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Abstract: Autism spectrum disorder (ASD) is a complex and degenerative neuro-developmental
disorder. Most of the existing methods utilize functional magnetic resonance imaging (fMRI) to detect
ASD with a very limited dataset which provides high accuracy but results in poor generalization.
To overcome this limitation and to enhance the performance of the automated autism diagnosis
model, in this paper, we propose an ASD detection model using functional connectivity features of
resting-state fMRI data. Our proposed model utilizes two commonly used brain atlases, Craddock
200 (CC200) and Automated Anatomical Labelling (AAL), and two rarely used atlases Bootstrap
Analysis of Stable Clusters (BASC) and Power. A deep neural network (DNN) classifier is used to
perform the classification task. Simulation results indicate that the proposed model outperforms
state-of-the-art methods in terms of accuracy. The mean accuracy of the proposed model was 88%,
whereas the mean accuracy of the state-of-the-art methods ranged from 67% to 85%. The sensitivity,
F1-score, and area under receiver operating characteristic curve (AUC) score of the proposed model
were 90%, 87%, and 96%, respectively. Comparative analysis on various scoring strategies show the
superiority of BASC atlas over other aforementioned atlases in classifying ASD and control.

Keywords: autism spectrum disorder; resting-state fMRI; predefined brain atlas; ABIDE; functional
connectivity; connectivity matrix; deep neural network

1. Introduction

Autism spectrum disorder (ASD) is a range of lifelong neurodevelopmental disorders
characterized by difficulties in social interaction and communication and by restricted and
repetitive patterns of behavior [1]. According to an estimate conducted by the World Health
Organization (WHO), 1 in 160 children suffers from ASD worldwide [2]. It is associated
with an array of behavioral symptoms which may take a drastic form if the diagnosis is
delayed [3,4]. Although symptoms are prevalent during infancy, diagnosis is delayed in
most cases. It is because the current diagnostic procedure of ASD is purely subjective
and interview-based that requires the physician to go through a child’s developmental
history and behavior [5,6]. Though these methods are quite accurate, they are undoubtedly
exhaustive, extensive, and also require professional expertise that might not be available at
many health institutions.

Recently, with the advancement of technology, a large cohort of studies are considering
an automated computer-aided diagnosis of autism [7–9] and also developing interactive
tools to aid in the rehabilitation and treatment of autistic patients [10–12]. Such auto-
mated approaches would decrease subjectivity and improve diagnostic reproducibility and
availability. It would also play a substantial role in ensuring early diagnosis. Magnetic
resonance imaging (MRI) can be used to detect various neuropsychiatric and neurodegen-
erative disorders, such as schizophrenia [13–16], dementia, depression [17], autism [18–21],
ADHD [22], Alzheimer’s [23,24], etc., by observing anatomical patterns of the brain using
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structural MRI data or by connecting changes in the brains’ functional architecture to
psychiatric health conditions using functional MRI data.

1.1. Autism Detection Using Structural MRI Data

Structural MRI studies emphasize the morphometric and volumetric investigation to
detect abnormal brain anatomy. Riddle et al. [25] observed that the grey matter volume, the
left anterior superior temporal gyrus, and the total brain volume are enlarged in autistic
children by 1–2% approximately after conducting a voxel-based morphometry analysis.
These findings were not consistent at the adult stage. While Aylward et al. [26] measured
total brain volumes and head circumference from 1.5 m coronal MRI scans in 67 autistic
subjects and 83 healthy community volunteers within the age range of 8 to 46 years and
concluded that no volumetric differences exist between ASD and control brains aged
above 12. Palmen et al. [27] concluded that high-functioning autistic subjects showed
an enlargement of grey-matter volume but no increase in white-matter and cerebellar
volume. In this regard, Courchesne et al. [28] also reported increased grey matter volume,
specifically in the temporal lobes in autism. On the contrary, an increased white matter
and reduced cerebral cortex and hippocampus-amygdala were found in the autistic brain
by Herbert et al. [29]. Conversely, Jou et al. [30] observed decreased central white matter
volume in autistic subjects performing experiments using MRI data. Thus, all the previous
works utilizing structural MRI data failed to reach strong conclusions regarding volumetric
changes and presented inconsistent findings regarding grey and white matter volumes
in autistic and control brains. The use of a small sample size and limited age range can
be regarded as a limitation. In fact, these studies focused more on discovering common
patterns among ASD versus control group rather than solving the inherent classification
problem with reliable accuracy [31].

However, Kong et al. [32] presented a promising study to solve the classification
problem using only structural MRI data by constructing an individual brain network for
each subject and extracting connectivity features between each pair of ROIs (region of
interests). Then, these features were ranked by Fisher score computation. The top 3000
features were provided as input to a deep neural network classifier. Results showed a very
high accuracy of 90.39% and an area under receiver operating characteristic curve (AUC)
score of 97.38% using only 182 subjects from a single site. Accuracy above 0.9 was obtained
when only a dozen subjects were considered [33], and accuracy deteriorates consequently
when a larger dataset is introduced [34].

1.2. Autism Detection Using Resting-State Functional MRI Data

Nielsen et al. [34] used whole-brain point-to-point functional connectivity, including
resting-state functional magnetic resonance imaging (fMRI) data comprising 964 subjects
collected from 16 different international sites. Raw image data were preprocessed in
MATLAB (Mathworks, Natick, MA, USA) [35] using SPM8 (Wellcome Trust, London, UK)
distributor software [36]. After preprocessing, mean BOLD signals for each subject were
extracted from 7266 grey matter ROIs. A 7266 × 7266 association matrix representing
functional connectivity between every ROI pair was computed from Pearson correlation
coefficients for every subject. Each ROI pair was defined as a connection. Connections
were categorized into several bins, and a general linear model classifier was fitted on
bins containing connections. A very low accuracy of merely 60% was achieved for whole-
brain classification.

Heinsfeld et al. [37] applied a deep learning algorithm combining a multilayer percep-
tron (MLP) along with autoencoders and obtained 70% mean classification accuracy using
connectivity features derived from the Craddock 200 (CC200) brain atlas. However, it took
a huge training time (over 32 h). Eslami et al. [38] proposed ASD-Diagnet, a framework for
detecting ASD using only resting-state fMRI data. A combined learning procedure using
an autoencoder and a single-layered perceptron (SLP) was used. Furthermore, to increase
the number of training subjects, a data augmentation strategy based on linear interpolation
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on available feature vectors was implemented. However, this strategy could only improve
accuracy by 1% and presented a mean classification accuracy of 70.1%. Tang et al. [39]
performed ASD and control classification utilizing two types of fMRI imaging modalities.
A 3D Resnet and MLP classifier were used in the classification process. This approach
obtained 74% classification accuracy.

To compete with the advancement of technologies in the neuroimaging field, there
exists a scope for improving the accuracy of existing methods related to diagnosing autism
spectrum disorder utilizing functional MRI. The primary goal of this study is to achieve a
superior accuracy to the existing methods that have utilized mean time series signal based
ASD detection and also to reduce the training time. In this regard, we have utilized the
resting-state fMRI data of 866 subjects comprising 402 ASD and 464 control subjects from
the Autism Brain Imaging Data Exchange (ABIDE) dataset. A detailed description of this
dataset has been represented in Section 3.1, Table 1.

The principal contributions of this work are listed below:

1. Achieved maximum accuracy of 88% using only resting-state functional MRI (rs-
fMRI) data.

2. Reduced training time to less than 10 min, whereas other studies required more than
32 h in [37] and 41 min in [38].

3. Reached the conclusion that the Bootstrap Analysis of Stable Clusters (BASC) atlas
using 122 ROIs yield a higher predictive power than other predefined atlases from
comparative analysis.

The subsequent contents of this study are organized as mentioned. Section 2 and its
subsections describe our proposed model to detect ASD in detail. Section 3 describes the
experimental results, discussions, and overall performance analysis for our proposed model.
Section 4 contains a brief conclusion regarding our research findings and implications.

2. Proposed Approach

Resting-state fMRI (rs-fMRI) performs brain mapping to evaluate regional interactions
occurring in a task-negative state [40]. Studies mostly rely on access to raw fMRI image
data, but raw data take up a huge amount of processing time and might suffer from
overfitting due to their high dimensionality. Taking into account the above issues, a deep
learning approach to detect autism spectrum disorder from functional connectivity features
derived from preprocessed fMRI data is proposed. Figure 1 illustrates each step of the
proposed approach.

Figure 1. The architecture of the proposed approach for autism spectrum disorder (ASD) detection.
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A step-by-step description of the proposed approach is represented in the follow-
ing subsections.

2.1. Preprocessing

The preprocessed fMRI dataset of the ABIDE repository [41,42] was collected from
the preprocessed connectome project (PCP) [43]. The configurable pipeline for the analysis
of connectomes (CPAC) preprocessing pipeline was used, which included slice timing
correction, motion correction, intensity normalization, nuisance signal removals, such as
respiration, heartbeat, low-frequency scanner drifts, global mean signal regression, head
motion, etc. The preprocessed data were band-pass filtered (0.01–0.1 Hz) and spatially
registered to MNI152 template space. Detailed information regarding algorithms, strategies,
parameters used, and software implemented can be obtained from [44].

2.2. Time-Series Extraction from ROIs Using Brain Atlas

Functional MRI scans produce a set of three-dimensional images recorded over time
and measure a signal (most commonly, the blood-oxygen-level-dependent signal or BOLD
signal) that is related to neural activity. In this case, a subject lies in the MRI scanner without
thinking or doing anything in particular, while a series of brain images are generated over
time that depicts the change in BOLD signal intensity [40]. Thus, a single preprocessed
fMRI scan is a 4D time-series data including three spatial dimensions and time.

Instead of working with the entire time series obtained from every brain voxel directly,
certain brain regions of interest (as defined by the brain atlases) were considered here. The
mean time-series signals or BOLD signal intensities from voxels enclosed within those
regions were extracted using brain atlases. Four standard predefined brain atlases were
used to extract ROIs. Among these, the Bootstrap Analysis of Stable Clusters (BASC)
atlas, the Power atlas and the Craddock 200 (CC200) atlas are functional and Automated
Anatomical Labeling (AAL) is a structural atlas. The number of ROIs defined by the
BASC, Power, CC200, and AAL atlas were 122, 264, 200, and 116, respectively. Information
regarding these atlases is provided in Section 2.2.1.

2.2.1. Selection of Predefined Atlases

(i) AAL—Automated Anatomical Labelling: It is a structural atlas comprising 116 ROIs
defined from the anatomy of a reference object [45]. These ROIs are represented
in continuous colors in Figure 2 along the three anatomical planes (Axial, Sagittal,
and Coronal).

Figure 2. Automated Anatomical Labelling (AAL) atlas.

(ii) BASC—Bootstrap Analysis of Stable Clusters This multiscale functional brain par-
cellation atlas was generated from rs-fMRI images using a method called bootstrap
analysis of stable clusters in [46]. It consists of a different number of ROIs {36, 64,
122, 197, 325, 444}. The BASC atlas with 122 ROIs was utilized in this study which is
represented in Figure 3 using continuous colors.
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Figure 3. Bootstrap Analysis of Stable Clusters (BASC) atlas.

(iii) CC200—Craddock 200 The CC200 functional brain parcellation atlas was generated
by normalized cut spectral clustering of the entire brain into 200 spatially-constrained
regions of homogeneous functional activity by Craddock et al. [47].

(iv) Power Power atlas comprising 264 ROIs was defined by local graph-connectivity by
Power et al. [48]. All the images used in this section were generated by the Nilearn
Python library [49].

2.2.2. Mean Timeseries Extraction of ROIs from 4D fMRI Brain Volume

Applying a brain atlas on 4D fMRI scans can be imagined as overlaying a series of
3D grids that act like a mask and select which cubes or voxels to sample from at every
time point. Thus, original 4D fMRI data of a single subject with dimensions (H, W, D, T)
gets transformed to 2D data with dimensions (T, N) where H, W, D, T, and N represents
height, width, depth, or number of slices, time points of the image volume and number of
ROIs, respectively.

However, the whole process of extracting mean time-series signals applying brain
atlas on preprocessed rs-fMRI data requires a huge amount of memory space. Due to
hardware and memory constraints, we utilized pre-extracted time-series data. In this study,
mean time-series signals containing CC200 and AAL defined ROIs were obtained directly
from PCP [44], and those containing BASC and Power atlas defined ROIs were collected
from [50]. Thus, the (T, N) dimension in our study was (196, 200), (196, 116), (196, 122), and
(196, 264) for CC200, AAL, BASC, and Power, respectively, since scans were generated for
196 time points in each case.

2.3. Building Functional Connectivity Matrix

The (T, N) dimensional data were then transformed into a functional connectivity
matrix or a connectome with dimensions (N, N). A functional connectome can be defined
as a connectivity matrix that measures the correlation between a set of individual brain
ROIs as defined by the respective brain atlas. In this case, dimensions became (200, 200),
(116, 116), (122, 122), and (264, 264) for CC200, AAL, BASC, and Power atlases, respectively.

To build functional connectomes, tangent embedded parametrization of the default
Ledoit-Wolf regularized covariance estimator was implemented using the Nilearn li-
brary [49]. Tangent space embedding uses both correlations and partial correlations to
capture reproducible connectivity patterns at the group-level and models individual connec-
tivities as deviations from the mean [51]. Functional connectivity matrices are represented
in Figure 4 as an embedded connectome to visualize the striking differences between
functional connectivity among brain regions from a random autistic and control sample.
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Figure 4. Difference between connectomes of random participants belonging to the ASD and control group.

2.4. Transforming 2D Functional Connectivity Matrix to 1D Feature Vector

The tangent connectivity matrix was symmetrical, and the upper triangular value
repeated the lower one. To reduce dimensionality, the upper triangular values, including
the principal diagonal, were removed, and the lower triangular values were retrieved as
shown in Figure 1. Next, the lower triangular part was flattened to a 1D feature vector
of size,

S =
N(N − 1)

2
, (1)

where N = number of ROIs. Thus, using the stated atlases, we received a feature vector of
size 19,900, 6670, 7381, and 34,716, respectively, for CC200, AAL, BASC, and Power atlases
in the case of each subject.

2.5. Classification Using a Deep Neural Network Classifier

The obtained feature vectors in Section 2.4 were provided as input to the proposed
deep neural network classifier (DNN). The proposed DNN (referred as Model-2 in the
later sections) consisted of two hidden layers with 32 neurons per layer, as illustrated
in Figure 5. A dropout layer with a dropout probability of 0.8 was introduced between
each layer to control overfitting. The hidden layers used the rectified linear unit (ReLU)
activation function, and the final output layer used the sigmoid activation function.

Let xi and bi be the input and bias value of hidden layer i, respectively, Wi is the
weight vector connecting the nodes in hidden layer i to the nodes in hidden layer i + 1,
then, hidden layer i + 1 is activated using the following equation:

Zi+1 = f (Wixi + bi) (2)

where Z denotes activation of the subscripted hidden layer and f is the ReLU activation
function defined as:

f (x) = max(0, x) (3)



Appl. Sci. 2021, 11, 3636 7 of 16

Thus, ReLU gives an output within the range of [0, ∞]. In the case of sigmoid,

f (x) =
1

1 + e−x (4)

where e = Euler’s number. It exists between 0 and 1 and predicts the probability value as an
output in the case of binary classification. Xavier and He weight initializers were used with
sigmoid and ReLU activations, respectively. Adam, with a relatively low learning rate of
0.0001 and default parameters, was applied as the optimizer [52]. The binary cross-entropy
loss function was used in this binary classification problem (ASD vs. control). This loss
function is defined as:

J = − 1
m

m

∑
i=1

[yi · log(p(yi)) + (1 − yi)· (5)

where m is the total number of samples, y is the label, and p indicates the probability of
y belonging to autism or control group. The objective of the network is to minimize the
value of loss function, J.

Figure 5. Proposed deep neural network architecture to predict ASD.

Since our input vector was high dimensional, we employed L2 regularization tech-
niques and introduced a very small batch size of 10 during training so that our model
generalized well and performed better on unseen data.

3. Experimental Results and Discussion

The experiments were implemented in Colab notebook using python v3.6. Cloud
provided backend free tensor processing unit (TPU) runtime and 12.72 GB RAM on Intel
Core i7 processor. The deep learning model used Keras API with TensorFlow backend.
For model evaluation, scoring strategy, and numerical computation, the scikit learn library
was utilized.

3.1. ABIDE Dataset Description

Experimental analysis was conducted over the ABIDE dataset. ABIDE is a consortium
that has collected resting-state fMRI data and corresponding phenotypic information of
subjects from 17 international sites [41]. Originally, it contained 1112 scans, including
539 ASD and 573 control individuals. However, all functional data could not pass the QAP
(Quality Assessment Protocol) metrics as formulated by the PCP community [44], which
reduced the size of the dataset to 866 subjects containing 402 ASD and 464 control subjects.
Table 1 contains the phenotypic information of the participants used in this study.
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Table 1. Phenotypic information summary of the participants from the ABIDE dataset.

Autism Brain Imaging Data Exchange (ABIDE) Dataset

Site
Count

Age Range
ASD Control Total

Caltech 5 10 15 17–56
CMU 6 4 10 19–40
KKI 12 20 32 8–13

LEUVEN 26 30 56 12–32
MAX_MUN 19 27 46 7–58

NYU 74 98 172 6–39
OHSU 12 13 25 8–15
OLIN 14 14 28 10–24
PITT 24 26 50 9–35
SBL 12 14 26 20–64

SDSU 8 18 26 9–17
Stanford 12 13 25 8–13
Trinity 19 25 44 12–26
UCLA 48 37 85 8–18

UM 46 73 119 8–29
USM 43 24 67 9–50
YALE 22 18 40 8–18

TOTAL 402 464 866 6–64
Detailed information about ABIDE dataset is available in [42].

3.2. Data Partitioning Using Stratified 5-Fold Cross-Validation

Extensive fine-tuning and experimentation were performed in the DNN classifier
by varying different hyperparameters. The number of hidden layer neurons of the deep
neural network was varied within the range of 8 to 64, and performance was recorded in
each case using each of the four atlases. The network structure represented in Figure 5
outperformed other configurations. Each network was validated using the stratified 5-fold
cross-validation approach preserving the percentage of subjects in each target class (autism
and control) to retain class balance. Twenty percent of the dataset was used as test cases,
and the remaining 80% was utilized in training and validation. Within the training dataset,
80% of data was used for training and 20% for validation. A figurative representation of
data partitioning is shown in Figure 6. This strategy allowed robust model evaluation
while training and testing using different subsets of data.

Figure 6. Data partitioning using stratified 5-fold cross-validation.

3.3. Performance Evaluation Using Different Atlas

Mean performance metrics for different network configurations by fine-tuning us-
ing the atlases mentioned in Section 2.2.1 are represented in the following subsections.
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Tables 2–5 represent the value of sensitivity, F1-score, and AUC score for each atlas. Values
of mean accuracy and its standard deviation are also shown in percentages. A dropout
probability of 0.8 was introduced between each layer to control overfitting, as shown in
Figure 5. All the models were compiled using the Adam optimizer with a learning rate of
0.0001 and binary cross-entropy loss function and trained with a batch size of 10. Confusion
matrix and mean AUC (area under receiver operating characteristic curve) curves were
also represented in each case.

Table 2. Mean performance evaluation using Craddock 200 (CC200) atlas for different network configurations.

Network Configuration Mean Performance Evaluation using Craddock 200 (CC200) Atlas

Model Input
Layer

Hidden
Layer 1

Hidden
Layer 2 Accuracy Acc. Std

(%) Sensitivity F1-Score AUC Score

Model-1 19900 64 32 0.8473 1.57 0.9406 0.8510 0.9515
Model-2 19900 32 32 0.8668 2.38 0.8683 0.8579 0.9571
Model-3 19900 32 16 0.8530 3.02 0.7194 0.8185 0.9569
Model-4 19900 16 16 0.6843 2.74 0.9429 0.7343 0.9595
Model-5 19900 16 8 0.5947 4.23 0.9182 0.6770 0.9592

Table 3. Mean performance evaluation using Power atlas for different network configurations.

Network Configuration Mean Performance Evaluation using Power Atlas

Model Input
Layer

Hidden
Layer 1

Hidden
Layer 2 Accuracy Acc. Std

(%) Sensitivity F1-Score AUC Score

Model-1 34716 64 32 0.7898 2.12 0.9626 0.8098 0.9513
Model-2 34716 32 32 0.8533 2.38 0.8633 0.8453 0.9531
Model-3 34716 32 16 0.8245 2.31 0.9429 0.8335 0.9505
Model-4 34716 16 16 0.8638 3.22 0.7662 0.8385 0.9565
Model-5 34716 16 8 0.5993 2.16 0.9802 0.6946 0.9509

Table 4. Mean performance evaluation using BASC atlas for different network configurations.

Network Configuration Mean Performance Evaluation using Bootstrap Analysis of Stable
Clusters (BASC) Atlas

Model Input
Layer

Hidden
Layer 1

Hidden
Layer 2 Accuracy Acc. Std

(%) Sensitivity F1-Score AUC Score

Model-1 7381 64 32 0.8557 2.76 0.8634 0.8467 0.9570
Model-2 7381 32 32 0.8787 2.33 0.9029 0.8739 0.9587
Model-3 7381 32 16 0.8672 2.49 0.8507 0.8563 0.9439
Model-4 7381 16 16 0.8545 2.51 0.8358 0.8419 0.9471
Model-5 7381 16 8 0.8579 1.90 0.8731 0.8511 0.9418

Table 5. Mean performance evaluation using AAL atlas for different network configurations.

Network Configuration Mean Performance Evaluation using Automated Anatomical
Labeling (AAL) Atlas

Model Input
Layer

Hidden
Layer 1

Hidden
Layer 2 Accuracy Acc. Std

(%) Sensitivity F1-Score AUC Score

Model-1 6670 64 32 0.8611 2.59 0.8933 0.8561 0.9523
Model-2 6670 32 32 0.8737 2.49 0.8412 0.8599 0.9512
Model-3 6670 32 16 0.8679 3.77 0.7941 0.8475 0.9500
Model-4 6670 16 16 0.8702 3.95 0.9082 0.8665 0.9522
Model-5 6670 16 8 0.8312 2.73 0.9404 0.8379 0.9509



Appl. Sci. 2021, 11, 3636 10 of 16

3.3.1. CC200 Atlas

Analyzing the mean performance evaluation using five different network configu-
rations from Table 2, it can be observed that CC200 achieved the highest accuracy and
F1-score in our proposed Model-2. Though, sensitivity and AUC were the highest for
Model-4. However, accuracy and F1 score were relatively lower. Model-2 achieved a
relatively good score across all performance metrics. Figure 7 represents the confusion
matrix and mean AUC curve using the proposed Model-2.

Figure 7. Confusion matrix and area under receiver operator characteristic curve (AUC) curve for
CC200 atlas using Model-2.

3.3.2. Power Atlas

From Table 3, it is observed that the proposed Model-2 achieved a superior F1-score
while the remaining scores were also greater than 85%. Model-5 obtained the highest
sensitivity while accuracy and F1-score remained poor. AUC score remained almost
constant at 95% for all models. Figure 8 represents the confusion matrix and mean AUC
curve using the proposed Model-2.

3.3.3. BASC Atlas

Table 4 shows that the BASC atlas achieved the highest performance measure across
all performance metrics using the proposed model. Figure 9 contains the confusion matrix
and AUC curve using Model-2.

3.3.4. AAL Atlas

From Table 5, it is evident that AAL atlas represented a fluctuating performance across
different models for each scoring metric. The confusion matrix and AUC curve using
Model-2 are illustrated in Figure 10.

Figure 8. Confusion matrix and AUC curve for Power atlas using Model-2.
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Figure 9. Confusion matrix and AUC curve for BASC atlas using Model-2.

Figure 10. Confusion matrix and AUC curve for AAL atlas using Model-2.

3.4. Performance Comparison among Atlases

A comparison of all performance metrics across all four atlases is represented in
Figure 11 using the proposed Model-2 to determine which atlas had the most discriminative
power in identifying autism and control cases.

Figure 11. Performance comparison among atlases using Model-2.

From the above graphical analysis, the following points can be demonstrated:

• BASC atlas provided superior performance in terms of accuracy, sensitivity, F1, and
AUC score using the proposed Model-2.

• AAL showed inconsistent results among various metrics. It had the lowest sensitivity
value, which is very crucial and significant in medical diagnosis.

• CC200 and Power atlas depicted the lowest predictive power based on its performance
value across all measures.

From the aforementioned points, it can be concluded that the BASC atlas displays
the best performance across all metrics. It exhibits the highest discriminative power in a
balanced manner which is evident from its F1 score. Other models exceeding two hidden
layers were also attempted, but experimental results deteriorated due to the limited dataset.
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3.5. Performance Comparison Using BASC Atlas and Single-Site Data

A quantitative analysis of accuracy, sensitivity, and F1-score obtained by testing the
proposed Model-2 classifier on data obtained from individual screening sites of ABIDE is
represented in Table 6 using BASC atlas.

Table 6. Performance comparison using Model-2 and BASC atlas on data obtained from individual
screening sites.

Site ID No of Subjects Accuracy Sensitivity F1-Score

PITT 50 0.94 0.96 0.94
YALE 40 0.95 0.91 0.95
NYU 172 0.92 0.92 0.91
UM 119 0.93 0.92 0.92

From the above tabular analysis, a significant improvement in performance can be
observed across different performance metrics while using data obtained from individual
screening sites. On the contrary, performance drops when the entire ABIDE dataset
comprising 17 international sites was used for testing. This is because different sites use
different MRI acquisition protocols, scanning parameters, ways of laying the participants
in the scanner, etc., which introduces huge variance across datasets obtained from different
sites. Moreover, the effect of domain shift and distributional shift might also be responsible
for such differences in performance measures.

3.6. Performance Comparison with Machine Learning Methods

Performance of machine learning classifiers, such as k-nearest neighbors (KNN),
Random Forest, Naïve Bayes, etc., to successfully predict functional connectivity-based
classification have been compared across rs-fMRI cohorts by Dadi et al. in [50]. To our
knowledge, no such comparative analysis has been conducted using deep learning classi-
fiers as of now. In Table 7, a performance comparison between popular machine learning
algorithms and our proposed Model-2 is represented. From this table, it is evident that our
proposed deep learning model outperformed the machine learning techniques.

Table 7. Performance comparison with different machine learning algorithms.

L-SVM KNN DT RF GNB Model-2
AAL 0.6613 0.481 0.5224 0.5637 0.6176 0.8737
BASC 0.6166 0.5473 0.5115 0.5427 0.62 0.8787
CC200 0.6865 0.5488 0.5166 0.574 0.6026 0.8668

POWER 0.6697 0.5265 0.5161 0.5254 0.6062 0.8533
Here, L-SVM indicates linear support vector machine; KNN means k-nearest neighbor; DT represents decision
tree; RF indicates random forest and GNB means Gaussian Naïve Bayes classifier.

Performance was measured using accuracy metrics. The Green–Yellow–Red color
scale is used to highlight the performances where green indicates superior performance
and red indicates the lowest performance.

3.7. Performance Comparison with Existing Literature

Table 8 illustrates the highest performance measure obtained from different exist-
ing works related to fMRI based ASD identification using brain atlases and our pro-
posed model.
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Table 8. Performance comparison with existing literature.

Methods Year Published Accuracy (%)

Abraham et al. [53] 2017 66.80
Heinsfeld et al. [37] 2018 70.00

Eslami et al. [38] 2019 70.30
Wang et al. [54] 2020 74.52
Yang et al. [55] 2020 75.27
Tang et al. [39] 2020 74.00

Our Proposed Model _ 87.87

The present study marked a significant performance improvement compared to exist-
ing studies. Despite that, some limitations need to be addressed. Only functional MRI data
were utilized here for classification, whereas a combination of functional and structural
MRI data has proven to achieve high prediction accuracy in [31,56]. Therefore, in future
studies, other imaging modalities, such as structural MRI along with functional MRI data,
may contain complementary information regarding ASD. However, implementation of
the domain adaption technique [57] and encoding decoding technique [58] would also
aid in prediction with more reliability and generalize well on unseen data obtained from
different screening sites following different acquisition protocol. Other advanced neural
network architectures, such as CNN, 3D based CNN model, etc., can also be utilized
for prediction purposes and might prove to be fruitful. Furthermore, other options for
implementing pipeline steps, such as usage of other available atlases, such as CC400, HO,
Dosenbach, MSDL, etc., usage of first principal component-based time series extraction as
in [59], non-correlation based functional connectivity matrix parametrization as in [60] and
graph-based spectral method of vectorization as in [61], are aimed to be implemented in
future studies.

4. Conclusions

In this paper, a deep learning approach using multisite resting-state fMRI was intro-
duced to predict ASD. ASD detection is a challenging task since no standard modeling
choice has yet been recognized, and the current practice is very much diverse. In this
paper, preprocessed fMRI data were obtained from the CPAC pipeline. To extract mean
BOLD signals from preprocessed data, brain atlases were used. A single brain atlas that
can serve as a biomarker for the detection of ASD has not yet been discovered. Thus, four
different standard and predefined atlases were used to extract ROIs. Connectivity matrices
were prepared using tangent embedding and flattened to form a feature vector removing
redundant information. This feature vector was provided as input to our proposed model.
Hidden layer configuration of the model was also varied, and its impact on detection ob-
served. After performing a wide array of experiments, it has been confirmed that the BASC
atlas using 122 ROIs yields higher predictive power than AAL, CC200, or Power atlases
and can be considered to be more reliable in ASD diagnosis. It achieved 88% accuracy,
90% sensitivity, 87% F1-score, and 96% area under receiver operating characeristic curve.
This result transcends most of the performances of existing works indicating that it is a
promising method for ASD diagnosis. The successful implementation of this method may
be used for a wide range of applications, such as identifying neural activation patterns
responsible for autism and performing visual evaluation of the functional characteristics of
the autistic brain. By examining the contrast between the autistic and control brain, the
underlying neural or biological basis of ASD can also be unveiled and established.

Author Contributions: Conceptualization, K.D.; Data curation, F.Z.S.; Formal analysis, F.Z.S.; Fund-
ing acquisition, P.K.D. and T.K.; Investigation, F.Z.S.; Methodology, F.Z.S.; Software, F.Z.S.; Supervi-
sion, K.D.; Validation, F.Z.S.; Visualization, F.Z.S.; Writing—original draft, F.Z.S.; Writing—review
& editing, K.D., P.K.D., and T.K. All authors have read and agreed to the published version of
the manuscript.



Appl. Sci. 2021, 11, 3636 14 of 16

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The authors have used the publicly available Autism Brain Imaging
Data Exchange (ABIDE) dataset which is available in [41]. For experimentation and validation, the
CPAC preprocessed mean time-series dataset has been obtained from the preprocessed connectome
project (PCP) initiative in [44] for Craddock 200 (CC200) and Automated Anatomical Labeling (AAL)
atlas. Mean time-series dataset for Bootstrap Analysis of Stable Clusters (BASC) and Power atlas has
been collected from [50].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Elsabbagh, M.; Divan, G.; Koh, Y.; Kim, Y.; Kauchali, S.; Marcín, C.; Montiel-Nava, C.; Patel, V.; Paula, C.; Wang, C.; et al. Global

prevalence of autism and other pervasive developmental disorders. Autism Res. 2012, 5, 160–179. [CrossRef] [PubMed]
2. Autism Spectrum Disorders. Available online: https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders

(accessed on 13 February 2021).
3. Gotham, K.; Pickles, A.; Lord, C. Trajectories of autism severity in children using standardized ados scores. Pedriatics 2012, 130,

e1278–e1284. [CrossRef]
4. Szatmari, P.; Georgiades, S.; Duku, E.; Bennett, T.; Bryson, S.; Fombonne, E.; Mirenda, P.; Roberts, W.; Smith, I.; Vaillancourt, T.;

et al. Developmental trajectories of symptom severity and adaptive functioning in an inception cohort of preschool children with
autism spectrum disorder. JAMA Psychiatry 2015, 72, 276. [CrossRef] [PubMed]

5. Lord, C.; Rutter, M.; Goode, S.; Heemsbergen, J.; Jordan, H.; Mawhood, L.; Schopler, E. Austism diagnostic observation schedule:
A standardized observation of communicative and social behavior. J. Autism Dev. Disord. 1989, 19, 185–212. [CrossRef] [PubMed]

6. Lord, C.; Rutter, M.; Le Couteur, A. Autism diagnostic interview-revised: A revised version of a diagnostic interview for
caregivers of individuals with possible pervasive developmental disorders. J. Autism Dev. Disord. 1994, 24, 659–685. [CrossRef]

7. Leo, M.; Carcagnì, P.; Distante, C.; Mazzeo, P.L.; Spagnolo, P.; Levante, A.; Petrocchi, S.; Lecciso, F. Computational analysis of
deep visual data for quantifying facial expression production. Appl. Sci. 2019, 9, 4542.

8. Han, J.; Li, Y.; Kang, J.; Cai, E.; Tong, Z.; Ouyang, G.; Li, X. Global synchronization of multichannel eeg based on rényi entropy in
children with autism spectrum disorder. Appl. Sci. 2017, 7, 257.

9. Liu, X.; Wu, Q.; Zhao, W.; Luo, X. Technology-facilitated diagnosis and treatment of individuals with autism spectrum disorder:
An engineering perspective. Appl. Sci. 2017, 7, 1051.

10. Johnston, D.; Egermann, H.; Kearney, G. SoundFields: A virtual reality game designed to address auditory hypersensitivity in
individuals with autism spectrum disorder. Appl. Sci. 2020, 10, 2996. [CrossRef]

11. Johnston, D.; Egermann, H.; Kearney, G. Measuring the behavioral response to spatial audio within a multi-modal virtual reality
environment in children with autism spectrum disorder. Appl. Sci. 2019, 9, 3152. [CrossRef]

12. Magrini, M.; Curzio, O.; Carboni, A.; Moroni, D.; Salvetti, O.; Melani, A. Augmented interaction systems for supporting autistic
children. evolution of a multichannel expressive tool: The SEMI project feasibility study. Appl. Sci. 2019, 9, 3081. [CrossRef]

13. Garrity, A.; Pearlson, G.; McKiernan, K.; Lloyd, D.; Kiehl, K.; Calhoun, V. Aberrant “Default Mode” Functional connectivity in
schizophrenia. Am. J. Psychiatry 2007, 164, 450–457. [CrossRef] [PubMed]

14. Zhou, Y.; Liang, M.; Tian, L.; Wang, K.; Hao, Y.; Liu, H.; Liu, Z.; Jiang, T. Functional disintegration in paranoid schizophrenia
using resting-state fMRI. Schizophr. Res. 2007, 97, 194–205.

15. Jafri, M.J.; Pearlson, G.D.; Stevens, M.; Calhoun, V.D. A method for functional network connectivity among spatially independent
resting-state components in schizophrenia. NeuroImage 2008, 39, 1666–1681. [CrossRef]

16. Calhoun, V.; Sui, J.; Kiehl, K.; Turner, J.; Allen, E.; Pearlson, G. Exploring the psychosis functional connectome: Aberrant intrinsic
networks in schizophrenia and bipolar disorder. Front. Psychiatry 2012, 2, 75. [CrossRef]

17. Craddock, R.; Holtzheimer, P.; Hu, X.; Mayberg, H. Disease state prediction from resting state functional connectivity. Magn.
Reson. Med. 2009, 62, 1619–1628. [CrossRef]

18. Plitt, M.; Barnes, K.; Martin, A. Functional connectivity classification of autism identifies highly predictive brain features but falls
short of biomarker standards. NeuroImage: Clin. 2015, 7, 359–366. [CrossRef]

19. Anderson, J.; Nielsen, J.; Froehlich, A.; DuBray, M.; Druzgal, T.; Cariello, A.; Cooperrider, J.; Zielinski, B.; Ravichandran, C.;
Fletcher, P.; et al. Functional connectivity magnetic resonance imaging classification of autism. Brain 2011, 134, 3742–3754.
[CrossRef]

20. Shi, C.; Zhang, J.; Wu, X. An fMRI feature selection method based on a minimum spanning tree for identifying patients with
autism. Symmetry 2020, 12, 1995. [CrossRef]

21. Rakhimberdina, Z.; Liu, X.; Murata, T. Population graph-based multi-model ensemble method for diagnosing autism spectrum
disorder. Sensors 2020, 20, 6001. [CrossRef]

http://doi.org/10.1002/aur.239
http://www.ncbi.nlm.nih.gov/pubmed/22495912
https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders
http://doi.org/10.1542/peds.2011-3668
http://doi.org/10.1001/jamapsychiatry.2014.2463
http://www.ncbi.nlm.nih.gov/pubmed/25629657
http://doi.org/10.1007/BF02211841
http://www.ncbi.nlm.nih.gov/pubmed/2745388
http://doi.org/10.1007/BF02172145
http://doi.org/10.3390/app10092996
http://doi.org/10.3390/app9153152
http://doi.org/10.3390/app9153081
http://doi.org/10.1176/ajp.2007.164.3.450
http://www.ncbi.nlm.nih.gov/pubmed/17329470
http://doi.org/10.1016/j.neuroimage.2007.11.001
http://doi.org/10.3389/fpsyt.2011.00075
http://doi.org/10.1002/mrm.22159
http://doi.org/10.1016/j.nicl.2014.12.013
http://doi.org/10.1093/brain/awr263
http://doi.org/10.3390/sym12121995
http://doi.org/10.3390/s20216001


Appl. Sci. 2021, 11, 3636 15 of 16

22. Zhang, T.; Li, C.; Li, P.; Peng, Y.; Kang, X.; Jiang, C.; Li, F.; Zhu, X.; Yao, D.; Biswal, B.; et al. Separated channel attention
convolutional neural network (sc-cnn-attention) to identify adhd in multi-site rs-fmri dataset. Entropy 2020, 22, 893. [CrossRef]
[PubMed]

23. Greicius, M.; Srivastava, G.; Reiss, A.; Menon, V. Default-mode network activity distinguishes Alzheimer’s disease from healthy
aging: Evidence from functional MRI. Proc. Natl. Acad. Sci. USA 2004, 101, 4637–4642. [CrossRef] [PubMed]

24. Chen, G.; Ward, B.; Xie, C.; Li, W.; Wu, Z.; Jones, J.; Franczak, M.; Antuono, P.; Li, S. Classification of alzheimer disease, mild
cognitive impairment, and normal cognitive status with large-scale network analysis based on resting-state functional MR
Imaging. Radiology 2011, 259, 213–221. [CrossRef]

25. Riddle, K.; Cascio, C.; Woodward, N. Brain structure in autism: A voxel-based morphometry analysis of the autism brain imaging
database exchange (ABI DE). Brain Imaging Behav. 2016, 11, 541–551. [CrossRef] [PubMed]

26. Aylward, E.; Minshew, N.; Field, K.; Sparks, B.; Singh, N. Effects of age on brain volume and head circumference in autism.
Neurology 2002, 59, 175–183. [CrossRef] [PubMed]

27. Palmen, S.; Hulshoff Pol, H.; Kemner, C.; Schnack, H.; Durston, S.; Lahuis, B.; Kahn, R.; Van Engelend, H. Increased gray-matter
volume in medication-naive high-functioning children with autism spectrum disorder. Psychol. Med. 2004, 35, 561–570. [CrossRef]

28. Courchesne, E.; Pierce, K.; Schumann, C.; Redcay, E.; Buckwalter, J.; Kennedy, D.; Morgan, J. Mapping early brain development in
autism. Neuron 2007, 56, 399–413. [CrossRef]

29. Herbert, M.; Ziegler, D.; Deutsch, C.; O’Brien, L.; Lange, N.; Bakardjiev, A.; Hodgson, J.; Adrien, K.; Steele, S.; Makris, N.; et al.
Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain 2003, 126, 1182–1192.
[CrossRef]

30. Jou, R.; Mateljevic, N.; Minshew, N.; Keshavan, M.; Hardan, A. Reduced central white matter volume in autism: Implications for
long-range connectivity. Psychiatry Clin. Neurosci. 2010, 65, 98–101. [CrossRef]
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