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Dean Martinović, Stjepan Bogdan * and Zdenko Kovačić
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Abstract: This publication deals with the navigation of unmanned aerial vehicles (UAVs) moving
in the magnetic field of two long, straight, parallel conductors, which is of high interest for several
new technical applications. How the position and orientation of the UAV can be calculated using a
minimal number of only three three-axis magnetometers are discussed. It is shown that the angles can
be determined without the knowledge of the conductor currents and the magnetic field equations, but
only by combining the sensor measurements with the rotation matrix and exploiting a characteristic
property of the magnetic field. Furthermore, different strategies were investigated to determine the
respective sensor positions. An analytical solution was derived from the nonlinear magnetic field
equations, which promises a low computational time. It is shown that for a given sensor, several
solutions exist, from which the correct one has to be selected. Therefore, a specific detection method
is introduced. Once the solution is known, the UAV location can be determined. Finally, the overall
algorithm was tested by simulations far from and near the conductors with superimposed typical
magnetic noise.

Keywords: magnetic field navigation; parallel conductors; transmission lines; unmanned aerial
vehicles; aerial manipulation

1. Introduction

Magnetic field-based navigation is an old discipline that had its beginnings in the 20th
Century [1]. Magnetic fields have several advantages over other physical quantities. For
example, unlike electromagnetic waves, they are not subject to multipath effects or fading
because they do not reflect off surfaces. This allows for much higher accuracy. In addition,
they are not attenuated when passing through magnetically neutral materials, making
magnetic field-based navigation ideal for use between obstacles, at night, or in difficult
weather conditions such as snow or fog. A large number of publications exist dealing with
techniques for object navigation and localization. Depending on the application, they all
use one or more distributed magnetic field sources that emit an alternating magnetic signal.
This is usually sampled and measured by several sensors, which may be from different
technologies. By combining these measurement data with the mathematical model of the
source used, the position and orientation of the observed object are then determined. This
can be divided into four different types of sources.

The first type is a simple rectangular or circular coil that typically has a large number
of turns. It represents the basic element for the construction of more complex coil types
and is often referred to as a dipole, since above a minimum distance from the winding,
its magnetic field distribution can be described by the equations of a magnetic dipole.
In various research projects [2–6], such as MILPS (magnetic indoor local positioning system),
multiple coils mounted on walls are used to locate cell phones and robots in buildings
or patients in hospitals. Other use cases include the navigation of medical instruments
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inside the human body [7] or the localization of an implantable transponder for intensity-
modulated radiation therapy [8]. In addition, several projects have investigated how these
coils can be used to locate trapped persons as quickly as possible [9–12]. These could be
buried miners or avalanche victims, who can be found by the emitted signal from a small
coil worn close to the body. Another interesting topic is the detection of buried landmines
in old war zones, also known as humanitarian demining [13,14]. This involves the use of
hand-held coils such as metal detectors. Finally, a new application has emerged with the
advent of the electric vehicle age.

In the context of inductive charging, the receiver coil mounted on the underbody of
the car must be positioned relatively precisely above the transmitter coil in the parking
lot, as shown in Figure 1. Since this is very difficult for the driver to achieve, the MPPS
(magnetic pulse positioning system) was developed in [15]. Here, the transmitting coil in
the ground emits a low-frequency pulsed magnetic signal that allows precise localization
by the vehicle in the sub-centimeter range.

Figure 1. Navigation using a one-axis coil [15].

The next two coil types consist of two or three base coils wound orthogonally to each
other. An example of a three-axis magnetic field source is shown in Figure 2.

  

Figure 2. Principle of a three-axis coil.

For two-axis sources, the coils carry phase quadrature currents that produce a rotat-
ing magnetic dipole [1,16,17]. Together with phase detection algorithms and amplitude
evaluation, the object position and also the orientation can be determined. For three-axis
sources, all source axes are successively excited with currents of the same frequency and
phase. In this way, each axis generates an equivalent dipole of arbitrary orientation [18–20].
The three sensor responses are linearly independent and provide sufficient information to
determine both the sensor position and its orientation.

The last type of source to be mentioned is a long wire with an alternating signal.
In [21–23], its magnetic field was used to allow an underwater vehicle to locate and track a
buried underwater cable.

Until now, however, no attention has been paid to magnetic sources consisting of two
long parallel conductors. They enable many new useful engineering applications, especially
when it comes to the realization of unmanned aerial vehicles (UAVs). For example, UAVs
could autonomously perform inventory in warehouses. For this purpose, parallel guides
can be attached to the floor or ceiling for navigation between shelves. In addition, UAVs
could provide an inspection of rail systems efficiently when a current flows through them.
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Another interesting topic is the autonomous performance of inspection and assembly
work around power line systems. This is exactly what was investigated in the Aerial-Core
(https://aerial-core.eu/, accessed on 06.04.2021) project. One of the goals of the project
was to develop a technology that will enable a UAV to perform (Figure 3) the placement of
distance separators between power lines.

Figure 3. Distance separator for transmission lines.

This is usually performed by workers who are exposed to very high electric and
magnetic fields. Moreover, such a task requires a highly skilled helicopter pilot to keep
the helicopter close to the power lines while a worker performs the installation. Therefore,
the main objective of this work is to derive the equations for determining the position and
orientation of a UAV moving through the magnetic field of two parallel conductors, thus
enabling precise navigation of a UAV in close proximity to the power lines. We assumed
that a UAV is equipped with visual and other sensors that are used both for navigating
farther away from the lines and for approaching the lines.

2. Orientation and Localization Equations
2.1. System Overview

Figure 4 shows two parallel lines, which together form one phase of a three-phase
power transmission system and a UAV flying in close proximity. The transmission lines
lie in the xy-plane of the global coordinate frame {G} positioned exactly between the
lines. For the purpose of sensing the magnetic field of the transmission lines, there are
magnetometers mounted on the UAV, which are marked with yellow points.

  

zG
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xu

pD

pi

UAV

transmission lines

Figure 4. System overview. Global frame and UAV frame.

The transmission lines of a single phase carry sinusoidal currents of fixed frequency
and phase, which can be used to our advantage. They generate an alternating magnetic
field, which allows static and low-frequency magnetic interference fields such as the Earth’s
field to be canceled out. This is realized by a differential measurement of the amplitude
of the magnetic signal. The calculation can be implemented in the time domain and is

https://aerial-core.eu/
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very efficient [24]. In addition, the system can be treated as a static field problem with
constant currents. For simplicity, they are chosen as I in the following. The magnetic
field thus generated can be calculated using the law of Biot–Savart for thin conductors.
In general, transmission lines are not thin. However, as the distance from the lines increases,
the magnetic flux density distribution approaches that of thin conductors relatively quickly:

~B(~r) = − µ0

4π
I
∫ ∞

−∞

(~r−~r ′)× d~s ′

|~r−~r ′|3 . (1)

The integration is executed only along the cables according to the arrangement in
Figure 4, i.e., d~s ′ = (d~x ′, 0, 0)T . Thus, from the cross-product in Equation (1), it immedi-
ately follows that:

Bx = 0, ∀(x, y, z)T , (2)

which means that there is no field component in the direction parallel to the cables. Solving
the integral for one cable and using the superposition principle, the remaining field compo-
nents By and Bz can be determined. The total magnetic field equation with the transmission
lines at ±y0 is then:

~B(y, z) = C


0

−z
z2+(y+y0)2 +

−z
z2+(y−y0)2

y+y0
z2+(y+y0)2 +

y−y0
z2+(y−y0)2

, with C =
Iµ0

2π
, (3)

where C is a prefactor depending on the transmission line current.
Figure 5 shows the signal amplitude |~B(y, z)| around the transmission lines for

I = 700 A and y0 = 0.25 m. Figure 6 shows the locations of equal amplitude in the
yz-plane expressed by isolines. The magnetic field contributions of the other two phases
are neglected because the cables are typically at least 2 m apart.

Figure 5. Signal power around the transmission lines.
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Figure 6. Isolines of the magnetic field describing equal power.

The magnetic field-based navigation of a UAV requires that the UAV can sense the
magnetic field in all spatial directions. It uses this information to determine its relative
position and orientation with respect to the fixed position and orientation of the global
coordinate frame {G}. The flight capabilities allow the UAV to achieve an arbitrary
orientation by rotating the UAV’s body about the z- (blue), y- (green), and x-axes (red) of
the local drone frame Lu for the respective yaw, pitch, and roll angles α, β, and γ. The origin
position of the local frame Lu in {G}, denoted by ~pD, also represents the position of the
UAV to be determined. The sensors have predefined positions ~pi0 in Lu, where the index i
refers to a particular sensor. Moreover, each magnetometer has its own local coordinate
frame Li. Then, their respective positions ~pi = (xi, yi, zi)

T in {G} can be expressed using
the rotation matrix RLu

G (α, β, γ) = Rx(γ) Ry(β) Rz(α):

~pi = RLu
G (α, β, γ)~pi0 + ~pD, (4)

Rz(α) =

 cα sα 0
−sα cα 0

0 0 1

, Ry(β) =

cβ 0 −sβ

0 1 0
sβ 0 cβ

, Rx(γ) =

1 0 0
0 cγ sγ

0 −sγ cγ

.

where sx and cx are abbreviations for sin x and cos x needed in the following. From
Equation (3), it can be seen that the position of the UAV along the cables (x-direction)
cannot be determined because the magnetic field does not provide sufficient information.
Thus, only the projections of the magnetometers and the UAV frame origin in the yz-plane
can be computed. The representation of the magnetic field ~vi measured by the i-th sensor
at position ~pi expressed in {G} then becomes:

~B(~pi) = RLu
G (α, β, γ) RLi

Lu
~vi, (5)

where RLi
Lu

is the user-defined orientation of Li in the UAV body frame Lu and RLu
G is the

orientation of Lu in the global frame {G}. If Li is aligned with {G}, then it is RLu
G RLi

Lu
= I,

where I is the identity matrix. In this case, the sensor measures exactly the magnetic field
given by Equation (3), i.e., ~B(~pi) = ~vi. The system of three equations in (5) establishes a
relationship between the sensor measurement, sensor position, and UAV orientation. It
is nonlinear and has five unknowns (yi, zi, α, β, γ)T , which are determined in the follow-
ing sections.

2.2. Orientation Determination

In this section, the UAV angles α, β, and γ are derived. As will be shown below,
the calculation is possible without knowledge of the field equation and the transmission
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line current. Three magnetometers were considered. For the following analysis, their
corresponding equations were set up in matrix notation, where 03×3 is a 3× 3 zero matrix:

~B(~p1)
~B(~p2)
~B(~p3)

 =

RLu
G RL1

Lu
03×3 03×3

03×3 RLu
G RL2

Lu
03×3

03×3 03×3 RLu
G RL3

Lu


~v1
~v2
~v3

. (6)

It is obvious that this system of equations is solvable since the rank of the matrix is
nine, which is equal to the number of unknowns. In general, in addition to the three angles,
each row provides two unknowns yi and zi. Now, the UAV’s yaw and pitch angles can be
calculated directly from the two sensor measurements ~vl and ~vn and the zero field property
(2). With this and the Cartesian unit vector~ex, it follows from Equation (6) that:

0 = (RLu
G RLi

Lu
~vi) ·~ex, i = l, n. (7)

Obviously, this equation does not depend on the sensor positions or the choice of their
local frames. Thus, they can be located anywhere on the UAV and have any local frame.
However, to avoid additional transformations or computational effort, the sensor frames
are aligned with the UAV body frame. Then, the equation system (7) becomes:

0 = cβ cα vlx +cβ sα vly −sβ vlz
0 = cβ cα vnx +cβ sα vny −sβ vnz

(8)

After division by cβ and subsequent subtraction, tan β can be eliminated. Solving the
remaining equation for α leads to:

α = atan

(
vlzvnx − vlxvnz

vlyvnz − vlzvny

)
= atan

(
(~vl ×~vn) ·~ey

(~vl ×~vn) ·~ex

)
(9)

and further with A = tan α to:

β = atan
(

vnx + vny A

vnz
√

A2 + 1

)
= atan

( vlx + vly A

vlz
√

A2 + 1

)
. (10)

The roll angle γ can also be computed by exploiting the zero field property (2).
However, the rotation matrix RLu

G does not in general contain γ in its x-row. Thus, a
different sensor k must have a different local frame Lk in order for the zero to appear in the
y- or z-row containing all three angles. This can be achieved by, for example, placing the
sensor so that it is rotated relative to the UAV body frame Lu by an angle δ about the y-axis,
i.e., it is:

RLk
Lu

= Ry(δ). (11)

Then, from Equation (5), it follows that after applying the coordinate transformation
A = RLu

G RT
y (δ)RG

Lu
, the vector ~B(~pk) is expressed in Lu:

~̂B(~pk) = A ~B(~pk) = RLu
G RT

y (δ)RG
Lu

RLu
G Ry(δ)~vk,

for δ = π
2 ⇒

B̂x(~pk)
B̂y(~pk)

0

 = RLu
G ~vk.

(12)

From Equation (12), it follows that the rotation of ~B(~pk) for a given angle δ = π
2

around the y-axis of Lu has forced the z-component of the resulting vector ~̂B(~pk) to zero:

B̂z(~pk) = 0 = (RLu
G ~vk) ·~ez, (13)
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where~ez is the Cartesian unit vector. Then, in a first step, Equation (13) can be written as:

0 = (sγsα + cγcαsβ)vkx + (cγsβsα − cαsγ)vky + cγcβvkz.

Next, the division by cγ forms the tangent function tγ, which can be isolated and
finally solved for γ:

0 = (tγsα + cαsβ)vkx + (sβsα − cαtγ)vky + cβvkz

⇒ γ = atan
( vkysβsα+vkxsβcα+vkzcβ

vkycα−vkxsα

)
.

(14)

The sensor can be placed anywhere on the UAV. However, the result only applies
to the local frame definition in (11). Theoretically, arbitrary local frame definitions can
be chosen, but in this case, there is no zero in any coordinate, and the whole system
of Equation (12) must be solved since the sensor position ~pk is unknown. However,
the equations are complicated, and it is questionable whether an analytical solution exists.
The presented formulas are valid if the UAV angles are within the definition range D,
respectively α, β, γ ∈ D = [−π

2 , π
2 ]. The limits of the equations presented are discussed

in Section 3.

2.3. Position Determination

In the previous section, it was shown that the UAV orientation and position computa-
tion can be decoupled into two independent problems. In doing so, it was shown how the
UAV orientation can be computed using the zero field property and without knowledge
of the transmission line currents or the magnetic field equation. This section now deals
with the computation of the respective sensor positions ~pi, which are needed to finally
determine the UAV position ~pD via Equation (4).

With the decoupling presented, the complexity of the equation system (6) can be
greatly reduced, since by knowing the angles, the right side can be computed and becomes
a simple real-numbered vector. With RLu

G RLi
Lu
~vi = ~Vi, the system becomes:~B(~p1)

~B(~p2)
~B(~p3)

 =

~V1
~V2
~V3

. (15)

Obviously, the computation of the respective sensor positions is also decoupled. Thus,
to obtain ~pD, it is sufficient to solve one of these rows in (15). Then, for a sensor i, the
corresponding row is:

~B(~pi) =

(
By(yi, zi)
Bz(yi, zi)

)
=

(
Viy
Viz

)
= ~Vi, (16)

which represents a system of two equations. The components By and Bz describe the
magnetic field in two dimensions in {G} and were obtained by calculating the Biot–Savart
integral (1). This means, on the one hand, that the two equations in (16) are linearly
independent and theoretically allow the determination of the unknowns yi and zi. On the
other hand, the equations are nonlinear, and the question arises whether it is possible to
solve (16) analytically and, if so, how. In this context, there are several approaches, all of
which were investigated in the context of this work. Since the following considerations are
equally valid for all sensors, the subscript i is omitted for simplicity.

The first row in (16) can be solved for one coordinate y or z, which is then inserted into
the second row to compute the other coordinate; and the same in reverse. However, solving
By = Vy for z or Bz = Vz for y in the general form leads to extremely large solutions z(y, Vy)
and y(z, Vz), which contain root terms with eighth-order polynomials as arguments. The
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other two cases, i.e., solving By = Vy for y or Bz = Vz for z, lead to smaller solutions. For
example, from the latter, the four solutions for z follow:

z(y, Vz) = ±
√
±D(y2, y) + a(y2, y),

with D = 1
Vz

√
4V2

z y2y2
0 − 4CVzyy2

0 + C2y2,

a = −y2
0 − y2 + Cy

Vz
.

(17)

The result y(z, Vy) has the same structure, but is not used, as the easiest final equation
can be found by inserting (17) into B2

y(y, z) = V2
y . With D from (17), it becomes:

Vz(Cy± D)2(−Vzy2
0 −Vzy2 + Cy± D)

y2(−2Vzy2
0 + Cy± D)2

= V2
y . (18)

The equation can in principle be solved for y. However, no suitable substitution could
be found, so that the root terms disappear, and at the same time, a polynomial of a smaller
order than five is obtained. For example, after the substitution with E = Cy± D, unwanted
y2 expressions still remain in the equation. The square roots can also be eliminated by subse-
quent isolation and squaring. However, this leads to a high-order polynomial. In summary,
it is difficult to impossible to derive an analytical solution only from the equation system
(16). In this context, the idea is to consider the signal power as an additional equation. As
will be shown in the next steps, its combination with (16) leads to a compact analytical
solution, which is derived below: At a given position, the signal power can be calculated
by taking the dot product of the corresponding sensor response ~V with itself. This must be
equal to the dot product of ~B(y, z) with itself, leading to the following equation:

~V · ~V = |~V|2 = ~B(y, z) · ~B(y, z)⇒ |~V|2 = 4C2(z2+y2)

z4+y4+(2y2
0+2y2)z2+y4

0−2y2y2
0
. (19)

The most simple equation is found by solving the formula for z2 and inserting it into
Bz(y, z) = Vz. For this, the two solutions for z2 are obtained with P = |~V|:

z2(y, P) = ±2

√
y2y2

0 −
C2y2

0
P2 +

C4

P4 − y2
0 − y2 +

2C2

P2 . (20)

Next, with the positive solution of (20), the equation Bz(y, z2(y, P)) = Vz can be writ-
ten as:

−P4yy2
0+D̂P2y+C2P2y

−CP2y2
0+2CD̂+2C3 = Vz, with D̂ =

√
(P4y2 − C2P2)y2

0 + C4.

Further, D̂ is isolated and squared, which leads to:

D̂2 =
((P4y− CP2Vz)y2

0 − C2P2y + 2C3Vz)2

(P2y− 2CVz)2 .

This eliminates the square root of D̂. After re-substituting and transforming the
equation, the position calculation is reduced to a root-finding problem of a fourth-order
polynomial,

∑4
n=0 anyn = 0, a4 = P8y2

0, a3 = −4CP6Vzy2
0,

a2 = −P8y4
0 + C2P6y2

0 + 4C2P4V2
z y2

0,

a1 = 2CP6Vzy4
0 − 2C3P4Vzy2

0, a0 = −C2P4V2
z y4

0.

(21)

The general analytic root expressions of such a polynomial are extremely large. There-
fore, it is important to make Equation (3) as simple as possible by placing the global
coordinate frame exactly halfway between the transmission lines. In addition, the lines
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should be placed in the xy-plane parallel to the x-axis. Then, with the coefficients an given
in (21), the four large expressions for y are greatly reduced and become:

y = ±
√

P4y2
0+2C2Vz

√
V2

z −P2+2C2V2
z −C2P2

2P2 ±
√

P4y2
0−2C2Vz

√
V2

z −P2+2C2V2
z −C2P2

2P2 + CVz
P2

= S
2P2 +

CVz
P2

(22)

where S represents the two square root addends. The same result is obtained for the
negative solution of Equation (20). Now, in the next step, four different cases can be distin-
guished, all of which lead to a certain class of solutions.

(I) Vy, Vz 6= 0:

Theorem 1. Two of the y-solutions in (22) can immediately be excluded, because they are complex.

Proof. Vz ≤ |~V| = P, ∀~V ∈ R3 ⇒
√

V2
z − P2 ∈ C. With this, the above square root ad-

dends represented by S can be written as:

S = ±
√

a + j b±
√

a− j b,

a = P4y2
0 + (2V2

z − P2)C2, b = 2C2Vz
√

P2 −V2
z .

(23)

Next, the parameters r and ϕ are introduced as:

r =
√

a2 + b2, ϕ = tan−1
(

b
a

)
+ π. (24)

Now, if the addends have a different sign S, this results in:

S = ±
√

a + j b∓
√

a− j b = ±
√

r ej ϕ
2 ∓
√

r e−j ϕ
2

= ±2j
√

r 1
2j (e

j ϕ
2 − e−j ϕ

2 ) = ±2j
√

r sin ϕ
2 ,

whereby the e-expressions are obtained using Euler’s formula.

Applying this procedure for the case of the same sign, the real-numbered and more
compact expressions for y can be derived. Therefore, in a first step, S is determined:

S = ±
√

a + j b±
√

a− j b = ±
√

r ej ϕ
2 ±
√

r e−j ϕ
2

= ±2
√

r 1
2 (e

j ϕ
2 + e−j ϕ

2 ) = ±2
√

r cos ϕ
2 .

The square root addends in Equation (22) represented by S now can be replaced by
this result, leading to:

y1,2 = S
2P2 +

CVz
P2 = 1

P2

(
±
√

r cos ϕ
2 + CVz

)
, (25)

with r and ϕ according to (24).

Theorem 2. There exist two solutions |y1| 6= |y2|. One each is in y < 0 and y > 0, respectively.

Proof. The hypothesis is true if the absolute value of the square root addends in Equation (22)
is always greater than C|Vz|P−2.

|±(
√

a+jb+
√

a−jb )|
2P2 > C|Vz |

P2 ⇒ |(
√

a + jb +
√

a− jb )|2 > (2C|Vz|)2

⇒ ql =
√

a + jb
√

a− jb > 2C2V2
z − a = qr.
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Further, with a, b from (23), it follows for the left and right side:

ql = P8y4
0 + (4C2P4V2

z − 2C2P6)y2
0 + C4P4,

qr = P8y4
0 − 2C2P6y2

0 + C4P4,

⇒ ql − qr = 4C2P4V2
z y2

0 > 0.

(II) Vy = 0 ⇒ P = |Vz|: In this case, the excluded complex solutions must also be
considered, since they become real. Both give the same result y3. The two real solutions
y1,2 can again be obtained from (25) or from the general Equation (22).

y1,2 = 1
V2

z
(±
√

V4
z y2

0 + C2V2
z + CVz), y3 = C

Vz
(26)

|y1| 6= |y2| 6= |y3|. One of the solutions lies in the opposite half plane.

(III) Vz = 0 ⇒ P = |Vy|: The solutions are obtained analogous to Case (II).
|y1| = |y2|.

y1,2 = ±
√

V4
y y2

0−C2V2
y

V2
y

, y3 = 0 (27)

(IV) Vy = Vz = 0: If this case occurs, the sensor lies exactly in the origin of the
global frame.

Once the corresponding y is determined, in a final step, z can be calculated from
Equation (20):

z = ±

√
±2

√
(y2 − C2

P2 )y
2
0 +

C4

P4 − y2
0 − y2 +

2C2

P2 , (28)

offering four possible z-solutions, all of which can be real-numbered. There are also situa-
tions where, for a given y, a subset of the z-solutions in (28) can become complex. Therefore,
their use must be treated with caution, especially when the formulas are implemented on a
microcontroller of a real UAV. A safer way is to check the arguments of the square roots.
The argument of the outer square root can be written as:

Ao = ±g + h, h = −y2
0 − y2 +

2C2

P2 , (29)

where g is the inner square root expression. For all solutions y1,2,3 obtained, g ≥ 0 holds,
since they were obtained using the z2-expression (20). Thus, the argument of the inner
square root does not need to be checked. In contrast, Ao can become negative in general
and should be checked to satisfy that the condition Ao > 0 is fulfilled before applying the
square root.

2.4. Selecting the Right Solution

Equation (28) yields four z-solutions for each y-solution of Cases (I)–(IV). Thus, de-
pending on the case, there are up to twelve possible positions in the yz-plane for a given
sensor. For navigation, it is necessary to know which of these points is the correct one.
Finding it is the task of this subsection.

Now, in the first approach, the number of possible positions can be narrowed down by
excluding Cases (II)–(IV). The reason for this is that they can only occur in very few locations
and for a very short time during navigation, which extremely reduces their probability
of occurrence. For example, the solutions of Case (II) all lie on the z-axis. In Case (III),
one solution lies on the y-axis and the other two lie on a circle with a diameter equal to
the distance between the transmission lines, i.e., 2y0. This can be shown by computing
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the radius
√

y2
1,2 + |z2(y1,2)|, where y1,2 comes from Equation (27) and z2 comes from (20).

The case with the lowest probability of occurrence is Case (IV), where the sensor is located
directly at the origin. The locations of Cases (II)–(IV) are summarized in Figure 7 and
shown as black and red lines. Since they are not relevant for navigation and only increase
the implementation effort, they can be ignored. Thus, since only Case (I) is considered,
eight possible positions for a single sensor remain, from which the correct one must still be
selected.

In the next steps, it will be seen that six can be excluded. To do this, some constraints
must be met. As explained in Section 2.1, the sinusoidal transmission line current can
be considered as an equivalent constant current I, i.e., it never changes its direction.
Furthermore, the UAV orientation must not exceed the definition range D from Section 2.2
with α, β, γ ∈ D = [−π

2 , π
2 ]. This would otherwise lead to ambiguities due to the symmetry

of the magnetic field. The details concerning ambiguities are the subject of Section 3. Now,
the idea is to investigate which of the eight remaining positions lead to a match with the
sensor measurement ~V, i.e., which positions satisfy Equation (16).

Theorem 3. Given a sensor k that measures ~Vk = (Vky, Vkz)
T and has two y-solutions according

to (25) in Case (I), for each of the two values, there are four associated z-solutions according to
Equation (28). However, for each y, there is only one z-solution that leads to a match with ~Vk,
i.e., there are only two possible locations in the yz-plane where the sensor can lie.

Proof. Let yk be one of the two y-solutions. Then, it generates the four z-solutions, which
in simplified notation are zn = ±

√
±g + h, g, h 6= 0. zn has two outer and two inner signs.

Further, the Bz-component in Equation (3) has a z2-addend in the nominator as the only
z-dependency, so it can be written as Bz(yk, z2). Now, if for zl = ±

√
g + h, it follows that:

Bz(yk, z2
l ) = Bz(yk, g + h) = Vkz,

then with g + h 6= −g + h:

Vkz = Bz(yk, g + h) 6= Bz(yk,−g + h),

because Bz(yk, z2) is strictly monotonous. This means, that only one of the inner signs of
zn leads to a match with Vkz. This fact is independent of the outer sign. Once the inner
sign is known, similarly, the By-component in Equation (3) can be analyzed. Therefore, let
z2

m = g + h lead to a match with Vkz. Now, if By(yk, zm) = Vky, then By(yk,−zm) is:

C
(

−(−zm)

z2
m + (yk + y0)2 +

−(−zm)

z2
m + (yk − y0)2

)
= −Vky. (30)

As shown in the last step, only one of the outer signs of zn can be the correct one, leading
to a match with Vky.

In summary, there are only two possible locations for a single sensor, so that
Equation (16) is satisfied. With the constraints defined above, another fact follows from the
proof. It is needed for the consideration of the ambiguities in Section 3.

Corollary 1. The sign of Vy of the sensor response ~V with respect to the global frame {G} depends
only on the half plane z > 0 or z < 0 in which the sensor is located.

Consequently, both solutions are always in the same half plane. By Theorem 2, one
lies in y < 0 and the other in y > 0. An example is given in Figure 7, which shows the
solutions as bold dots.
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Figure 7. Two remaining positions of a sensor.

Since both points must be in areas with the same direction of the magnetic field lines
to satisfy Equation (16), one is outside the circle and one is inside. Of the two remaining
sensor positions that match ~V, one must still be excluded. By considering only a single
sensor, it is impossible to determine the correct one. However, in the following, multiple
sensors are considered instead, which provide much more information through which a
whole set of correct sensor positions can be selected.

The idea is as follows. On the one hand, the user-defined positions ~pi0 of N sensors
form an original polygon in the yz-plane of the UAV frame Lu. It has a fixed geometric
structure Su like a fingerprint. On the other hand, the two positions ~pi1,2 computed for each
sensor can now be combined into 2N polygons in the global frame {G}. Finally, the one
that matches the structure Su is selected. Therefore, before comparison, each polygon
must be transformed back to Lu using Equation (4). However, this is not possible since
the UAV position ~pD must already be known for this. One way around this problem is
to choose a different reference point. For example, all polygons are shifted so that their
upper left corner appears in the origin of {G} before comparison. What is important here
is that the original polygon is first transformed to {G}. Its new geometric structure SG
can be computed using the known UAV orientation and ~pi0 via Equation (4) with ~pD =~0.
Then, its upper left corner is moved to the origin. The other polygons obtained from the
sensor measurements are already representations with respect to {G}, so their upper left
corner only needs to be shifted to the origin. The shift is allowed since it does not affect the
polygon geometry. Finally, the comparison can be done using the least- squares estimation.
Here, the deviation of the corresponding polygon nodes is squared and added up. The
polygon with the smallest sum best fits SG and is selected. From each of its nodes, the UAV
position ~pD can then finally be computed using Equation (4). It is recommended to place
the sensors in the yz-plane of Lu so that they span an area as large as possible. This allows
for better polygon detection, since during the aerial manipulation, the roll and pitch angle
of the UAV will typically have a rather small misalignment with respect to the global
frame {G}. The polygon detection method proposed here was successfully tested. The
implementation details and test results are presented in Section 4.

3. Ambiguities
3.1. Ambiguities Due to Field Symmetry

An ambiguity exists if all of the UAV’s sensors show the same output in at least two
different locations. Under the condition of equivalent static transmission line current,
several cases can be identified, which are shown in Figure 8.
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Figure 8. Ambiguities due to field symmetry.

In the lower left, the real position of the local frame Li of the i-th sensor is shown. The
UAV can now change its flight direction and additionally be above the transmission line in
Case (a). The sensor output would be the same. In Case (b), the whole UAV is rotated by
angle π around the x-axis. Here, since the magnetic field is mapped to itself, the sensor
will again measure the same. In this case, the UAV is flying on its back.

3.2. Ambiguities Due to Signal Symmetry

As introduced in Section 2.1, transmission lines carry an alternating current. In ad-
dition to improved filtering capabilities, this also introduces a number of ambiguities
in navigation, as shown below. The magnitude and sign of the three field components
measured by a three-axis magnetometer can be determined in the time domain from the
samples. For this purpose, a method was proposed in [24], which is beyond the scope
of the present paper. It is taken as given for the following considerations. For example,
a sensor with the sample values depicted in Figure 9 would yield the measured value
~v = (1 mT,−200µT,−500µT)T .

Figure 9. Sample values of a magnetometer.

However, a half period later, the signals in Figure 9 appear shifted, and the signs of the
individual field components change; i.e., the sensor now measures −~v. Since technically,
only signal amplitudes are used, it is as if the equivalent static current I changes its direction
every half period. A direct consequence of this fact follows from Corollary 1. Under the
defined constraints in Section 2.4, it allows detecting whether the UAV is flying under or
above the transmission lines, since the sign of the measured y-components Viy in the global
frame depends only on which half plane z > 0 or z < 0 the sensors are located. However,
since the direction of I changes cyclically, this is no longer possible without additional
detection methods, since Viy also changes sign. Such a detection could be realized, for
example, by comparing the signal energy of several sensors. This could exploit the fact
that the closer the sensor is to the cables, the higher the energy is. However, this is beyond
the scope of this paper. The fact that it is impossible to uniquely determine the sensor
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position can even be seen directly from Equation (25). It contains the prefactor C, which, as
shown in (17), depends on the current; thus, it can be C > 0 or C < 0, leading to different
solutions. Furthermore, the whole approach proposed in Theorem 3 to narrow down the
solutions no longer works.

3.3. Resolving the Ambiguities

If no additional electronic means are to be used, the ambiguities can be resolved as
suggested in [15], where an electric vehicle approaches the inductive charging coil of a
parking lot. In the case of using only two magnetometers, it never knows whether the
coil is in front or behind it. The vehicle therefore assumes that the coil is always in front
of it or that the driver is always moving ahead of the parking space. In the same way,
concrete constraints for the navigation of a UAV must be defined and passed to it as a
priori knowledge. These are:

1. The equivalent static current I always flows away from the UAV towards that end of
the transmission line to which the UAV is looking; i.e., I > 0⇒ C > 0.

2. During the navigation, the UAV always remains under the transmission lines, i.e., in
z < 0.

3. The UAV angles never exceed the definition range D, so that α, β, γ ∈ D = [−π
2 , π

2 ].
This means that the UAV never makes large turns and never flies on its back.

Furthermore, a selection criterion for the measured values must be established. This is
because, as mentioned earlier, the sign of the measurement ~vi of the sensor i changes with
each half period. It must now be decided which is the correct one. The selection criterion
can be derived from the above constraints. With C > 0 and z < 0 from Conditions (1) and
(2), it follows from the right-hand rule that the magnetic field always has a positive y-
component, i.e., By(y, z) > 0. This can also be shown directly with Equation (3). Moreover,
according to Theorem 3, this circumstance never changes as long as the UAV remains in
the half plane z < 0 and as long as Constraint (3) is not broken. Using Equation (5) and the
Cartesian unit vector~ey leads to the necessary selection criterion:

(R~vi) ·~ey > 0. (31)

If ~vi does not satisfy (31), −~vi does, and vice versa. Only one sign can be a match.
Direct comparison of the signs of ~viy and By(yi, zi) is not allowed, since from By(yi, zi) > 0,
~viy > 0 does not necessarily follow. The last point to be clarified is the orientation of the
UAV. Since the rotation matrix in (31) is used, it must be ensured that the angles can be
computed independently of the direction of I.

Theorem 4. Given two sensors i and k with equally aligned local frames and fixed locations
~pi 6= ~pk, as long as their measurement values ~vi and ~vk are obtained from the same signal period,
the yaw angle α and pitch angle β are independent of the direction of the static current I.

Proof. Referenced to the same time interval containing a whole signal period, the sensors
measure~vi,~vk 6=~0. Half a signal period later, when both measurements are calculated from
the same new time interval and the sensors have not moved, the sign of the measurements
is reversed. Then, the cross-product in Equation (9) for the yaw angle becomes −~vi ×−~vk.
Now, by applying the rule (r~a)×~b =~a× (r~b) = r(~a×~b), it follows that:

−~vi ×−~vk = (−1)2(~vi ×~vk) = ~vi ×~vk.

Since the direction of the static current obviously has no effect on the cross-product,
the result for the yaw angle also remains unchanged. Flipping the signs of the field
components in Equation (10) for the pitch angle leads to:

−vkx − vky A

−vkz
√

A2 + 1
=

vkx + vky A

vkz
√

A2 + 1
, A = tan α.
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The direction of the static current obviously also has no influence on the pitch angle.

Equation (14) for the roll angle γ uses the measurement from only one sensor as the
input. Thus, it is also independent of the sign of I. In summary, the sign of I does not affect
the orientation as long as the measurements are referenced to the same time interval of the
corresponding signal.

4. Simulation Results

In this section, the presented equations for determining the UAV position and orienta-
tion are tested in the context of a software-in-the-loop (SIL) simulation.

4.1. SIL Design and Test Procedure

The SIL simulation was implemented in MATLAB and cyclically ran through a spec-
ified flight trajectory created with the Gazebo tool. Each waypoint of the trajectory is
represented by a vector (yD, zD, α̂, β̂, γ̂)T , which describes the position and orientation of
the local UAV frame Lu with respect to the global frame {G}. From this, the SIL computes
the positions of the virtual sensors i and the corresponding magnetic measurements ~vi
with respect to the local sensor frame Li in each run. For this purpose, Equations (4) and (5)
were used, where the rotation matrix was used according to the convention in Gazebo,
i.e., R̂LU

G = RT
x (γ̂)RT

y (β̂)RT
z (α̂). This corresponds to the transposed version of the definition

used in this paper, i.e., R̂LU
G = (RLu

G )T . In order for the angles α, β, and γ obtained in the test
run to be compared later with the Gazebo angles α̂, β̂, and γ̂, they must first be converted
at the end of each run. This is done automatically by the SIL. To calculate the measured
values ~vi, the SIL assumes that there is a transmission line system with the arrangement
described in Section 2.1; i.e., the cables are in the xy-plane at −y0 and y0. The SIL then
passes the computed ~vi as the input values to the test procedure, which verifies the entire
method described in this publication. The test procedure uses the constraints defined in
Section 3.3 for navigation as a priori knowledge. It is called cyclically from the SIL until all
waypoints on the flight trajectory have been passed and is divided into the following steps:

1. Select the correct sign for the measurement values ~vi according to the selection cri-
terion (31) (the SIL skips this step because it always calculates with the equivalent
static current).

2. Calculate the UAV angles using Equations (9), (10) and (14) for all possible sensor
combinations and calculate the average. The results are ᾱ, β̄, and γ̄.

3. Filter out the outliers by applying the moving median filter to the last 10 calculated
values of each angle.

4. Calculate the measurement values ~Vi referred to the global frame {G} via
~Vi = RLu

G (ᾱ, β̄, γ̄) RLi
Lu
~vi from Equation (6). Calculate the signal powers Pi = |~Vi|.

5. Calculate the y-coordinates yi1 and yi2 using Equation (25).
6. Select the correct signs in Equation (28) using the Theorem 3 in order to reduce the

amount of possible z-solutions and calculate the z-coordinates zi1 and zi2.
7. Calculate the nodes ~pi,e of the original polygon referred to {G}. They are calculated

from the user-defined sensor positions ~pi0 in Lu and the orientation of the UAV in
{G}, i.e., ~pi,e = RLu

G (ᾱ, β̄, γ̄)~pi0. Shift the resulting polygon so that its upper left corner
appears in the origin of {G}.

8. Calculate from the determined sensor positions ~pi1,2 all possible polygons and shift
them so that their upper left corner appears in the origin of {G}. The nodes of the
k-th polygon are represented by ~pi,k.

9. Compare all polygons with the original one. Therefore, first calculate the sum Uk of
the least-squared errors of the corresponding polygon nodes with:

Uk =
N

∑
i=1

(~pi,e − ~pi,k)
T(~pi,e − ~pi,k), (32)
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where N is the number of nodes, respectively sensors. Choose the polygons of the
two smallest sums. Finally, choose one out of these two whose perimeter most closely
matches that of the original polygon.

10. Calculate the UAV position from the found polygon for each node using Equation (4),
i.e.,

~pD,i = ~pi,k − RLu
G (ᾱ, β̄, γ̄)~pi0.

Take the average of all ~pD,i as the UAV position ~pD.
11. Filter out the outliers by applying the moving median filter to the last 10 calculated

positions.
12. Convert the angles to Gazebo angles.

If the entire trajectory has been run through by the SIL, the specified and actual
position are output graphically. The same goes for the angles. The software offers several
configuration parameters. These are:

1. Strength of the current I
2. Position of the transmission lines ±y0
3. Number of sensors
4. Sensor positions in Lu
5. The SIL can simulate white noise that is superimposed on the magnetic measurements

~vi. For this, the standard deviation σ can be set.
6. The flight trajectory can be shifted in the yz-plane in order to test the algorithms, both

close to and further away from the transmission lines.

4.2. Test Parameters

The test cases and the associated results are presented below. If not otherwise stated,
the following configuration is used:

• Transmission lines: y0 = 0.25 m, I = 700 A
• Two sensors aligned with Lu. Their positions in Lu are:

~p1 = (0.05m, 0.2m,−0.05)T , ~p2 = (0.05m,−0.2m,−0.05)T .

• Two sensors rotated by 90◦. Their positions in Lu are:

~p3 = (0.05m, 0.2m,−0.25)T , ~p4 = (0.05m,−0.2m,−0.25)T .

In the previous publication [25], it was shown that the electric motor of a small 1:5
scale electric toy car can produce stray magnetic fields of several µT; especially when the
vehicle accelerates. The reason for this is that inadequate magnetic shielding measures
are often taken in technical installations. The supply lines of electronic components with
high power requirements can therefore emit strong magnetic interference fields. Since the
UAV was also equipped with several electric motors, the test cases were performed with
different standard deviations σ of the white noise. A value of 1µT was assumed for the
case of good shielding and 8µT for poorly shielded electric motors. These were realistic
values based on the measurements in [25] and took into account that the UAV may have
multiple electric motors.

4.3. Test Results

Figure 10 shows the localization results using the derived equations and the proposed
polygon detection method.
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Figure 10. Localization quality, good shielding: σ = 1µT.

The flight started at the arrow in the indicated direction, with the UAV flying one
lap under the transmission lines. As was to be expected, good shielding allowed more
precise navigation. The quality of localization was obviously very high with a magnetic
noise standard deviation of σ = 1µT. The mean deviation from the specified flight path was
21 mm, with a maximum error of 54 mm. The standard deviation of the roll angle error
was 0.4◦, and its mean was very close to zero, around 0.025◦. Only the roll angle is shown
here, as it had the largest values since the UAV moved almost exclusively in the yz-plane
in the simulation.

Figure 11 shows the localization results for the case where poorly shielded electrical
drives in the UAV produce magnetic noise with a standard deviation of σ = 8µT.

Figure 11. Localization quality, poor shielding: σ = 8µT.

Despite the high magnetic interference, the navigation worked very well near the
transmission lines due to the high signal-to-noise ratio (SNR). The deviations increased
with greater distance from the transmission lines. Figure 12 shows the deviation from the
specified flight path and the specified roll angle for each waypoint.
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Figure 12. Path and roll angle errors, poor shielding: σ = 8µT.

The mean deviation from the specified flight path was 41 mm, where the maximum
error was 221 mm. The mean deviation from the specified roll angle was −0.22◦, where
the maximum error was 12.3◦. The standard deviation of the roll angle error was 2.96◦.

Figure 13 shows the localization results for the same noise standard deviation of
σ = 8µT when only three sensors were used, i.e., Sensor 4 at ~p4 was excluded.

Figure 13. Localization quality, three sensors, σ = 8µT.

The mean deviation from the specified flight path was 91 mm. In areas far from the
transmission lines, as in this case, very strong outliers could occur occasionally, so that the
maximum error was now about 2260 mm. The outliers occurred very frequently compared
to the case with four sensors, as demonstrated by repeated experiments. These were not
due to an incorrect calculation of the UAV position, but to an incorrect detection of the
polygons. These were extremely distorted by the strong magnetic interference and could
therefore hardly be distinguished from each other. This was to be expected, because the
more sensors were used, the higher the noise immunity was. In practice, the UAV would
carry out aerial manipulations in the vicinity of the transmission lines and would therefore
be in an area with a high SNR. Therefore, it may also be possible to use only three sensors,
as shown in Figure 14. The UAV started its flight near the transmission lines and then flew
between the lines. Only when it then moved away did strong outliers occur. Repeated tests
always led to the same result.
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Figure 14. Localization quality close to the transmission lines and far away, three sensors, σ = 8µT.

In the tests, a current of 700 A was assumed. It should be mentioned that the quality
of the localization depended on the current strength in the transmission lines. This in turn
depended on the per capita energy consumption of the residents, which may vary from city
to city. Thus, for completeness, Figure 15 shows additionally the same case as Figure 10
with a low transmission line current of 100 A.

Figure 15. Localization quality in the case of low transmission line current of 100 A, four sensors,
σ = 1µT.

5. Discussion

As mentioned in Section 3.2, in a real transmission line system, it is difficult to detect
whether the UAV is located below or above the cables without additional detection mecha-
nisms. This is only possible in Figure 14 because the SIL calculated with a static equivalent
current and was only used in the context of the tests.

In this paper, transmission lines were modeled as perfectly straight cables, which
may not be the case in real-world circumstances. Transmission lines, for example, hang
downward, thus forming more of a curved line. Even though the radius of this curve is
very large, the influence on navigation accuracy should be investigated in a further work.
In UAV indoor navigation applications, this problem does not occur because the cables are
shorter and can be routed to fit the straight line model.

Furthermore, the magnetic field contributions of the other two phases of the three-
phase system were neglected, since they are typically at least 2 m away from the phase
under consideration. This should also be investigated in more detail in a further study in
the context of transmission line navigation.

Finally, the magnetometers should be as far away as possible from ferromagnetic
materials that may be in the UAV; otherwise, they may affect the sensor readings.

6. Conclusions

In this work, it was demonstrated that UAV navigation is possible in the magnetic
field of two long parallel conductors. In this context, equations were derived to be able to
calculate the UAV orientation analytically. It was shown that only three magnetometers
are needed for this purpose and that neither the current, nor the magnetic field equations
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need to be known. Furthermore, it was shown that combining the magnetic field equation
with the magnetic energy equation leads to analytical solutions for the calculation of the
sensor position. This results in 16 possible positions for a single sensor, from which the
correct one must be determined. For this purpose, theorems were derived, which can be
used to exclude 14 of the 16. The last two remaining positions are not distinguishable.
However, it was shown that considering multiple sensors allows a whole set of correct
positions to be selected. Here, the positions were combined into a number of polygons in
the yz-plane, from which the one most similar to the original polygon was selected. This
can be determined from the known orientation and the user-defined sensor positions in
the local UAV frame. This ultimately led to a unique determination of the correct sensor
positions and hence the UAV position. All equations, as well as the polygon selection
method were successfully verified for different noise.
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