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Abstract: The objective of this work is to present analytical solutions for several 2D model problems
to demonstrate the unique plastic fields generated by the implementation of micromorphic approach
for gradient plasticity. The approach is presented for finite deformations and several macroscopic
and nonstandard microscopic boundary conditions are applied to a gliding plate to illustrate the
capability to predict the size effects and inhomogeneous plastic fields promoted by the gradient
terms. The constitutive behavior of the material undergoing plastic deformation is analyzed for
softening, hardening and perfect plastic response and corresponding solutions are provided. The
analytical solutions are also shown to match with the numerical results obtained by implementing a
user element subroutine (UEL) to the commercial finite element software Abaqus/Standard.

Keywords: strain gradient plasticity; micromorphic; microplasticity; finite elements

1. Introduction

The size-dependent mechanical behavior of crystalline materials has been clearly
shown by various experimental findings in the literature [1–5]. Experiments performed
on nano/micro sized metallic specimens (500 nm–50 µm) clearly demonstrate the size-
dependent nature of their strength which results in inhomogeneous plastic deformation.
Lacking an intrinsic length scale, conventional plasticity theories are unable to demonstrate
such a size-dependent behavior; therefore, models introducing strain gradient terms in
the constitutive relations are widely proposed [6–9]. Earliest numerical analysis has been
performed on theories based on Aifantis yield condition [10–13]. The Aifantis approach
is further developed and established as explicit gradient theories by Peerlings and Geers
and the numerical issues have been addressed by the proper regularization of localized
deformation with an alternative approach so-called implicit gradient theory [14–16].

A significant contribution to introduce a thermodynamically consistent theory for strain
gradient plasticity has been done by Gurtin and Anand [17–19]. It has been shown that such a
thermodynamically consistent theory can also be established by using Eringen’s micromorphic
theories of continua [20]. By Eringen’s theory the gradient terms are naturally introduced
through higher order degrees of freedom and thermodynamical consistency can be achieved
in a systematic fashion by using the principle of virtual power. That track of micromorphic
approach is further adopted to several strain gradient problems by Forest and Aslan [21–25]
and unified to Gurtin’s thermodynamics [26] by Anand et al. [8].

The micromorphic variable defined as an additional degree of freedom permits the
application of unique boundary conditions which brings certain ease to mimic a hard elastic
phase, especially for crystalline materials where hardening behavior might strictly depend
on geometrically necessary dislocations. Moreover, numerical implementation of such
gradient approaches and application of higher order boundary conditions in numerical
simulations are very demanding; therefore, reference analytical or semi-analytical solutions
are necessary to verify the robustness of the implementation. Even tough, the capability of
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the micromorphic approach predicting the size effects and inhomogeneous plastic fields
promoted by the gradient terms are shown numerically, analytical solutions are provided
for only a few model problems in the literature [8,21,22].

The main aim of this paper is to provide analytical solutions for several 2D model
problems to demonstrate the unique plastic fields generated by the implementation of
micromorphic approach for gradient plasticity. For that purpose, first the approach is
presented providing the basic kinematics within the finite strain framework and as an ad-
ditional degree of freedom to be coupled with the equivalent plastic strain, a microdamage
variable ep is introduced in Section 2. The balance equations are obtained from the principle
of virtual power and balance laws are derived. Section 3 presents the micromorphic consti-
tutive equations and provides the general form of analytical solutions for softening and
inhomogeneous size-dependent strain hardening. In Section 4, several model problems
for a 2d plate under simple shear is scrutinized and the analytical solutions are provided.
The analytical results are also shown to match with the numerical results obtained from
the implemented user element subroutine (UEL) to the commercial finite element software
Abaqus/Standard. The implemented element subroutine is based on a standard four-node
isoparametric element on the interpolated fields with C0 continuity. Finally, we close in
Section 5 with the final remarks.

2. A Conventional Micromorphic Approach for Gradient Plasticity
2.1. Kinematics

Considering the position of a body denoted by X in the reference configuration is
mapped to the spatial point x at time t, the motion of that body can be represented by the
smooth function x = χ(X, t), where velocity, velocity gradient and deformation gradient
take the following form:

F = ∇χ, v = χ̇, L = grad(v) = ḞF−1, (1)

We consider the multiplicative decomposition of Kröner [27] and the deformation
gradient is decomposed into elastic and plastic part

F = FeFp (2)

where Fe is the elastic distortion which represents the stretch and rotation and Fp represents
the local plastic deformation. Please note that Fp is invariant with respect to rigid body
motions that are carried by Fe. The velocity gradient can be also decomposed into elastic
and plastic components in the following form:

L = Le + FeLpFe−1 (3)

with,

Le = ḞeFe−1, Lp = ḞpFp−1 (4)

The volume ration is expressed as:

J = detF > 0. (5)

Since the plasticity is assumed as incompressible (5), the Jacobian can also be decom-
posed as

J = Je Jp, Je = detFe > 0, Jp = detFp > 0. (6)

The right polar decomposition of Fe yields

Fe = ReUe (7)
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where Ue is the right stretch tensor and Re is the rotation tensor. Then, the right elastic
Cauchy-Green tensor and the stretch tensor read the following

Ce = (Ue)2 = FeTFe (8)

Ue =
3

∑
i=3

λe
i re

i ⊗ re
i (9)

As a strain measure, Hencky’s logarithmic strain [28] is chosen due to its good agree-
ment with experiments on a wide class of materials [29,30]

Ee = ln(Ue) =
3

∑
i=1

Ee
i re

i ⊗ re
i (10)

The elastic and inelastic stretching and spin tensors are

De = symLe, Dp = symLp (11)

We = skewLe, Wp = skewLp (12)

Assuming irrotational plastic evolution i.e.,

Wp = 0 (13)

the rate of plastic deformation gradient would be

Ḟp = DpFp , Fp(X, 0) = 1 (14)

Introducing a positive-valued equivalent tensile stress and corresponding plastic
strain rate

σ̄ =
√

3/2|Me
0| and ˙̄εp√2/3|Dp| (15)

where Me
0 is the deviatoric component of the Mandel stress and the direction of the plastic

flow becomes

Np =
Me

0
|Me

0|
(16)

2.2. Micromorphic Variable ep

The micromorphic counterpart for the equivalent plastic strain, ε̄p is defined as ep for
the sake of mathematical regularization as an additional kinematical degree of freedom [8].
Please note that ep is a frame-indifferent, positive scalar microvariable which constitutes a
subset of micromorphic continuum. The calculation of its gradient ∇ep numerically comes
at ease, since ep is defined as an extra degree of freedom. Considering the principle of
virtual power, the power over ˙̄εp is expended by the equivalent stress σ̄ , ėp is expended by
the scalar microscopic stress p, ∇ ėp is expended by the microscopic stress vector ξ, and
ėp is expended by the microscopic traction ζ(nR) at the boundary.

2.3. Balance Equations

The proposed theory restricts the gradient effect to a scalar variable ε̄p which results
in only one additional degrees of freedom providing significant efficiency in computations.
Therefore, degrees of freedoms are the displacement vector ui and the scalar microvariable ep.
The degrees of freedom and their gradient in the form of strain-like variables are as follows:

DOF = {ui, ep} STRAIN = {Ee, ε̄p, ep,∇ep} (17)
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Considering the definitions provided in Section 2.2, the variation of any independent
variable in the system will cause an energy change and neglecting the kinetic energy, external
and internal expenditures of virtual power for any given part P are defined as follows

Wext =
∫

∂P
(tR(nR) · χ̇ dS +

∫
P

bR · χ̇ dV +
∫

∂P
ζ(nR) ėp dS

Wint =
∫

P
(SR : Ḟe

+ σ̄ ˙̄εp + p ėp + ξ · ∇ ėp) dV
(18)

accordingly, the 1st Piola–Kirchhoff stress tensor, TR is defined as

TR = SRFp−T (19)

Principle of virtual power dictates that for any given part P and for all generalized
virtual rates the external and internal powers are balanced:

Wext = Wint (20)

considering ˙̄εp ≡ 0 and ėp ≡ 0 and applying divergence theorem, the macroscopic force
balance and the traction condition become

Div TR + bR = 0 (21)

tR(nR) = TRnR (22)

Considering χ̇ ≡ 0 and ˙̄εp ≡ 0, choosing an arbitrary ėp field and applying divergence
theorem, the microscopic force balance and the traction condition become

Div ξ − p = 0 (23)

ζ(nR) = ξ · nR (24)

3. Constitutive Equations

Before the presentation of the constitutive equations, several stress measures need to
be introduced to be used in the model.

The Mandel stress is defined by

Me = CeTe (25)

The second Piola stress can be calculated from the Mandel stress such as

Te = Fe−1Fe−TMe (26)

In connection with Equation (25), the Cauchy stress can be computed using the
equation below.

T = J−1FeMeFeT (27)

Finally, the first Piola stress becomes

TR = JTF−T (28)

For the given model, the free energy is considered to be a quadratic potential as a
function of elastic strain, Ee, equivalent plastic strain, ε̄p, microvariable, ėp and its gradient,
∇ ėp. The coupling is introduced between the scalar microvariable, ėp and its macroscopic
counterpart, equivalent plastic strain, ε̄p in the form of an energetic penalty term.

ψ = ψ̂(Ee, ε̄p, ėp,∇ėp) = µ|Ee|2 + 1
2

λ(trEe)2 +
1
2

B(ε̄p − ėp)2 +
1
2

β|∇ėp|2 (29)



Appl. Sci. 2021, 11, 2361 5 of 10

where µ, κ, B and β are positive material constants and the energetic state relations are
derived from the normality:

Te =
∂ψ̂(Ee, ε̄p, ėp,∇ėp)

∂Ee (30)

σ̄ =
∂ψ̂(Ee, ε̄p, ėp,∇ėp)

∂ε̄p (31)

p =
∂ψ̂(Ee, ε̄p, ėp,∇ėp)

∂ep (32)

ξ =
∂ψ̂(Ee, ε̄p, ėp,∇ėp)

∂∇ep (33)

σ̄ = B(ε̄p − ep)2

p = −B(ε̄p − ep)2

ξ = β∇ep

(34)

Furthermore, recalling Equation (23), the microscopic force balance takes the form
of Helmholtz equation which is postulated in the so-called implicit gradient theory of
plasticity and damage [14–16], where the microvariables are called non-local variables and
where the generalized stresses p and ξ are not explicitly introduced.

Div ξ = β∆ ep (35)

which is a form of Helmholtz equation:

ep − β

B
∆ ep = ε̄p (36)

β∆ep + B(ε̄p − ep) = 0 (37)

A yield criterion can be defined as

f = σ̄−Y(ε̄p, ep) = 0 (38)

where the microscopic stress becomes

σ̄ = Y(ε̄p, ep) (39)

Considering a rate independent plastic evolution with linear isotropic harden-
ing/softening, a microforce balance with the gradient enhancement can be considered
such as

σ̄ = Sa + Hε̄p + B(ε̄p − ep) (40)

In the scope of this work, σ̄ is equivalent tensile stress, Sa is the initial yield strength
and H is the hardening/softening modulus. Further using (37), one can write (40) as:

σ̄ = Sa + Hep +
(H + B)β

B
∆ep (41)

solving (41) for ep gives:

ep =
σ̄− Sa

H
+

(H + B)β

B
∆ep (42)

Please note that (42) is a second order homogeneous differential equation with the
following general form:

y′′ −ωy = C (43)
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where

ω =

√
HB

β(B + H)
and C =

σ̄− Sa

H
(44)

which has two different solutions depending on the sign of ω

A sinh(x
√

ω) + B cosh(x
√

ω) + C i f ω > 0 (45)

A sin(x
√

ω) + B cos(x
√

ω) + C i f ω < 0 (46)

For a softening material, where ω < 0 and H < 0, the wave period of the sine function
provides the width of the localization band, which reads

2π

ω
= 2π

√
β(B + H)

HB
(47)

4. Model Problems
4.1. Simple Glide of a Softening Plate with a Central Imperfection

As a model problem, simple glide of an infinite plate with an initial height of h is
considered (Figure 1). The plate is assumed to behave plastically with linear softening and
an infinitely long imperfection is placed at the center to trigger localization. For the finite
element analysis, a finite plate is analyzed with proper periodic conditions.

Figure 1. Schematic of the simple glide problem for softening: periodic conditions are applied at
both ends.

From the general solution given in (46), a specific solution can be attained at x2 = h/2,
where it takes the form:

σ̄− Sa

H
[cos(w(x2 − h/2) + 1] (48)

The comparison between the analytical solution and the numerical result is shown in
Figure 2 for a given h.
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Figure 2. Comparison between numerical and analytical solution for the softening plate. Parameters: B = 10.0 GPa, β =
500.0 MPa mm2, H = −500.0 MPa, h = 10 mm.

4.2. Simple Glide of a Perfectly Plastic Plate with Hard Boundary Conditions

To achieve perfect plastic response hardening modulus is considered to be H = 0.0 and
a plate under simple glide is analyzed in this section. The boundary conditions specified in
Figure 3 are applied. Please note that for this special condition (41) becomes:

σ̄ = Sa − β∆ep (49)

which is a second order homogeneous differential equation with a general form:

y′′ = C (50)

and general solution becomes:
Ax2 + Bx + C (51)

where
C =

Sa− σ̄

2β
(52)

finally, considering hard boundary conditions ep(x1, 0) = 0, ep(x1, h) = 0 , the solution
can be rewritten for the model problem as:

Sa− σ̄

2β
(x2

2 − hx2) (53)

The solution given in (53) is in quadratic form and as shown in Figure 4, the plastic
strain profile essentially does not provide a boundary layer, even for various intrinsic
length scales. The outcome of this boundary value problem is well in line with the findings
of Anand et al. [18] where formation of boundary layer is only possible with internal
variable hardening. The numerical results are also shown to provide a perfect match with
the calculated analytical response.

4.3. Simple Glide of a Hardening Plate with Hard Boundary Conditions

As a hardening case, simple glide of an infinite plate with an initial height of h is
considered with the same hard boundary conditions specified in Figure 3. The plate is
assumed to behave plastically with linear hardening and the hard boundary conditions
ep(x1, 0) = 0, ep(x1, h) = 0 are applied (Figure 3).

Considering the first boundary condition ep(x1, 0) = 0, the general solution (45) takes
the form:

B + C = 0 , with C =
σ̄− Sa

H
(54)
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and trivially:
B = −C (55)

From the second condition ep(x1, h) = 0, (45) reads:

A sinh(hω)− C cosh(hω) + C = 0, with ω =

√
HB

β(B + H)
(56)

solving for A gives:

A =
C(cosh(hω)− 1)

sinh(hω)
(57)

finally, general solutions becomes:

C
[
(cosh(hw)− 1)

sinh(hw)
sinh(ωx2)− cosh(ωx2) + 1

]
(58)

The solution given in (58) has a unique character where the plastic strain profile shows
a boundary layer for small values of ω with sharp strain plastic gradients in the vicinity
of x2 = 0 and x2 = h. However, as ω → 1.0 the profile gains a parabolic character similar
to perfect plastic case. Those two different characteristic responses are shown in Figure 5
where two different length scales for ω > 1.0 (β = 300) and ω < 1.0 (β = 2000) are
analyzed with proper periodic conditions. The numerical results are shown to provide a
perfect match with the calculated analytical response and they both clearly demonstrate
the formation of boundary layer for small ω values.

Figure 3. Schematic of the simple glide problem for hardening and perfectly plastic plate: periodic
conditions are applied at both ends.
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5. Concluding Remarks

In this work, we have presented analytical and numerical solutions for three different
characteristic response (softening, perfect plastic and hardening) for an infinite gliding plate,
to demonstrate the unique plastic fields generated by the implementation of micromorphic
approach for gradient plasticity.

For the softening case, our analytical effort clearly presents the characteristic solution
which controls the size of the localization band where an intrinsic length scale is defined,
and our numerical findings also verify the band formation which is controlled by the
wavelength of the sinusoidal function.

Considering the perfect plastic response, our findings are well in line with similar ap-
proaches in the literature where the profile of the plastic strain parabolic and the formation
of boundary layer is not possible without an internal variable hardening.

With hard boundary conditions and considering linear hardening response, our ana-
lytical predictions show that the response of the gliding plate is defined by a hyperbolic
function with unique properties. The plastic strain profile shows a boundary layer for small
values of ω with sharp strain plastic gradients around top and bottom layer which mimics
a hard phase material at the boundaries. It is also observed that the analytical solution
yields a parabolic response for ω > 1.0 similar to perfect plastic case.

Our study shows that the micromorphic approach for gradient plasticity has a great
potential in representing the size-dependent behavior for both softening and hardening
response of crystalline solids which also provides unique possibilities to apply higher
order boundary conditions. The approach makes it possible to control the size-dependent
behavior with a single length scale parameter and our numerical findings are encouraging
to use the presented model for more complex 3D problems.
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