
applied  
sciences

Article

Strong Photoluminescence Enhancement from Bilayer
Molybdenum Disulfide via the Combination of UV Irradiation
and Superacid Molecular Treatment

Yuki Yamada, Takeshi Yoshimura, Atsushi Ashida , Norifumi Fujimura and Daisuke Kiriya *

����������
�������

Citation: Yamada, Y.; Yoshimura, T.;

Ashida, A.; Fujimura, N.; Kiriya, D.

Strong Photoluminescence

Enhancement from Bilayer

Molybdenum Disulfide via the

Combination of UV Irradiation and

Superacid Molecular Treatment. Appl.

Sci. 2021, 11, 3530. https://doi.org/

10.3390/app11083530

Academic Editor: Amerigo Beneduci

Received: 4 March 2021

Accepted: 7 April 2021

Published: 15 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku,
Sakai-shi, Osaka 599-8531, Japan; yamada-07@pe.osakafu-u.ac.jp (Y.Y.); tyoshi@pe.osakafu-u.ac.jp (T.Y.);
ashida@pe.osakafu-u.ac.jp (A.A.); fujim@pe.osakafu-u.ac.jp (N.F.)
* Correspondence: kiriya@pe.osakafu-u.ac.jp

Abstract: A direct band gap nature in semiconducting materials makes them useful for optical
devices due to the strong absorption of photons and their luminescence properties. Monolayer
transition metal dichalcogenides (TMDCs) have received significant attention as direct band gap
semiconductors and a platform for optical applications and physics. However, bilayer or thicker
layered samples exhibit an indirect band gap. Here, we propose a method that converts the indirect
band gap nature of bilayer MoS2, one of the representative TMDCs, to a direct band gap nature
and enhances the photoluminescence (PL) intensity of bilayer MoS2 dramatically. The procedure
combines UV irradiation with superacid molecular treatment on bilayer MoS2. UV irradiation
induces the conversion of the PL property with an indirect band gap to a direct band gap situation
in bilayer MoS2 when the interaction between the top and bottom layers is weakened by a sort of
misalignment between them. Furthermore, the additional post-superacid treatment dramatically
enhances the PL intensity of bilayer MoS2 by a factor of 700×. However, this procedure is not
effective for a conventional bilayer sample, which shows no PL enhancement. From these results,
the separated top layer would show a strong PL from the superacid treatment. The monolayer-like
top layer is physically separated from the substrate by the intermediate bottom MoS2 layer, and this
situation would be preferable for achieving a strong PL intensity. This finding will be useful for
controlling the optoelectronic properties of thick TMDCs and the demonstration of high-performance
optoelectronic devices.

Keywords: transition metal dichalcogenide (TMDC); photoluminescence; superacid; molecular
treatment; bilayer; molybdenum disulfide (MoS2)

1. Introduction

Transition metal dichalcogenides (TMDCs) with a formula of MX2 (M: Mo and W;
X: S, Se, and Te) have garnered attention as atomically thin optoelectronic materials [1–4].
Various optical devices have been demonstrated, including phototransistors [5,6], pho-
todetectors [7,8], valley-dependent optoelectronics [9–11], light-emitting diodes [12,13],
and photovoltaics [14–16]. So far, monolayer (ML) TMDCs have been widely studied for
application in optoelectronic devices because of their direct band gap nature at K and
K’ points in the Brillouin zone in the ML [17]. The layer-dependent electronic structure
of TMDCs is well known, and the bilayer and thicker layered TMDCs show an indirect
band gap nature [17,18]. The Г point in the Brillouin zone increases with increasing the
thickness, and both the conduction minimum and the K-Г points decrease with increasing
the number of layers [17,18]. Photoluminescence (PL) shows clearly the difference in the
electronic structure between ML and bilayer TMDCs [18]. In the case of a representative
TMDC, MoS2, the ML shows a single PL spectrum around 1.9 eV corresponding to the
direct band gap, while the bilayer shows two main peaks around 1.6 eV and 1.9 eV for the
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coexistence of indirect and direct band gaps, respectively [18]. The PL intensity shown in
the bilayer is usually very low compared with ML because of the dominant indirect band
gap character.

Recently, chemical treatment on ML TMDCs has been reported, and a large enhance-
ment of the PL intensity was demonstrated [19–23]. In the case of ML MoS2, treatment by
oxidative chemicals such as tetracyanoquinodimethane [19] and quinone [20] derivatives,
acids such as sulfuric acid [24], and hydrogen peroxide [25] show a large enhancement of
the PL intensity. One of the strongest modulating agents of PL intensity in ML MoS2 is a
superacid molecule, bis(trifluoromethane)sulfonimide (TFSI), for both mechanically exfoli-
ated and chemical-vapor-deposited ML flakes [26–30]. The PL enhancement mechanism is
still under debate, but the existence of TFSI molecules on ML TMDC would be essential
for achieving the strong PL intensity. Recently, we reported the consistent substantial PL
enhancement of ML MoS2 via a combination of TFSI treatment and additional UV irradia-
tion [31]. In this work, we found an unusually strong PL enhancement from bilayer MoS2
by combining the TFSI treatment with UV irradiation (Figures 1 and 2). The PL enhance-
ment is over several hundred and some of them over 700× from the as-exfoliated bilayer
flakes, and the shape of the PL spectrum dramatically changes to a sort of direct band gap.
The plausible mechanism would be that the separation into a monolayer-like state would
happen under the process. Furthermore, the indirect-to-direct band gap transition was only
observed at the specific bilayer sample which would be like twisted bilayers. This work
would facilitate controlling the interlayer interaction in TMDCs for modulating electronic
structures to achieve atomically thin optoelectronic devices and physics platforms.
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Figure 1. (a,b) Illustrative image of (a) the bilayer MoS2 and (b) the bis(trifluoromethane)sulfonimide (TFSI) treatment for
the UV-irradiated bilayer MoS2. (c,d) Photoluminescence (PL) mapping images for (c) the as-exfoliated bilayer MoS2 and
(d) the TFSI-treated sample for the UV-irradiated bilayer MoS2. The inset in Figure 1c is the optical microscope image for
the targeted bilayer sample.
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Figure 2. Illustrative image of the process applied to the bilayer MoS2.

2. Materials and Methods

Bulk MoS2 was purchased from Structure Probe, Inc. (SPI Supplies). The bilayer
flakes were prepared on Si wafer with 260 nm thermally grown SiO2 (Silicon Valley
Microelectronics, Inc.) via the mechanical exfoliation process. A weight (~3.0 kg cm−2)
was used for the exfoliation process (Figures 1 and 3–5), pressing it over an exfoliation tape.
In the case shown in Figure 6, the pressing weight was not applied. The TFSI molecule
was purchased from Sigma-Aldrich, and acetonitrile (Kanto Chemical Co., Inc. Japan) was
used as the solvent for the TFSI treatment. The TFSI solution (2 mg mL−1) was prepared
under an Ar atmosphere in a glove box (UNICO LTd. Japan, UL-1000A), and the TFSI
treatment procedure was carried out in an ambient environment. The illustrative image
of the process is shown in Figure 2. The UV irradiation process was performed for 5 min
each (Figures 2–5). The exfoliated samples on the Si wafer were immersed in the solution
at room temperature for 10 min in the normal treatment process (Figure 4). In the case
shown in Figure 6, the total UV irradiation times were 15 min (5 min × 3) for the initial UV
irradiation procedure and 15 min (5 min × 3) for the last repeated UV irradiation process
to sufficiently modulate the bilayer sample. The lamp house (high-pressure mercury lamp,
170 mW cm−2) was placed 2 cm (~4 cm from the lamp) above the Si wafer. PL spectra were
measured using a LabRAM HR800 equipped with an EMCCD camera (HORIBA Scientific,
Japan). The wavelength was 532 nm for all measurements. The power of the incident beam
was ~2.7 W cm−2 for measurements of PL and Raman spectra in Figure 6b and 27 W cm−2

for other Raman spectra and PL mapping in Figure 1. Atomic force microscope (AFM)
images were obtained using the dynamic force mode in SII instruments.
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Figure 3. (a) Optical microscope image of the bilayer MoS2. The labels are the measurement regions (regions of interest
(ROIs) 1–4) in Figure 3c–f. (b) Illustrative image of the modulation to the bilayer sample via the UV irradiation process.
The process induces the bilayer to a monolayer-like state. (c–f) PL spectra for the as-exfoliated (original, blue) and the
UV-irradiated (orange) samples in (c) ROI 1, (d) ROI 2, (e) ROI 3, and (f) ROI 4 in Figure 3a.
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Figure 4. (a) Optical microscope image of the bilayer MoS2 after the TFSI treatment followed by the UV irradiation. (b–e)
PL spectra for the TFSI treatment (green) and the second (re-)UV irradiation (red) in (b) ROI 1, (c) ROI 2, (d) ROI 3, and (e)
ROI 4 in Figure 4a. The values in Figure 4b–e are the magnitude of the PL enhancement in the sample over the as-exfoliated
(original) sample.
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Figure 5. (a,b) Atomic force microscope (AFM) images for (a) the as-exfoliated (original) bilayer MoS2 exfoliated with the
weight and (b) the UV-irradiated bilayer MoS2. (c) Raman spectra for the original (blue) and the UV-irradiated (orange)
bilayer MoS2 in ROI 2 in Figure 3. (d) Illustrative image of a plausible state of the bilayer MoS2. The top layer would show a
monolayer-like state due to the weak interaction between the top and bottom layers by a sort of misalignment of each layer.
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Figure 6. (a) Optical microscope image of the sample exfoliated without pressing with the weight. (b) Raman spectra for
the as-exfoliated (original, blue), UV-irradiated (orange), TFSI-treated (green), and re-UV-irradiated (red) bilayer MoS2. The
peak separation between E2g and A1g is about 21.6 cm−1. (c) The plausible situation of the bilayer MoS2 from the Raman
spectra in Figure 6b. This bilayer is a conventional flake. (d,e) PL spectra for the bilayer MoS2 corresponds to Figure 6b; the
original is shown in Figure 6d.

3. Results and Discussion

The sample targeted in this research is illustrated in Figure 1a,b. The bilayer MoS2
flakes were prepared on the Si wafer covered with 260 nm SiO2 via an exfoliation process.
The flake was exfoliated with pressing the weight as shown in the experimental section.
The TFSI molecular treatment was conducted along with the previously reported process;
details are the combination of the UV irradiation and immersion into the TFSI acetonitrile
solution [31]. Figure 1c,d show PL mapping images for the as-exfoliated and the processed
bilayer MoS2, respectively. The bilayer MoS2 shows a considerable PL enhancement, more
than 100× around 1.9 eV, corresponding to a plausible direct band gap nature as seen in
monolayers, via the TFSI molecular treatment with UV irradiation.

We examined each process for the PL enhancement of the bilayer MoS2. The UV
irradiation process was carried out under an ambient condition, which may generate OH
radicals on the surface of MoS2 (Figure 3). In the previous work, an electronic structure
of ML MoS2 was maintained under UV irradiation, even while some chemical reactions
happened on the surface [31,32]. Here, a laterally large (>10 µm) bilayer MoS2 was applied
to the UV irradiation process for 5 min; as a result, the whole area, regions of interest (ROIs)
1–4 in Figure 3, showed a more direct band gap nature with a single peak around 1.86 eV.
The clear signal around 1.64 eV, corresponding to an indirect band gap, was diminished
via the UV irradiation. According to the above result, UV irradiation would induce the
separation of the top and bottom layers to achieve a ML-like state (Figure 3b).

We examined the ML-like sample with UV irradiation by further applying the TFSI
treatment (Figure 4). This treatment changed the PL signal dramatically over the whole
area (Figure 4b–e). All regions (ROIs 1–4) showed a direct band gap with a single PL signal
around 1.88 eV by the TFSI treatment. The factor of the PL enhancement was over 700×
from the as-exfoliated bilayer flakes. Therefore, the combination of UV irradiation and the
TFSI treatment would be useful for modulating the optical property of bilayer MoS2 to
have a strong PL intensity like that of the TFSI-treated ML samples reported previously.

The supplemental UV irradiation was applied to the TFSI-treated bilayer MoS2 but
was found not to be so effective (re-UV irradiation for TFSI treated in Figure 4). This
indicates that the combination of the first UV irradiation and the TFSI treatment process
would achieve saturation of the PL enhancement. In the previous report, the UV irradiation
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was applied after the TFSI treatment and was effective in enhancing the PL intensity for
ML MoS2 flakes [31]. We confirmed the same procedure as in the previous report for
bilayer MoS2; a bilayer MoS2 was treated first with TFSI solution, then by UV irradiation
(Figure S1). The TFSI treatment itself changed the bilayer-like nature to a ML-like nature,
but the PL intensity was still poor. The subsequent UV irradiation strongly enhanced the PL
intensity, and the factor of the enhancement was several hundred times with a single signal
around 1.9 eV. Therefore, the sequence of the TFSI treatment and the UV irradiation does
not matter for achieving the PL enhancement; rather, the combination of both processes is
the essence of obtaining the strong PL in the bilayer MoS2 flakes.

Figure 5 shows atomic force microscope (AFM) images for the as-exfoliated (original)
and UV-irradiated bilayer MoS2. The morphologies of bilayer MoS2 maintain the structure
via the UV irradiation process. Raman spectra for the sample maintain typical E2g and A1g
modes for lateral and vertical vibration signals of MoS2. However, the peak separation
of the two signals is less than 20 cm−1. In previous work, it was found that the peak
separation of E2g and A1g modes is strongly dependent on the interlayer stacking of the
bilayer, and the peak separation reduces if the bilayer is twisted [33–35]. We hypothesize
that the bilayer sample might twist under the exfoliation process, because we pressed the
exfoliation tape onto a substrate with a weight (~3.0 kg cm−2) when exfoliating the flake.
MoS2 is well known as a lubricant, and sliding between layers would happen with low
friction [36]. This twisting would require more study in order to completely understand
the situation. Importantly, the Raman signal is maintained after the UV irradiation process
over the bilayer flake (Figure 5c and Figure S2), even though the character of the PL spectra
converted from an indirect to a direct band gap nature, as shown in Figure 3.

The unusual event shown in the indirect-to-direct band gap conversion for the bilayer
MoS2 would be explained by the interlayer separation between the top and bottom layers
(Figure 5d). Previously, a systematic study of twisted bilayer MoS2 showed different PL
and Raman signals [33–35]. By twisting the top and bottom layers, the peak separation of
E2g and A1g reduces, as observed in our case. In addition, the peak position of the PL signal
corresponding to the indirect band gap upshifts about 0.1 eV. Furthermore, the interlayer
separation is also dependent on the interlayer stacking of the bilayer. If the bilayer is
twisted, weak interaction between the top and bottom layers is expected. This scenario
requires more study, but it would be a plausible explanation for the strong PL intensity
from the bilayer MoS2. Another probable scenario to explain our observations would be
etching the top layer and thinning it to a ML of MoS2 via UV irradiation, because a laser-
thinning process has been reported to reduce the thickness of MoS2 [37–39]. However, the
morphology and color of the sample are maintained in the process, as shown in Figure 5.
It also would be hard to imagine the uniform etching of the whole region of the flake;
therefore, we think the structure is maintained in the process.

To further confirm the process with a conventional, non-twisted bilayer MoS2. We
prepared bilayer MoS2 without using the weight simply by contacting bulk MoS2 with a
Si/SiO2 wafer and exfoliating a bilayer flake (Figure 6a). The Raman spectrum showed
E2g and A1g signals with a peak separation of 21.6 cm−1, corresponding to a typical (non-
twisted) bilayer MoS2 (Figure 6b,c) [19,40,41]. The PL measurement for the bilayer MoS2
showed an indirect band gap around 1.5 eV and a direct band gap nature around 1.86 eV,
respectively. The indirect band gap obtained without the weight showed a downshift from
the bilayer signal exfoliated via pressing with the weight. These PL and Raman tendencies
indicate a non-twisted bilayer MoS2 via the exfoliation process without pressing with the
weight. Then, the non-twisted bilayer flake was applied with the whole process of UV
irradiation, TFSI treatment, and supplemental UV irradiation. Raman spectra showed
almost no change in the process, even though the signal of the A1g showed a bit of an upshift
because of the surface oxidation by the TFSI treatment. The PL signal also maintained
the structure during the whole process. Therefore, the conventional, non-twisted bilayer
flake did not show the conversion to a direct band gap. As in the above considerations, the
observed direct band gap conversion in the bilayer MoS2 would be a sort of separation of
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the top and bottom layers. One explanation is that the conversion would happen in the
twisted bilayer case because of the weak interaction between the top and bottom layers,
and it facilitates the separation to the ML-like situation by the external perturbations.

4. Conclusions

We demonstrated a substantial PL enhancement in the bilayer MoS2. The original
bilayer MoS2 showed a weak PL intensity with the signal of the indirect band gap. A key
finding in this paper is that by both UV irradiation and TFSI treatment, the bilayer MoS2
demonstrates a ML-like PL with a single signal at the direct band gap. In addition, the
combined process induces more than several hundred times PL enhancement from the
bilayer MoS2 compared to the as-exfoliated bilayer flakes. The enhancement mechanism
requires more study, but it would involve the separation of the top and bottom layers
in the bilayer MoS2. This situation would be due to a sort of misalignment of the top
and bottom layers caused by pressing the weight and sliding each layer in the exfoliation
process. If the bilayer is twisted, the interlayer separation between the top and bottom
layers would happen easily, which would lead to an indirect-to-direct band gap conversion
via the process. These phenomena are also supported by treating a conventional bilayer
MoS2 flake; there is no PL enhancement in the conventional case. This technique is useful
for preparing high-optical-quality MoS2 materials and devices. Since the sample is bilayer,
the top layer is separated from the substrate; the bottom MoS2 layer would serve as an
interface layer between the top layer with a strong PL and the substrate. This structure
would be effective in removing substrate effects. This work would open another strategy to
obtain a strong PL intensity from 2D materials and be useful in optical device applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app11083530/s1, Figure S1: PL enhancement via the process of TFSI treatment followed by UV
irradiation for the bilayer MoS2 and Figure S2: Raman spectra for the UV-irradiated bilayer MoS2.
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