.
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An ECG dataset, available at [43], is composed by 200 MTS (N = 200) each with
2 distinct variables (n = 2). A representation of the normalized data can be seen in
Figure 6 together with the breakpoints β of the performed SAX discretization. The location
of the ventricular contraction peaks typically occur around time frames 3 and 10. Tests
are performed using non-stationary DBNs since specific phenomena occurs in particular
time instances. The experiments have the objective of testing the system behavior to
inconsistent data.

Figure 6. Mean and standard deviation of normalized ECG variables along time using a SAX alphabet
ri = 5 for i = 1, 2.

Series are discretized with an alphabet of size 5 (ri = 5 for all i) and modeled using
a second-order DBN (m = 2) with one inter-slice connectivity per node (p = 1). Score
distributions are negatively skewed, advising the use of Tukey’s thresholds. An experiment,
depicted in Figure 7, shows that METEOR has difficulty evaluating time slices with higher
variance. To further test the aforementioned, 10% of the subjects are flipped horizontally
and mixed together in the original set; therefore, the ventricular contraction peaks in these
series occur in their last time frames. Results demonstrate the detection of such transitions
present on subjects with higher id.

Figure 7. ECG transitions arranged by subject. A non-stationary second-order tDBN (m = 2) model
with inter-slice connectivity (p = 1) is used together with Tukey’s score-analysis. Flipped subjects are
associated to the highest subject ids. Data is discretized using SAX with an alphabet of 5 symbols
(ri = 5 for all i). Transitions displayed in red are classified as abnormal while in green are classified
as normal.

The system has the ability of detecting unusually behaved sections in ECGs which
coincide with the high variance portions. The latter is due to not existing a predominant
pattern in the location of the peaks, observable as vertical red stripes, since these vary
intensively from subject to subject contrary to more advanced slices. SAX discretization
offers low definition in such locations.
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4.3. Mortality

An outlier detection scenario is studied in [44], where the suggested approach De-
tectDeviatingCells classifies cell-wise as well as row-wise anomalies in a data matrix. One
of the tested experiments [44] refers to a dataset comprising male mortality in France
from 19th century forward, extracted from [45]. The aim is to discover outlying years,
representative of the main iconic events in France history.

Data is structured as a matrix. To adapt it to METEOR, age groups are regarded as
variables, meaning that correlations among mortality rates of different ages can be modeled.
Due to the excessive number of attributes, only a subset is selected. The normalized
dataset can be seen in Figure 8, where each time series represent France’s male mortality
rates from 1841 to 1987 in a specific age group. The years in which measurements were
obtained are regarded as time instants t. With the assembling of longitudinal data, SAX
pre-processing is applied to each series. Attributes Xi[t] are thus male mortality rates of
specific age groups at particular years. It is worth noting that with all the transformations
performed, the dataset is reduced to a single subject which portrays a MTS.

Figure 8. Normalized values of variables Xi∈1,...,6 representing France’s mortality rates of males with
ages 10, 20, 30, 40, 60 and 80, respectively, from 1841 to 1987. Each time stamp represents a year.
Data is discretized with a SAX alphabet ri = 5 for all i.

Two experiments are presented in Figure 9. In the first experiment, 5 variables are
selected, being ages 20, 30, 40, 60 and 80. Each variable is discretized with an alphabet size
of 5 (ri = 5 for all i) and all tests employ Tukey’s strategy in the score analysis phase. The
objective is to determine unusual events such as wars and epidemics. The trained model
involves a stationary third-order tDBN. Nodes are allowed to have at most one parent
from previous slices. The reasoning behind the parameter choice is purely experimental.
The problem exhibits a preference of attributes establishing connections with previous
nodes which are not consecutive with themselves. It is worth recalling that having an
order of three does not mean that every or even any relation has such lag, it just offers such
possibility. Results confirm major events which shaked France history. These are displayed
in Figure 9, representing both world wars, the influenza pandemic, the Franco-Prussian
War and the European revolutionary wave of 1848. France was a belligerent in several
conflicts as well as colonization wars in the 1850s.

In the second experiment, a variable is added to the first set. The new age group
represents the male mortality rate of children aged up to 10 years old. The aim is to
capture the impact of youth mortality in the outputted years. Results are similar, being
the differences observed in the 1860s and around the Spanish flu confirming that youth is
more susceptible to epidemics.
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Figure 9. Transition outlierness for mortality datasets of 5 (a) and 6 (b) variables using a third-order
tDBN (m = 3) with one inter-slice connectivity per node (p = 1). Dataset (a) is comprised by 5
variables (n = 5) representing mortality rates of males with ages 20, 30, 40, 60 and 80. Dataset (b)
includes the same variables as (a) with the addition of a variable representing the mortality rate of
males aged 10 (n = 6). Transitions are arranged by year and classified as anomalous (red) and normal
(green). Major wars and epidemics which affected France in the selected years are exhibited.

4.4. Pen-Digits

A distinct application is the recognition of drawn digits. Measurements are taken along
time from each drawing phase. Data is available at [46] and studied in [47]. Handwriting
samples are captured using a sensitive tablet which outputs the x and y coordinates of the
pen at fixed time intervals. The goal is to model the system to a certain character being
simultaneously unwanted digits amid the data. A set comprising 1143 MTS (N = 1143)
along 8 time frames (T = 8) representing digit 1 is assembled from 44 different writers.
The original MTS are discretized with an alphabet size of 8 (ri = 8 for all i). The dataset is
injected with 130 subjects (N = 1143 + 130) belonging to a different digit. The aim is to
detect the aforementioned and subsequently understand similarities between digits.

Results are present in Table 4, where Di represents the anomaly digit i introduced.
A first-order (m = 1) non-stationary tDBN is modeled, since a pair of coordinates is more
easily explained by its immediate precedent. Every attribute can possess at most one parent
from its preceding slice (p = 1). Thresholds are selected manually. The objective is not only
to capture the performance of the outlier detection system but further understand which
digits are more commonly resembled with digit 1. Results show that distinguishing digit 7
from 1 is difficult due to their similarity, proved by the low F1 score obtained. Such reflects
the blending of both class distributions. Digits 8 and 9 proved to be more easily discerned
from 1.

Table 4. Results of pen digits outlier detection experiments.

Experiment TP FP TN FN PPV TPR ACC F1

D7 24 41 1102 106 0.37 0.18 0.88 0.25
D8 98 45 1098 32 0.69 0.75 0.94 0.72
D9 90 42 1101 40 0.68 0.69 0.94 0.69

5. Conclusions

The presence of outliers can severely distort data analysis and, consequently, hamper
statistical model identification. Outlier detection has become a very challenging task
in many application fields. For example, in medical scans, outliers elicit abnormal or
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changed patterns, and therefore, their detection may help detect certain types of diseases.
When following-up patients, detecting patient outliers governed by abnormal temporal
patterns can advance pharmaceutical or medical research. Still, versatile and automatic
outlier detection methods for MTS are almost inexistent, with scarce available algorithms
and software.

The developed system, known as METEOR, utilizes a sliding window mechanism
to uncover contextual anomalies with temporal and inter-variable dependencies arising
from portions and entire MTS, oblivious in the existing literature. Observations are scored
with respect to a modeled DBN, adjustable to both stationary and non-stationary scenarios.
A widely available web application [20] is deployed to assist an analyst in their specific
endeavour along with a user-friendly interface and tutorial. A diverse set of applications
has benefited from the former, presenting an adaptable outlier detection system previously
nonexistent, ranging from pre-processing to score-analysis.

METEOR showed promising results when employed in synthetic and real data in quite
different domains: it detected unusually behaved sections in ECG; it detected abnormal
youth mortality during Spanish flu epidemics; and recognized that digit 7 more commonly
resembles digit 1 than digits 8 and 9. Moreover, a comparison with a PST technique
that independently looks at each variable, as in the univariate case, showed that PST
does not detect outliers discovered by METEOR due to relationships between subjects
becoming identical.

Possible future research could consist in augmenting the tDBN algorithm with the
employment of change-point mechanisms in the case of non-stationarity as well as the study
of additional pre-processing and score-analysis mechanisms capable of better-capturing
data’s underlying features. Application of METEOR to the analysis of clinical data is also a
promising future development. Indeed, METEOR is perfectly suited for multivariate time
series analysis stored in electronic medical records (with patients’ follow-up). This data
is becoming increasingly common in chronic conditions such as rheumatic disorders and
dementia, and also cancer.

Author Contributions: J.L.S. implemented the algorithms, performed the computational experiments
and wrote the first draft of the manuscript (all authors made the required updates). A.M.C. and S.V.
conceived the study, supervised the research, results and manuscript. All authors read and approved
the final manuscript.

Funding: Supported by the Portuguese Foundation for Science and Technology (Fundação para
a Ciência e a Tecnologia—FCT) through UIDB/50008/2020 (Instituto de Telecomunicações) and
UIDB/50021/2020 (INESC-ID), and projects PREDICT (PTDC/CCI-CIF/29877/2017) and MATISSE
(DSAIPA/DS/0026/2019). This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No. 951970 (OLISSIPO project).

Data Availability Statement: All data used in this work is available at the METEOR Github project
accessible via the webpage https://meteor.jorgeserras.com.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Grubbs, F.E. Procedures for detecting outlying observations in samples. Technometrics 1969, 11, 1–21. [CrossRef]
2. López-de Lacalle, J. tsoutliers: Detection of Outliers in Time Series; R Package Version 0.6-6; The Comprehensive R Archive

Network (CRAN): Wien, Austria, 2017.
3. Matt Dancho, D.V. anomalize: Tidy Anomaly Detection; R Package Version 0.1.1; The Comprehensive R Archive Network (CRAN):

Wien, Austria, 2018.
4. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. (CSUR) 2009, 41, 15. [CrossRef]
5. Aggarwal, C.C. Outlier Analysis; Springer: Berlin, Germany, 2017.
6. Gupta, M.; Gao, J.; Aggarwal, C.C.; Han, J. Outlier Detection for Temporal Data: A Survey. IEEE Trans. Knowl. Data Eng.

2014, 26, 2250–2267. [CrossRef]
7. Galeano, P.; Peña, D.; Tsay, R.S. Outlier detection in multivariate time series by projection pursuit. J. Am. Stat. Assoc. 2006,

101, 654–669. [CrossRef]

https://meteor.jorgeserras.com
http://doi.org/10.1080/00401706.1969.10490657
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1109/TKDE.2013.184
http://dx.doi.org/10.1198/016214505000001131


Appl. Sci. 2021, 11, 1955 21 of 22

8. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly Detection for Discrete Sequences: A Survey. IEEE Trans. Knowl. Data Eng.
2012, 24, 823–839. [CrossRef]

9. Ma, J.; Perkins, S. Time-series novelty detection using one-class support vector machines. In Proceedings of the International
Joint Conference on Neural Networks, Portland, OR, USA, 20–24 July 2003; Volume 3, pp. 1741–1745.

10. Koch, K.R. Robust estimation by expectation maximization algorithm. J. Geod. 2013, 87, 107–116. [CrossRef]
11. Wang, X.; Lin, J.; Patel, N.; Braun, M. Exact variable-length anomaly detection algorithm for univariate and multivariate

time series. Data Min. Knowl. Discov. 2018, 32, 1806–1844. [CrossRef]
12. Ding, N.; Gao, H.; Bu, H.; Ma, H.; Si, H. Multivariate-Time-Series-Driven Real-time Anomaly Detection Based on Bayesian

Network. Sensors 2018, 18, 3367. [CrossRef]
13. He, Q.; Zheng, Y.J.; Zhang, C.; Wang, H.Y. MTAD-TF: Multivariate Time Series Anomaly Detection Using the Combination of

Temporal Pattern and Feature Pattern. Complexity 2020, 2020, 8846608. [CrossRef]
14. Monteiro, J.L.; Vinga, S.; Carvalho, A.M. Polynomial-Time Algorithm for Learning Optimal Tree-Augmented Dynamic Bayesian

Networks. In Proceedings of the Polynomial-Time Algorithm for Learning Optimal Tree-Augmented Dynamic Bayesian
Networks (UAI 2015), Amsterdam, The Netherlands, 12–16 July 2015; pp. 622–631.

15. Hill, D.J.; Minsker, B.S.; Amir, E. Real-time Bayesian anomaly detection in streaming environmental data. Water Resour. Res.
2009, 45, W00D28. [CrossRef]

16. Murphy, K.; Mian, S. Modelling Gene Expression Data Using Dynamic Bayesian Networks; Technical Report; Computer Science
Division, University of California: Berkeley, CA, USA, 1999.

17. Tukey, J.W. Exploratory Data Analysis; Pearson: Reading, MA, USA, 1977; Volume 2.
18. Hoaglin, D.C.; John, W. Tukey and data analysis. Stat. Sci. 2003, 311–318. [CrossRef]
19. McLachlan, G. Finite mixture models. Annu. Rev. Stat. Appl. 2019, 5, 355–378. [CrossRef]
20. Serras, J.L.; Vinga, S.; Carvalho, A.M. METEOR—Dynamic Bayesian Outlier Detection. 2020. Available online: https:

//meteor.jorgeserras.com/ (accessed on 23 February 2021).
21. Friedman, N. The Bayesian Structural EM Algorithm; Morgan Kaufmann: Burlington, MA, USA, 1998; pp. 129–138.
22. Carvalho, A.M.; Roos, T.; Oliveira, A.L.; Myllymäki, P. Discriminative Learning of Bayesian Networks via Factorized Conditional

Log-Likelihood. J. Mach. Learn. Res. 2011, 12, 2181–2210.
23. Carvalho, A.M.; Adão, P.; Mateus, P. Efficient Approximation of the Conditional Relative Entropy with Applications to

Discriminative Learning of Bayesian Network Classifiers. Entropy 2013, 15, 2176–2735. [CrossRef]
24. Carvalho, A.M.; Adão, P.; Mateus, P. Hybrid learning of Bayesian multinets for binary classification. Pattern Recognit. 2014,

47, 3438–3450. [CrossRef]
25. Carvalho, A.M. Scoring Functions for Learning Bayesian Networks; INESC-ID Tec. Rep.; INESC.ID: Lisbon, Portugal, 2009.
26. Friedman, N.; Murphy, K.P.; Russell, S.J. Learning the Structure of Dynamic Probabilistic Networks; Morgan Kaufmann: Burlington,

MA, USA, 1998; pp. 139–147.
27. Chickering, D.; Geiger, D.; Heckerman, D. Learning Bayesian networks: Search methods and experimental results. In Proceedings

of the Fifth Conference on Artificial Intelligence and Statistics, Montreal, QC, Canada, 20–25 August 1995; pp. 112–128.
28. Dojer, N. Learning Bayesian Networks Does Not Have to Be NP-Hard; Springer: Berlin, Germany, 2006; pp. 305–314.
29. Friedman, N.; Geiger, D.; Goldszmidt, M. Bayesian network classifiers. Mach. Learn. 1997, 29, 131–163. [CrossRef]
30. Sousa, M.; Carvalho, A.M. Polynomial-Time Algorithm for Learning Optimal BFS-Consistent Dynamic Bayesian Networks.

Entropy 2018, 20, 274. [CrossRef]
31. Sousa, M.; Carvalho, A.M. Learning Consistent Tree-Augmented Dynamic Bayesian Networks. In Machine Learning, Optimization,

and Data Science, Proceedings of the 4th International Conference, Volterra, Tuscany, Italy, 13–16 September 2018—Revised Selected Papers;
Lecture Notes in Computer Science; Nicosia, G., Pardalos, P.M., Giuffrida, G., Umeton, R., Sciacca, V., Eds.; Springer: Berlin,
Germany, 2019; Volume 11331, pp. 179–190.

32. Lin, J.; Keogh, E.J.; Lonardi, S.; Chiu, B.Y. A symbolic representation of time series, with implications for streaming algorithms. In
Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD 2003),
San Diego, CA, USA, 13 June 2003; ACM: New York, NY, USA, 2003; pp. 2–11.

33. Keogh, E.; Lin, J.; Fu, A. HOT SAX: Finding the most unusual time series subsequence: Algorithms and applications. In Proceed-
ings of the Sixth International Conference on Data Mining (ICDM), Brighton, UK, 1–4 November 2004; pp. 440–449.

34. Larsen, R.J.; Marx, M.L. An Introduction to Mathematical Statistics and Its Applications; Prentice-Hall: Englewood Cliffs, NJ, USA,
1986; Volume 2.

35. Edmonds, J. Optimum branchings. J. Res. Natl. Bur. Stand. 1967, 71, 233–240. [CrossRef]
36. Manning, C.D.; Raghavan, P.; Schütze, H. Introduction to Information Retrieval; Cambridge University Press: Cambridge, MA,

USA, 2008.
37. Rousseeuw, P.J.; Croux, C. Alternatives to the median absolute deviation. J. Am. Stat. Assoc. 1993, 88, 1273–1283. [CrossRef]
38. Jones, P.R. A note on detecting statistical outliers in psychophysical data. Atten. Percept. Psychophys. 2019, 81, 1189–1196.

doi:10.3758/s13414-019-01726-3. [CrossRef]
39. Figueiredo, M.A.T.; Jain, A.K. Unsupervised learning of finite mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 2002,

24, 381–396. [CrossRef]

http://dx.doi.org/10.1109/TKDE.2010.235
http://dx.doi.org/10.1007/s00190-012-0582-3
http://dx.doi.org/10.1007/s10618-018-0569-7
http://dx.doi.org/10.3390/s18103367
http://dx.doi.org/10.1155/2020/8846608
http://dx.doi.org/10.1029/2008WR006956
http://dx.doi.org/10.1214/ss/1076102418
http://dx.doi.org/10.1146/annurev-statistics-031017-100325
https://meteor.jorgeserras.com/
https://meteor.jorgeserras.com/
http://dx.doi.org/10.3390/e15072716
http://dx.doi.org/10.1016/j.patcog.2014.03.019
http://dx.doi.org/10.1023/A:1007465528199
http://dx.doi.org/10.3390/e20040274
http://dx.doi.org/10.6028/jres.071B.032
http://dx.doi.org/10.1080/01621459.1993.10476408
http://dx.doi.org/10.3758/s13414-019-01726-3
http://dx.doi.org/10.1109/34.990138


Appl. Sci. 2021, 11, 1955 22 of 22

40. Fraley, C.; Raftery, A.; Scrucca, L.; Murphy, T.B.; Fop, M.; Scrucca, M.L. mclust: Gaussian Mixture Modelling for Model-Based
Clustering, Classification, and Density Estimation; R Package Version 5.3; The Comprehensive R Archive Network (CRAN): Wien,
Austria, 2017

41. Ron, D.; Singer, Y.; Tishby, N. The power of amnesia: Learning probabilistic automata with variable memory length. Mach. Learn.
1996, 25, 117–149. [CrossRef]

42. Gabadinho, A.; Ritschard, G. Analyzing state sequences with probabilistic suffix trees: the PST R package. J. Stat. Softw. 2016,
72, 1–39. [CrossRef]

43. Dau, H.A.; Keogh, E.; Kamgar, K.; Yeh, C.C.M.; Zhu, Y.; Gharghabi, S.; Ratanamahatana, C.A.; Hu, B.; Begum, N.; Bagnall, A.; et al.
The UCR Time Series Classification Archive. 2018. Available online: https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
(accessed on 18 September 2018).

44. Rousseeuw, P.J.; Bossche, W.V.D. Detecting deviating data cells. Technometrics 2018, 60, 135–145. [CrossRef]
45. University of California; Max Planck Institute for Demographic Research (Germany). Human Mortality Database. Available

online: www.humanmortality.de (accessed on 18 September 2018).
46. Dheeru, D.; Karra Taniskidou, E. UCI Machine Learning Repository. 2017. University of California, Irvine, School of Information

and Computer Sciences. Available online: http://archive.ics.uci.edu/ml (accessed on 18 September 2018).
47. Alimoglu, F.; Alpaydin, E. Methods of Combining Multiple Classifiers Based on Different Representations for Pen-based

Handwritten Digit Recognition. In Proceedings of the Fifth Turkish Artificial Intelligence and Artificial Neural Networks
Symposium (TAINN), Istanbul, Turkey, 27–28 June 1996.

http://dx.doi.org/10.1023/A:1026490906255
http://dx.doi.org/10.18637/jss.v072.i03
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
http://dx.doi.org/10.1080/00401706.2017.1340909
www.humanmortality.de
http://archive.ics.uci.edu/ml

	Introduction
	Theoretical Background
	Bayesian Networks
	Dynamic Bayesian Networks

	Methods
	Pre-Processing
	Modeling
	Scoring
	Parameter Tuning
	Score-Analysis
	Tukey's Strategy
	Gaussian Mixture Model


	Experimental Results
	 Simulated Data 
	Tukey's Score-Analysis
	Gaussian Mixture Model
	Comparison between GMM and Tukey’s Score-Analysis
	Comparison with Probabilistic Suffix Trees

	ECG
	Mortality
	Pen-Digits

	Conclusions
	References

