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Abstract: Drug shortage is always a critical issue of inventory management in healthcare systems
since it potentially invokes several negative impacts. In supply chain management, optimization
goes hand-in-hand with inventory control to address several issues of the supply, management, and
use of drugs. However, it is difficult to determine a shortage situation in a hospital due to multiple
unpredictable reasons, such as manufacturing problems, supply and demand issues, and raw material
problems. To avoid the shortage problem in a hospital, efficient inventory management is required to
operate the system in a sustainable way and maximize the profit of the organization in the Hospital
Supply Chain (HSC). In this work, we study a drug refilling optimization problem, a general model
for drug inventory management in a hospital. We then investigate a Deep Reinforcement Learning
(DRL) model to address this problem under an online solution that can automatically make a drug
refilling decision in order to prevent a drug shortage. We further present a numerical result to verify
the performance of the proposed algorithm, which outperforms the baselines (e.g., over-provisioning,
ski-rental, and max-min) in terms of the refilling cost and the shortage rate.

Keywords: hospital supply chain; drug shortage prevention; inventory management

1. Introduction

In the healthcare system, drug inventory management represents a significant portion
of the costs, especially in the hospital supply chain in order to efficiently control and
satisfy usage requirements [1]. However, the general healthcare system is faced with the
challenges of increasing efficiency and reducing waste. First, the implication is that no
healthcare facility is immune to drug shortages [2]. Most hospitals have experienced drug
shortage or have been affected by this in their systems. Drug shortages are caused by many
reasons and have forced healthcare organizations to purchase a more expensive alternative
to operate their systems in a sustainable way. Second, an over-provisioning mechanism is
often employed in the hospital as a solution, referred to as the safety stock [3]. The safety
stock is a value that is calculated taking into account the variability of demand during
the lead time, as well as the variability of delays in getting the ordered goods. Indeed,
this method can mitigate the shortage situation in a hospital, but it often causes a high
cost to buy and store medicines in the hospital since it is agnostic of the high costs of
buying and maintaining them in the system. Specifically, a high imported volume of drugs
without taking into account the user demand might also result in a high cost to store and
prevent damage. Some drugs require special storing conditions, while most of have specific
expiration dates and cannot be used after that.

An efficient inventory management is considered as a solution to improve the quality
of customer service and the organization in the Hospital Supply Chain (HSC). Investigating
the drug shortage problem, Reference [4] stated that there can still be nationwide drug
shortages. In fact, the danger of a drug shortage can be caused in one area, but it might
have a domino effect in other regions, even if they are not in the same part of the health
system. However, a local optimal system can mitigate this negative impact. The creation
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of clear lines of communication, gaining transparency into the cause of the shortages,
and continually accessing in-stock and low-cost alternatives are the best mitigation process
for developing a balanced inventory [5]. The Food and Drug Administration (FDA) has de-
veloped the Innovation Act and Strategic Plan to help mitigate drug shortages. The World
Health Organization (WHO) has recognized drug shortage as a global problem [6]. Integrat-
ing manufacturers, suppliers, wholesalers, and stores to produce and distribute the right
quantities of drugs at the right time in the right place to satisfy service-level requirements
and minimize system-wide cost is called supply chain management.

Therefore, optimization is needed, and this goes hand-in-hand with the supply chain
management of the inventory to address how medicines and drugs are supplied, managed,
and used. Understanding the underlying causes of drug shortages is the most critical
aspect that any hospital or health system needs to be acquainted with to help mitigate these
outcomes [7]. By doing this, it is also easy to come up with proactive measures with the
available resources. Determining the exact cause of drug shortages appears to be difficult;
in general, it has been divided into three categories: manufacturing problems, supply and
demand issues, and raw material problems [8]. Hence, in this study, we focus on the supply
and demand issues, which means that given the information of the supply chain system,
we aim to control the drug inventory based on the uncertainty of user demand and drug
prices. Our model aims to make an automated decision in order to answer the following
questions, which have seen little research: (i) Should we refill drugs ? (ii) How much drug
should be refilled?

More precisely, this research aims to study an inventory drug optimization problem,
which can capture the requirement constraints of drug demands, storage capacity, and re-
filling conditions while minimizing the refilling costs in the system. Since our designed
problem is NP-hard, it is impossible to find a solution in polynomial time. To deal with
this problem, we advocate a Markov Decision Process (MDP) to model the drug inventory
system in order to address the shortage problem. Based on that model, we propose a
Deep Reinforcement Learning (DRL) framework model that combines the Reinforcement
Learning (RL) [9] method and the Deep Neural Network model(DNN) [10] to automatically
make a decision in a finite horizon.

Basically, RL is modeled as an MDP that is comprised of three concepts: a state,
an action corresponding to a state, and a reward for that action. Following the loop of
actions and observations, the agent in an MDP often refers to a long-term consequence.
Thus, RL is particularly well suited to control the drug inventory in a finite horizon.
Furthermore, the combination of RL and DNN can figure out the strict requirement of the
MDP regarding the exact knowledge of the state space of the MDP, and DRL is able to
find a near optimal solution for a large MDP model, as shown in Dynamic Refilling dRug
Optimization (DR2O). With a large number of drugs in the system, it might be unsolvable
for a classical dynamic programming method.

All of the contributions of our work are summarized as follows:

• First, we investigate the supply chain model of drugs in a hospital to formulate an
optimization drug shortage problem, named Dynamic Refilling dRug Optimization
(DR2O). We model an objective function that aims to minimize the refilling costs,
comprised of the costs to buy, to store medicines, and the penalty cost due to shortage.
Furthermore, we consider supply constraints to refill drugs, such as storage capacity,
and budget constraints.

• Second, we propose a deep learning method based on RL and DNN, named the Deep
Reinforcement Learning model for Drug inventory (DRLD), where the situation of
drugs is formed as a state in a Markov Decision Process (MDP) [9]. Depending on each
state, we look for a suitable action to make a refilling decision in order to minimize
the objective cost function. Based on the MDP model, we design an online method
to control the system, where a reward and Q-matrices are built to evaluate an action
corresponding to each state. Due to a large searching state space in RL, we introduce a
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DNN model that can approximate the Q-values after training that is able to learn the
behavior of the system.

• Finally, we consider an intensive simulation to conduct our work. In detail, we make
a comparison between our method and three baseline approaches, including over-
provisioning, ski-rental [11], and max-min [12]. Our method outperforms in most
evaluations, especially in reducing the refilling cost and shortage situation.

The rest of our study is organized as follows. In Section 2, we discuss selected prior
works that relate to our study. In Section 3, we present the problem formulation of the
supply chain model of drugs in a hospital. Section 4 discusses the reinforcement learning
framework to deal with DR2O. We then present the simulation result in Section 5. Finally,
we conclude our work in Section 6.

2. Related Work

This section reviews the existing literature related to inventory management and
how its optimization can be used to prevent drug shortages in the hospital supply chain.
In order for this goal to be realized, we will commence by defining several terms that
are associated with the topic: inventory management and Hospital Supply Chain (HSC).
In addition, we aim to expound on the importance of optimizing inventory management
to prevent drug shortages in the HSC. Ultimately, the section illustrates how healthcare
institutions are minimizing drug shortage costs in their hospital supply chains.

2.1. Defining Inventory Management and the Hospital Supply Chain

In line with [13,14], inventory management is connected with the procedure of re-
questing, storing, and utilizing an institution’s inventory. This involves the management of
primary products, components, as well as end products. It also consists of warehousing
and processing such items. However, Reference [15] depicted it as a systematic approach
to sourcing, storing, and selling inventory, that is both finished goods (products) and raw
materials (components). A supply chain, on the other hand, is composed of stages that are
either indirectly or directly involved in accomplishing a customer’s request [16]. Accord-
ing to [17], it basically involves the producer, supplier, transport operators, warehousing,
retailers, third party logistics providers, and lastly, the customer. Moons et al. noted that
the supply chain is responsible for ascertaining that there is an adequate connection of
hospitals, operations, and the revenue cycle.

2.2. The Importance of Optimizing the Inventory Management to Prevent Drug Shortages of the
Hospital Supply Chain

Health care institutions across the globe are in search of methods that will prove
effective in improving the efficiency of operations, that is inventory management, while
reducing expenditures that will in no way affect medical care and services [18]. Refer-
ence [19] illustrated that the material requirements for the provision of health care delivery
are multifarious, generating a complex distribution network of relationships from the
distributor to the customer. Furthermore, health care budgets are very stringent, and thus,
health care providers are attempting to optimize their inventory management, which will
eventually lead to a reduction of the costs incurred whilst providing health care [13].

Additionally, Kritchanchai et al. in [20] noted that an effective supply chain man-
agement is one that intends to optimize the full value created as opposed to the profit
produced in a specific supply chain. The hospital supply chain, sometimes referred to
as the Pharmaceutical Supply Chain (PSC), is intricate and comprised of numerous or-
ganizations that perform various but sometimes superimposed roles in the contraction
and distribution of drugs [21]. In line with [22], price variation among the various types
of users is considered to be a regular phenomenon owing to its degree of complexity.
Thus, it becomes significantly more complicated for policy makers to evaluate and com-
prehend the supply chain [23]. According to [16], increased discernment of said issues
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associated with policymakers is considered to play a role in making logical policy decisions
for Medicare programs.

An ineffective hospital supply chain is associated with product shortages, product
discontinuity, decreased patient safety, poor performance, distribution flaws, and techno-
logical mistakes that result in stock shortages in hospitals [24]. Reference [25] stated that
increasing the productivity of supply chain management is key to obtaining more robust,
safer, and lower cost hospital operations in public hospital medicine management units.
This is achieved by optimizing the supply processes, enhancing satisfaction and patient
safety, as well as reducing errors. However, Michigan State University [26] observed that
an extensive distribution arrangement to transfer pharmaceutical commodities and other
medical equipment from the medical stores to the service points is still lacking in most
hospital systems. This lack of appropriate distribution systems creates a considerable
bottleneck, often making it very difficult to access said products and supplies [21].

2.3. Minimization of Drug Shortages in Hospital Supply Chains

The Canadian pharmaceutical supply chain, consisting of governments, manufactur-
ers, wholesalers, distributors, pharmacists, and physicians, acknowledges the significance
of a reliable medication supply [27] Moreover, it is obvious that there is insufficient informa-
tion for accessing the drugs due to different issues, for instance the distribution system of
the manufacturing [28]. However, there are instances when drugs do not reach the intended
locations due to glitches in the distribution system. In instances where clients cannot access
important drug products, practitioners have the responsibility of knowing the reasons for
the product’s unavailability, the time when the product is available, available alternatives
to the unavailable drug product and the involved costs, how to obtain the unavailable
product from alternative sources, and additional information detailing patients’ needs
and healthcare providers’ needs. However, it is worth noting that it is unacceptable for
hospitals to experience drug shortages [29], along with the associated costs.

There are various factors that could cause pharmaceutical supply disruptions, and they
include unexpected increased demands in the drug’s utilization, leading to an impermanent
shortage. Such a shortage ends only when the manufacturing capability increases to a level
that meets the identified demand. Pharmaceutical supply disruptions are also caused when
products are voluntarily recalled or discontinued by a manufacturer. Disruptions also occur
when Health Canada withdraws drugs from the market or when natural disasters such as
floods and storms occur. These causes are responsible for the shortage costs experienced
in the hospital supply chain inventory management. One needs to understand that the
costs emanate from the fact that a client could not access the required drug product at the
expected time. Additionally, the costs also include the time taken to purchase the drug
product from alternative sources or acquiring alternative medications representing the
unavailable drug product. The inventory process needs to be planned effectively to ensure
that even in instances of unpredictable natural calamities, the duration of drug shortage is
minimized [30].

Improper medical inventory management and drug shortages severely disrupt the
HSC, which eventually leads to health services that are impoverished while increasing
costs [22]. Kees et al. in [23] elucidated that many hospitals and pharmacies are subject to
numerous problems as they aim to achieve proper inventory control. This is on account
of the fact that they have hardly addressed how medicinal products are administered,
supplied, and utilized to improve health, as well as to save lives. An additional crucial
issue in the HSC as illustrated by [31] is unidentified occurrences. Such disasters generate
enormous losses. In order to enhance the independence of an HSC from disasters, Refer-
ence [32] proposed an inventory control model that utilizes mathematical programming
methods. The suggested model takes into account multiple forms of medications, ordering
size, processing time, expiration dates of products, and customer service level, not to
mention the holding and storage cost [33]. The equivalent answer or solution ascertains
the optimum period of preparation and inventory level in the disaster formulation phase
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with the lowest overall cost. However, Reference [20] elucidated that this method permits a
handful of measuring points to distort the prediction and neglects accounting for seasonal
changes and other variables. Thus, hospitals are left exposed to high costs and avoidable
waste. Bradely et al. in [19] supported this argument illustrating that mathematical and
statistical methods are proving to be inadequate to optimize the HSC.

Additionally, Cardinal Health [34] has found that manual processes and workflows
in medication inventory management are not just slow and troublesome, but are actually
insufficient at collecting intelligent information. According to [35], when a hospital’s
personnel is entrusted with the task of manually monitoring, logging, and restocking
the inventory, the results are either imprecise, as human errors are bound to happen,
or insufficient whenever the proper processes were not followed to the letter. Hence,
as mentioned by [36], the use of Machine Learning (ML), which is a type of algorithmic
training (or Artificial Intelligence (AI)), where the algorithms are constantly processed
as additional data enables them to be more predictive, is gaining momentum in HSC
management. Wild showed how ML can help HSC management to become more refined
while making it less cumbersome [18]. By swiftly processing enormous volumes of data
in order to discern patterns and uncover insights that may be too complex for or hidden
from human perception (even those with considerable experience), ML has the capacity
to enable health care providers to steadily provide the right provisions, at the right cost,
place, and time [37].

Drug shortages can also be caused by increased demand or decreased supply [38].
Increased demand, particularly where the parties in the pharmaceutical supply chain
employ just-in-time inventory control [38], has been found to be the cause of shortages
close to 13% of the time [39]. That same study found that drug shortages caused by
decreased supply due to manufacturing problems, at about 23%, surpasses drug shortages
caused by increased demand [39].

Not only are genuine real-time computerized systems utilized to streamline the per-
formance of tasks for medication inventory management, they also present a historical
reporting that is accurate, complete, and real-time [36]. This is achieved through RL. This
method is considered to be a subset of ML consisting of adopting appropriate actions so as
to maximize the rewards in a certain condition [32]. However, Reference [37] illustrated
that when an instruction dataset lacks information, it is bound to ascertain the missing
information from its past experience. Pharmacy staff and purchasing managers utilize this
information in order to optimize inventory so as to prevent drug shortages, as well as to
give priority to patient safety while cutting unnecessary costs [33].

The mathematical programming model can be used in the determination of automated
refilling decisions. For example, a mathematical model considers the various types of drugs,
ordering sizes, shortages, and holding costs. Therefore, a hospital can use the model to
compute these aspects, as well as determine the specific refilling schedule of drugs in
supply. If there is a drug shortage, the costs caused by the shortage can be automatically
anticipated to determine the necessary amount of drug refillings. To the best of our
knowledge, the studies presented to date do not have a learning model to deal with the
shortage issue. Therefore, in this work, we propose a deep learning model to formulate
and develop a dynamic inventory model for drugs in a hospital setting.

3. System Model

We consider an enterprise supply chain to provide drugs to a hospital. This supply
chain consists of a set of drugs I managed during period T. To simplify the problem
formulation, all the notations are presented in Table 1. We assume that the system works in
a time-slotted fashion, spanning time slots 1, 2, . . . , T, with an index t that corresponds to a
week or a month defined by the hospital.

Each drug i ∈ I has a storage capacity Ci(t) and an expired function ei(t) that is used
to measure the amount of expired drug i at time t. With different types of drugs, the storage
capacity units could be different (e.g., box, bottle, etc.) so that our model could flexibly
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define the capacity unit for each specific drug i. To make a refilling decision, we consider
a refilling cost pi(t), which can be measured or collected by prediction methods. In this
work, we simply model this function by the regular (or base) price p

i
(t) and the penalty

price βi(t) due to the emergency demand. The function is calculated as follows:

pi(t) = p
i
(t) + βi(t), ∀i ∈ I, t = 1, 2, . . . , T. (1)

Practically, we are unaware of the price in advance and, therefore, cannot make a
long-term plan. In this work, we presume that the price parameters are given before
making a refilling decision at time t. We also denote the budget Bi that is used to buy drug
i during time T.

Table 1. Notations.

Symbols Description

I Set of drugs
i Drug index.
t Time index.
T Spanning time.
ei(t) An amount of expired drug i at time t.
pi(t) The refilling cost of drug i at time t.
ψ(.) The penalty function of drug i.
p

i
(t) The base price of drug i at time t.

βi(t) The penalty price of drug i with an emergency demand.
Bi The budget of drug i.
B The total budget.
αi The weight parameters of drug i.
Ri(.) The storage cost function of drug i.
ri(t) The storage cost of drug i at time t.
λi(t) The amount of demand of drug i at time t.
ei(t) The amount expired at time t.
vi(t) The remaining volume of drug i at time t.
Ci(t) The storage capacity of drug i.
Ci(t) The lowest volume requirement of drug i.
ρ

i
(t) and ρ̄i(t) The upper and lower bound refilling of drug i at time t.

Variables

x The decision refilling volume variable.
xi(t) The refilling volume of drug i.

3.1. Problem Formulation

We aim to design an online solution that dynamically determines when to refill drugs
over the entire running span T while satisfying all requirements with a minimum refilling
cost. Specifically, we aim to avoid a shortage situation in the system, which could lead to a
domino effect. There is a general trade-off between cost optimization and any shortages
due to unknown patient demand: by refilling more drugs, the shortage situation may be
avoided, but the cost will be increased, and vice versa. In this work, we combine these
dual goals in the objective function by using weighted parameters to weight the priority of
each aspect.

We design a main variable x = {xi(t)}∀i∈I , t=1,2,...,T to represent the amount of drug i
to refill at time t. The refilling cost model in this work contains the following parts:

• Medicine cost: We consider the first term as the medicine cost depending on the
amount of drugs being ordered: ∑T

t=1 ∑i∈I αi pi(t)xi(t), where αi ∈ (0, 1] is the weight
parameter of drug i and pi(t) is the amount of money required to purchase the required
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amount of drug i. Depending on the drugs’ priorities, αi is set with a high or low
value.

• Storage cost: We design the second term as the storage cost incurred when the hospital
stores drugs. Hospitals may incur a variety of costs associated with safely storing
medicine, and some must utilize third-party storage. In this work, we generally model
the storage cost as a function Ri(vi(t), ri(t)) depending on vi(t), the amount of drugs,
and ri(t), the storage cost. The volume of drug i at time t can be obtained by:

vi(t) = vi(t− 1)− λi(t)− ei(t) + xi(t), (2)

where vi(t− 1) is the remaining volume of drug i at timeslot t− 1, λi(t) is the amount
of the demand, and ei(t) is the amount of the drug available before expiration at time t.

• Penalty cost: A penalty cost ψ(vi(t)) is assigned to prevent a shortage situation in
the system. This cost depends on the volume and the minimum requirement for the
drugs at time t. Without loss of generality, we refer this cost to a quadratic function
to formulate our model. As shown in Figure 1, the quadratic penalty cost increases
when the volume of drug i reaches the bounded values Ci and C̄i. In other words,
the penalty cost function aims to prevent both the shortage and overstock problems.

Volume

Pe
na

lty
 C

os
t

Shortage Overstock

Figure 1. A quadratic function of the penalty cost.

Consequently, the objective function in our model is to minimize the cost incurred
when the hospital makes a refilling decision. The objective function is expressed as follows:

min ∑T
t=1 ∑i∈I αi pi(t)xi(t) + Ri(vi(t), ri(t)) + ψ(vi(t)) (3)

We next formulate the set of constraints that the decision variables should respect.
First, we consider the capacity constraint to ensure that the refilling decision will not exceed
its storage capacity Ci(t). Furthermore, the system has to ensure the lowest volume Ci(t)
of each drug i to avoid a shortage. Hence, we formulate the constraint as follows:

Ci(t) ≤ vi(t) = vi(t− 1)− λi(t)− ei(t) + xi(t) ≤ Ci(t), ∀i ∈ I , t = 1, 2, . . . , T. (4)

Second, we consider the budget constraints of the hospital for purchasing drugs
during time T as follows:

∑T
t=1 ∑i∈I xi(t)pi(t) ≤ B. (5)

In addition, there is a budget for each medicine i at time t, which is considered based
on the following constraint:

xi(t)pi(t) ≤ Bi(t), ∀i ∈ I . (6)
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Finally, at each timeslot t, the hospital could have a specific refilling range for each
drug i in order to provide for a specific requirement in the hospital. We formulate this
constraint as follows:

ρ
i
(t) ≤ xi(t) ≤ ρ̄i(t), ∀i ∈ I , t = 1, 2, . . . , T, (7)

where ρ
i
(t) and ρ̄i(t) are the lower and upper bound refilling volumes, respectively, of drug

i at time t.

3.2. A Dynamic Refilling Drug Optimization Model

Based on the aforementioned objective and constraints, the Dynamic dRug Refilling
Optimization (DR2O) model is presented as follows:

min
x ∑T

t=1 ∑i∈I αi pi(t)xi(t) + Ri(vi(t), ri(t)) + ψ(vi(t))

s.t Ci(t) ≤ vi(t) = vi(t− 1)− λi(t)− ei(t) + xi(t) ≤ Ci(t), ∀i ∈ I , t = 1, 2, . . . , T,

∑T
t=1 ∑i∈I xi(t)pi(t) ≤ B,

xi(t)pi(t) ≤ Bi(t), ∀i ∈ I ,

ρ
i
(t) ≤ xi(t) ≤ ρ̄i(t), ∀i ∈ I , t = 1, 2, . . . , T.

In general, this problem can be seen as a variant of the classic ski-rental problem [11].
Specifically, a drug i is similar to the person in the classic ski-rental problem who is going
to ski, but does not know how long the snow will last. He/she therefore has to make a
decision every day as to whether to buy (so he/she will not need to pay for the next days)
or to rent skis to minimize the overall cost. In our problem, we have to decide whether
to buy a drug or not at time t, and we do not know the user demand in advance, which
could result in a shortage in the next period. A hospital might spend a good portion of
its budget buying and storing a high volume of medicines that may not be used until
their expiration. However, a hospital could fall into a shortage crisis if it manages a low
supply of drugs. To address this problem, we advocate a learning method to deal with the
following issues: (i) the uncertainty of demand that affects the decisions at every timeslot
and (ii) the automation mechanism that can automatically make a decision to adapt to the
environmental situation.

Theorem 1. DR2O is NP-hard.

Proof. Consider a knapsack problem with N items where each item has a non-negative
weight wi and a value pi. There is a bound W to select a subset S of items where ∑i∈S wi ≤W.
The objective is to select a subset of maximum total value ∑i∈S pi, subject to the bound-
ary constraint. Using a binary variable xn to indicate item n is selected in the subset S,
the problem formulation of the knapsack problem is as follows:

max f (x) = ∑
n∈N

pnxn (8)

s.t. ∑
n∈N

xnwn ≤W, (9)

xn ∈ {0, 1}. (10)

Let us simplify the system by considering an offline model of DR2O, as using DR2O
with an online form is always more complicated due to uncertain demands. This means
that we can know exactly the amount of drugs used in timeslot t. Hence, as shown in
Figure 2, to refill drugs in period T, we need to find a subset of the blocks presented for the
amount of drugs in each timeslot t in which the total is bounded by the budget B. If we
consider the revenue of each drug determined from the surplus between the value ϑi and
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the refilling cost, the objective of DR2O can be formed similarly to the knapsack problem
by maximizing the total revenue of all the drugs.

max ∑T
t=1 ∑i∈I ϑi(vi(t− 1) + λi(t))− [αi pi(t)xi(t) + Ri(vi(t), ri(t)) + ψ(vi(t))]. (11)

Since the first term of (11) is constant because λi(t) is given, this objective function
can be maximized by minimizing the second term as we formulated in DR2O. Thus,
the offline DR2O constructs an instance of the knapsack problem, which is proven to be
NP-hard [40].

Drug 1 Drug 1

Drug 2
Drug 3

Drug 2
Drug 1 Drug 1

Drug 3 Drug 2
Drug 3

Budget

Figure 2. An example of the offline Dynamic Refilling dRug Optimization (DR2O).

4. Reinforcement Learning
4.1. Markov Decision Process Model

Firstly, we present the Markov Decision Process (MDP) to formulate our problem.
Based on this model, we then propose a deep Q-network algorithm to find a solution
for DR2O. In general, the MDP model is comprised of three concepts: a state, an action
corresponding to a state, and a reward for that action.

The system state S : We consider the system state at time instant t, including the
current volume of drugs, the user demand, and the costs of buying and storing medicine.
In addition, due to specific requirements at time t, some other information could be changed,
such as the purchasing budget, the storage capacity for drug i, and the minimum and max-
imum amount of drugs to refill. For the set I of drugs i, we could make an order to make a
decision for the drugs that have higher priority and then consider the remaining budget for
the rest. Therefore, we make a loop with |I| iterations to make a decision for each drug i in
turn. We denote the state si(t) =< pi(t), ri(t), λi(t), Bi(t), ei(t), Ci(t), C(t), ρ

i
(t), ρ̄i(t) > of

drug i at time t.
Action set A: The action set in our model reflects the refilling decision of each drug i.

In particular, the action a(t) = {ai(t)}∀i∈I , where ai(t) is the decision of drug i at time t
that responds to the state si(t).

Reward W: As presented for the objective function, our model aims to minimize
the refilling cost including the purchasing and storing costs. Therefore, we first model
the reward function based on the purchasing cost as follows 1

Li(xi(t))
, where L(1)

i (xi(t)) =
αi pi(t)xi(t) + Ri(vi(t), ri(t)) + ψ(vi(t)), and k is the considered timeslot. This means that
the more money the system needs for its purchases, the less reward it has. The function
attempts to navigate the system, so it selects actions that obtain higher rewards, which is
equivalent to minimizing the purchasing cost.

The next term involves the penalty for the shortage situation, as we aim to avoid
this problem for all the drugs in storage. The penalty term is defined by ψ(vi(t)) as
formulated above.
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We combine these terms in the penalty function by:

wi(t) = (1− θ)
1

Li(xi(t))
+ θψ(vi(t)), (12)

where θ ∈ (0, 1] is the weighted parameter that is designed to set the priority of each term.
Considering duration T, the state of each drug and its reward are stochastic and follow

the MDP, where the state si(t) changes to si(t + 1) with a transition probability, and the
reward depends on the state and the selection action.

To go from si(t) to si(t + 1) with reward wi(t), we consider the conditional transition
probability, p(si(t + 1), wi(t)|si(t), ai(t)). It should be noted that the agent can only control
its own actions and has no prior knowledge about the transition probability matrix P =
p(si(t + 1), wi(t)|si(t), ai(t)), which is determined by the environment. The intuition of the
MDP is presented in Figure 3. Therefore, the main objective of this reinforcement learning
is to find a policy to maximize the expected cumulative reward. We have:

Ri = E
[ T

∑
t=k

wi(t)
]

(13)

Environment

Action

Agent

Reward
State

Figure 3. Markov decision process.

4.2. Deep Q-Learning

As shown in Figure 3, the agent takes actions depending on the state, called the
policy π, which maps the state si(t) to the action ai(t). Mathematically, we express this as
πi : si(t) ∈ S → ai(t) ∈ A. The Q-learning mechanism is used to maximize the long-term
expected accumulated discounted rewards [10]. Considering the Qi(si(t), ai(t)) value of πi
for a state si(t) and action ai(t) pair, this value is calculated by the expected accumulated
discounted rewards. Therefore, the policy πi is constructed by taking the action:

ai(t) = arg max
a∈A

Qi(si(t), ai(t)), ∀i ∈ I . (14)

Based on the Q-function from the Bellman equation [10], the optimal policy πi with
value Qi can be obtained by:

Qi(si(t), ai(t)) = E
[
wi(t + 1) + ψwi(t + 2) + ψ2wi(t + 3) + . . . |si(t), ai(t)

]
(15)

so that the Q-value for the state, given a particular state, is the expected discounted
cumulative reward.

Therefore, in the MDP, we aim to determine an optimal policy expressed as π∗ : Si → Ai.
Following the stationary distribution in the MDP, the Q-values will converge to the optimal
value Q∗ with the following equivalent calculation [10]:

Qi(si(t), ai(t)) = Q′i(si(t), ai(t)) + ψ[wi(t + 1) + δ max
si∈S〉

Q′i(si(t), ai(t))−Q′i(si(t), ai(t))], (16)

where Q′i(.) is the old value. To obtain the optimal Q-value, the algorithm is executed until
the mean changed values of the Q-values is less than a threshold, called the training phase.

The details of the training phase can be described as shown in Algorithm 1. At the
beginning, a random Q-matrix is generated (Line 3). A loop is executed (from Lines
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5 to 9) to modify this matrix until convergence (i.e., where the change is less than the
threshold ε). A random state si(t) is selected to start the training (Line 4). Line 6 randomly
selects a possible state ai(t) to move to the next state s′i(t). Line 7 updates the Q-value
of the state-action pair (si(t), ai(t)) using (16). The algorithm continues until it meets the
convergence condition.

Algorithm 1: Reinforcement learning.

1 Input: S and A;
2 Output: Q-matrix;
3 Initialization: Q-matrix;
4 Select a random starting state si(t) that has some possible actions from A;
5 while ||Q−Q′|| ≤ ε do
6 Select one of the possible actions ai(t) that moves to the next state s′i(t);
7 Update the Q-value of the state-action pair (si(t), ai(t)) according to (16), then set to Q′;
8 Set si(t)← s′i(t);
9 Go to Step 5;

10 end

According to the traditional Q-learning method, it is not difficult to obtain the con-
vergence result with a small state-action space. However, the classic Q-learning model
cannot be applied directly to our work because the state-action space is huge, given that
the state in DR2O is comprised of a tuple of parameters that generate a huge combination.
Furthermore, the level of drug refilling xi is set flexibly in a specific range, and so, it also
increases the size of the state-action space. In this case, there are two problems: (i) it is too
difficult to build the transition probability for the MDP, and (ii) some states that are not
visited and that are updated infrequently lead to a long convergence in the training phase
to obtain the Q∗-value.

To deal with this problem, a Deep Neural Network (DNN) is used to approximate the
Q-function [9]. Given the input information of a state si(T), the DNN is trained to learn
an optimal mapping si(t) to ai(t). Therefore, we design the input of the DNN to present
all the features of a state si(t), and the output is the Q-values, Qi(si(t), ai(t)). We design
this DNN model for the set of drugs I; therefore, for a simpler formulation, we remove the
i index.

To obtain the correct Q-values, the DNN needs a training phase to update the weight
parameters in the network. Specifically, given an input-output pair < s(t), y > in the data
set D, the DNN aims to minimize the following loss function:

L = ∑
(s(t),y)∈D

(y−Q(s(t), a(t))2, (17)

and the given output y is calculated by:

y = w(t) + max
a(t)∈A

(Q(s(t), a(t)). (18)

4.3. Training and Testing Phases

We present the training algorithm in Algorithm 2, which is called the Deep Reinforce-
ment Learning approach for Drug inventory (DRLD). Similar to the standard Q-learning
algorithm, an action of DRLD is selected based on the environment and the reward. Instead
of using a full history as the Q-learning method to take an action for a current state, we
limit the length of history defined by γ(.), which is related to the number of input nodes in
the DNN. In the training phase, we use ε-sampling to generate and collect the data to train
the weight parameter of the DNN.

The details of the algorithm are as follows. At the beginning, we initialize the current
simulation environment with given sets of S and A (Line 1) and initialize for the learning
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sequence set D and the DNN model (Lines 3-4). We select a random starting state s(0)
from the current S (Line 6) to execute M training times. An action a(t) is selected with
an ε−probability; otherwise, an action that maximizes Q(s(t), a(t)) is selected (Line 8).
According to the action a(t), the environment is set by a new state s(t + 1) with a reward
r(t) (Line 9). If the state S(t + 1) does not exist in S , it will be added for training (Line 10).
Furthermore, D is appended by the transition s(t)← s(t + 1) (Line 11). The training in the
DNN is started by sampling a sequence s(j)→ s(j + 1) in D (Line 12). The training phase
is designed to update the weight parameters in DNN with the given state s(j) and the
output that is calculated by (18) (Lines 13–14). Note that the values of M and T are defined
by our experience (e.g., M = 7 and T = 30). These values are changeable and can be
observed depending on each system. However, technically, while setting the values of these
parameters higher will increase the accuracy, in fact, it will result in a long convergence
since it adds more iterations.

In the testing phase, the trained agent will select an action a(t) with the maximum
Q-value given by the training phase. Based on the training Q-matrix, we can operate the
drug refilling model, DR2O, as an online mechanism.

Algorithm 2: DRLD- training algorithm.

1 Input: Start the environments S and A;
2 Output: Q-matrix;
3 Initialization: Q-matrix, DNN model;
4 Set empty for the learning sequence D;
5 for j=1:M do
6 Select a random starting state s(0);
7 for t=0:T-1 do
8 Sample an action a(t) with probability ε; otherwise, select a(t) = arg max Q(s(t), a(t));
9 Generate a next state s(t + 1) and reward r(t);

10 Add S = S ∪ s(t);
11 Add the transition s(t)→ s(t + 1) to γ(s(0)→ s(t + 1)), and save in D;
12 Sample a transition γj(s(j)→ s(j′)) from D;
13 Set the output y(k) by (18) to train the DNN;
14 Using a gradient descent to update weights of the DNN;
15 end
16 end

4.4. Discussion

As presented in Algorithms 1 and 2, the action of each drug i is chosen independently
based on its environment. There is an issue in our system when the actions are executed
simultaneously. In this case, the agent will not have the correct information about the
environment, which is affected by the other action. To deal with this problem, we suppose
that the action updates are executed asynchronously. For example, we rank drugs based
on the priority of refilling to perform refilling action in a sequence. Hence, only one or a
small subset of drugs will update their environments. This approach allows the environ-
ment changes caused by other agents to be observed accurately. In the real system, this
modification of our mechanism is needed to coordinate the different drugs in the system.

5. Experiment and Numerical Results
5.1. Experiment Configuration

In this section, we present our experimental evaluations, which mainly focus on the
training time required for using reinforcement learning to obtain a near-optimal solution.
We use the hardware configuration of the experimental environment with a CPU, 2.4 GHz
Intel Core i5, and an 8 GB memory at 1600 MHz DDR3. Our simulator program was
developed in the PyTorch framework [41] and the Ipot optimization library [42]. Due to the
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difficulty of accessing real databases in a hospital, which contain very sensitive information,
we refer to the data used in [43] with a list of 70 drugs. The setting range of the parameters
in our work is shown in Table 2.

Table 2. Simulation settings.

Parameters Settings

Storage demand of drugs [0.001–0.005] ft3

Total inventory capacity 40 ft3

Refilling cost of drugs [5–100] USD/unit
Storing cost [2–5] USD/ft3

Drug demand [5–20] unit

In order to evaluate the system, we compare our work with the following baseline
approaches:

• Optimal: We use the Ipopt solver [42] to solve the DR2O problem with the assumption
that the demand during T is given. Hence, the optimal result of DR2O, in this case,
can be considered as the offline optimal solution to compare with other approaches.

• Over-provisioning: This is a simple strategy that is often carried out in the inventory
system. Based on the average utilization (gathered from the log files of history),
the expired period, and the current remaining volume of drugs, a refilling decision is
considered. To prevent a shortage problem, the amount of drugs to be refilled is often
provided with an additional volume, which results in a higher cost of operation.

• Ski-rental: As presented in the formulation, DR2O can be an instance of the ski-rental
problem. Therefore, to evaluate the performance of the DRLD, we implement an
online algorithm with the c-competitive value where c = (2− 1/T).

• Max-min [12]: This refilling strategy is one of the most useful mechanisms for inven-
tory management. By using the min level, a trigger will be active to make a refilling
decision to obtain the maximum target quantity. To prevent the shortage problem,
the min value is often set with a high volume (we use 45% in our work); therefore,
the max-min baseline also results in a high total cost.

5.2. Results
5.2.1. Convergence Evaluation

We first evaluate the convergence of our proposed method to illustrate its performance.
As shown in Figure 4a, we show the reward values, which are significant because they
impact the convergence, using different settings (e.g., datasets of 30, 50, and 70 drugs).
With the smallest setting, we obtain the fastest convergence, in close to 2800 iterations, be-
cause this setting occupies the smallest state space. The system meets the stop condition at
around 3200 and 4000 iterations for the larger settings of 50 and 70 drugs, respectively. This
evaluation also illustrates a promising aspect of our proposed method: when we increase
the number of drugs in the system, the number of iterations does not exponentially increase.

In the next evaluation, we show the mean error rate of the DNN in Figure 4b. This
figure shows how the convergence of the DNN is affected by varying the learning rate.
The DNN can reach a fast convergence when the learning rate is 0.01 (less than 5000 s),
but the error rate is still high. After some experiments, we selected a learning rate of 0.005,
which resulted in a low error rate where the system reached convergence after 10,000 s.
Although it requires a long training phase, with this rate, the DNN has a better decision-
making performance. The convergence status allows us to demonstrate the total cost in the
system compared to the optimal results calculated by the Ipopt solver. In Figure 4c, a small
gap is visible between the optimal value and the DRLD result for all settings. However,
the optimal gap depends on the training phase and the training data. With our limited data
set, we present a simple, but promising result in this work. We will investigate this aspect
in future work to find a real public dataset with which to obtain a practical training model.



Appl. Sci. 2021, 11, 2726 14 of 20

0 1000 2000 3000 4000

Iterations

20

40

60

80

100

R
ew

ar
d

70 drugs

50 drugs

30 drugs

(a) Evaluation of the reward value.

0 5000 10,000 15,000
Seconds

10 2

10 1

M
ea

n 
sq

ua
re

 e
rro

r

Learning rate 0.01
Learning rate 0.005

(b) Evaluation of the DNN.

10 20 30 40 50 60 70
Number of drugs

0

50

100

150

T
ot

al
co

st
(x

10
00

U
S

D
) Optimal DRLD

(c) Evaluation of the total cost.

Figure 4. Convergence evaluation. DRLD, Deep Reinforcement Learning model for Drug inventory.
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5.2.2. Evaluation of the Refilling Cost

We consider the refilling cost in a time horizon with 30 timeslots (we refer to one
week for each timeslot) as shown in Figure 5. We first make a comparison with a simple,
commonly-used method, over-provisioning. Since the remaining volumes and the upper
bound volumes of drugs are often used as the replenishment policy for each refilling
inventory, they lead to a higher cost in most timeslots. Figure 5a illustrates the trace of the
refilling cost during the considered horizon. The over-provisioning method has a higher
cost than that of the DRLD in most of the timeslots. As shown in Algorithm 1, the system
always explores the action space and exploits the knowledge at any given time step that is
able to prevent the volumes of drugs from reaching bounded levels. On average, the DRLD
can reduce the refilling cost by 12.31% compared to the over-provisioning method.

Figure 5b illustrates the refilling cost of the DRLD and ski-rental methods. Ski-rental
is an online algorithm that makes decisions based on the current situation. However,
the ski-rental method does not involve the learning phase to deal with changes in the
system. Furthermore, the performance of the ski-rental method is sensitive to a competitive
setting. In a complicated system with a large number of drugs and uncertain demands,
the ski-rental algorithm does not present a suitable approach to solve DR2O. On average,
the ski-rental method can obtain a better refilling cost than the use of over-provisioning.
However, it is more unstable and results in costs that are on average 10.4% higher than
those of the DRLD.

Finally, we evaluate the refilling cost by applying the max-min approach. The max-
min inventory model seeks to reduce the gap between the max and min values, where
the min value represents the reorder point and the max value represents the targeted
quantity. Although this method is simple and non-optimized, it is able to provide an
automation model for inventory management by using some triggers. Max-min is similar
to over-provisioning, but more flexible if we set the lower and upper bounds to a high
volume. The reorder quantity is calculated by the surplus between max and min. As shown
in Figure 5c, this method flattens the filling cost during the time horizon. Its results indicate
that it is a promising approach to control the shortage problem, but its cost is higher than
that of the DRLD by 11.8%.

5.2.3. Evaluation of the Shortage Situation

We evaluate the shortage situation in a time horizon by applying four methods within
a finite horizon: over-provisioning, DRLD, ski-rental, and max-min. During 30 timeslots,
four-point-three-seven percent of the drugs hit a shortage level if applying ski-rental,
while over-provisioning is slightly better with 4.09%. The max-min method has an even
better result with 3.41% drugs at the shortage level. Our method, the DRLD, obtains the
best result in this evaluation with only 2.21% of the drugs in a shortage situation in the
considered timeslots. Figure 6 shows the shortage situations and their evolution for all four
approaches. In detail, over-provisioning often hits serious shortage points, for example
at Timeslots 14, 24, and 27 h, as the average value of the previous usage does not react
well with the peak demand. The ski-rental method can obtain a better result compared
to the over-provisioning method, but it also often reaches a shortage level. This method
can react better to the changes in demand than the over-provisioning method, but it is too
difficult to implement a correct setting of the c-competitive value for all the drugs in the
system. The max-min method does not hit some peak points, but the shortage situation still
occurs frequently during the evaluation period, similar to the over-provisioning method.
As mentioned before, the intuition of the max-min approach is not that different than
that of the over-provisioning method. Compared to all the baselines, the DRLD has the
least amount of shortage points in the figure. At the peak shortage point (Time Slot 27),
the DRLD has only 1.7% of its drugs that reach shortage, the lowest rate in the evaluation.
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Figure 5. Refilling cost evaluation.
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Figure 6. Shortage evaluation.

5.2.4. Evaluation of the Unexpected Rate

Finally, we evaluated the unexpected rates of drug refillings during 30 timeslots by
using our proposed method and three baselines, as shown in Figure 7. We measured this
aspect to illustrate the efficiency of our system for drug refillings and maintaining the
volume of drugs at a stable level during a finite horizon. A high unexpected rate result
is often considered as a low performance feature in inventory management. On average,
over-provisioning has the highest rate by 1.675% and reaches the peak rate by 2.808%.
It is agnostic of the user demand, and so, it is not able to prevent the system from a
shortage or an overstock situation. If we increase the amount of the refilling volume,
we can reduce the shortage, but it will proportionally increase the refilling cost and the
number of redundant drugs. The ski-rental approach obtains an average rate of 1.54%,
higher than that of the DRLD with 1.03%. This rate can be reduced by adjusting the
c-competitive value. In practice, it is impossible to obtain the correct value for all drugs
with an unknown usage demand. In Figure 7, the rate of the ski-rental approach fluctuates,
with a large magnitude from the lowest rate of 0.1718% to the highest of 2.54%. With the
awareness ability employed in the exploration and exploitation steps of the DRL, DRLD
outperforms the other methods in this evaluation. The results illustrated in this figure
reveal the efficiency of the DRLD at reducing the number of unexpected drugs in the
refilling decision.
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Figure 7. Unexpected rate evaluation.

6. Conclusions

As stated in the literature review, the hospital supply chain is responsible for ensuring
that there is an adequate connection between hospitals, operations, and the revenue cycle.
While inventory management is connected with the procedures of requesting, storing,
and utilizing an institution’s inventory, health care institutions across the globe are in
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search of approaches to improve the efficiency of operations; i.e., effective inventory man-
agement that can reduce expenditures while in no way affecting medical care and services.
An ineffective hospital supply chain leads to product shortages, product discontinuity,
decreased patient safety, poor performance, distribution flaws, and technological mistakes
that result in stock shortages in hospitals. Furthermore, our assessment reveals how health
centers can effectively mitigate drug shortages in their hospital supply chains by adopting
Machine Learning (ML). By promptly processing enormous volumes of data in order to
discern patterns and uncover insights that are overly complicated for the human mind, ML
can enable health care providers to consistently provide the right quantities, at the right
cost, place, and time.

We propose a deep learning model to solve the hospital supply chain inventory control,
using a mathematical programming model (DR2O) that can capture the requirements
for drug refillings, while minimizing the purchasing and storing costs. To solve this
optimization problem, we apply a deep reinforcement learning method that can determine
how much of the volume of drugs should be refilled in each timeslot. The observations
and analyses of the stock level changes are conducted based on intensive simulations.
Our results outperform the other baselines with a finite horizon, specifically the over-
provisioning, ski-rental, and max-min approaches. Our model is proven to be an efficient
and promising mechanism with which to develop a dynamic programming framework for
the management of hospital supply chain inventory.
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