
applied  
sciences

Article

Segmenting Star Images with Complex Backgrounds Based on
Correlation between Objects and 1D Gaussian Morphology

Yunlong Zou 1,2, Jinyu Zhao 1,*, Yuanhao Wu 1 and Bin Wang 1

����������
�������

Citation: Zou, Y.; Zhao, J.; Wu, Y.;

Wang, B. Segmenting Star Images

with Complex Backgrounds Based on

Correlation between Objects and 1D

Gaussian Morphology. Appl. Sci.

2021, 11, 3763. https://doi.org/

10.3390/app11093763

Received: 2 March 2021

Accepted: 16 April 2021

Published: 22 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,
Changchun 130033, China; zouyunlong16@mails.ucas.ac.cn (Y.Z.); wuyuanhao@ciomp.ac.cn (Y.W.);
wangbin@ciomp.ac.cn (B.W.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: zhaojy@ciomp.ac.cn; Tel.: +86-0431-86178073

Abstract: Space object recognition in high Earth orbits (between 2000 km and 36,000 km) is affected
by moonlight and clouds, resulting in some bright or saturated image areas and uneven image
backgrounds. It is difficult to separate dim objects from complex backgrounds with gray thresholding
methods alone. In this paper, we present a segmentation method of star images with complex back-
grounds based on correlation between space objects and one-dimensional (1D) Gaussian morphology,
and the focus is shifted from gray thresholding to correlation thresholding. We build 1D Gaussian
functions with five consecutive column data of an image as a group based on minimum mean square
error rules, and the correlation coefficients between the column data and functions are used to extract
objects and stars. Then, lateral correlation is repeated around the identified objects and stars to
ensure their complete outlines, and false alarms are removed by setting two values, the standard
deviation and the ratio of mean square error and variance. We analyze the selection process of each
thresholding, and experimental results demonstrate that our proposed correlation segmentation
method has obvious advantages in complex backgrounds, which is attractive for object detection and
tracking on a cloudy and bright moonlit night.

Keywords: star image segmentation; correlation thresholding; 1D Gaussian morphology; com-
plex backgrounds

1. Introduction

Thresholding segmentation [1] is an important process for space object recognition
and extraction in star images. Stars and skylight backgrounds are separated by differences
in grayscale, and segmentation thresholdings commonly used today are global threshold-
ings [2–13] and local thresholdings [14–19]. A global thresholding is to specify a unified
thresholding for all pixels of an image, such as the Otsu method [2–5], maximum entropy
method [6–10] and the minimum error thresholding method [11], which are only applicable
to star images where the gray levels of objects and backgrounds are clearly distinguished.
Local thresholding is selected according to features of different regions in star images, such
as the Bernsen algorithm [14], Niblack algorithm [15,16], and layered detection strategy in
irregularly sized subregions [19], and the selection of sub-blocks has a great impact on the
results of image segmentation.

However, due to the influence of bright moonlight, thin clouds and vignetting effect
of optical system, the local image backgrounds fluctuate greatly, and even many gray
saturation regions appear. In this case, both types of thresholdings are hard to achieve good
segmentation between complex backgrounds and dark objects. Gray thresholding segmen-
tation ignores the imaging characteristics of space objects, whose energy distributions are
presented as approximately symmetric Gaussian distributions and bright spots diffused
to the surroundings [20–23]. However, 2D morphology of the bright spots is not always
significant. On the one hand, for a dark target, its gray level is close to the intensity of
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the image background, and the 2D Gaussian morphology may be drowned by fluctuating
backgrounds [24,25]. On the other hand, the objects and stars have a certain degree of
elongation in the direction of relative motion within a few seconds of exposure time, and
Gaussian features in the direction change. Therefore, we can only use 1D Gaussian mor-
phology of object streaks in the vertical direction of relative motion. However, for a locally
discontinuous dim object streak, its 1D morphology at every position is not consistent
everywhere in complex backgrounds, and recognition effects are poor when point spread
function (PSF) of the same amplitude is used to fit an object streak [26]. There are also some
methods that apply deep learning to target detection [27,28], but a large amount of image
data needs to be trained in the object detection process.

We aims at achieving star image segmentation by using the morphological charac-
teristics of objects without relying on gray thresholding. Through the above analysis, it
is known that 2D Gaussian function cannot accurately describe object streak morphology,
and fitting a streak with 1D PSF with the same amplitude is not suitable for the poor
background environment of star images. Accordingly, we introduce 1D Gaussian functions
with different amplitudes for fitting each group of image data, utilizing the correlation
between the image data and theoretical object models to respectively identify each group
of data with Gaussian shapes in the streak area. In addition, we analyze the standard
deviation and the ratio of mean square error and variance in each group of local image
data, set reasonable thresholdings to separate objects from image background and remove
false alarms. According to Gaussian morphology of objects and stars, our correlation
segmentation method is independent of gray thresholding, which can flexibly use the
morphological features of space objects, making the influence of complex backgrounds
weaker and achieving better image segmentation.

2. Object Models and Algorithms

The CCD images taken by the Chinese Academy of Sciences Ground-based Optical
Telescope with a 3.2◦ × 3.2◦ field of view, an 800 mm aperture and a 2” angular resolution-
can be expressed as

I = bg + s + ob + n, (1)

where I represents astronomical gray values of a CCD image, bg are deep space back-
grounds, s are stars, ob are usually satellites and space debris, and n mainly includes
Gaussian noise from the circuit and Poisson noise from dark current and background light.

In different observation modes, objects or stars appear in different shapes on star
images. When the telescope tracks the motion of stars, the stars are relatively stationary
and appear as points, whereas the target appears as a streak. In this mode, the target streak
needs to be extracted. On the contrary, when the telescope moves with the target, the target
appears as a point and the stars appear as streaks. In this mode, the star streaks should be
removed first. Therefore, the recognition of target streaks and star streaks is the focus of
our work. We uniformly call such targets or stars with point shapes “point targets” and call
those with long streak shapes “target streaks”, as shown in Figure 1. In the two observation
modes, either the target or the stars are stationary relative to the star image. Therefore, the
direction of the streaks is consistent with the direction of relative motion, and the streaks
are straight.

The length of the streak is related to the target velocity relative to the stars and
exposure time. We can appropriately increase exposure time to make the dark target
brighter and easier to identify. However, with the increase of exposure time, the bright stars
become saturated and the bright spots spread to a very large area around, which affects
target recognition. Therefore, exposure time should be adjusted dynamically according to
the use requirements and weather conditions, and for observing high-orbit space objects,
usually exposure time is at second level. We take various noises, influence factors and
deep space backgrounds together as undulating image backgrounds. In addition, we first
rotate star images according to streak parameters and adjust the direction of the streaks to
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horizontal (the X-axis direction of the image is horizontal, and the Y-axis direction of the
image is vertical). On this basis, we select 1D Gaussian function to lengthways fit them.

Figure 1. Grayscale distribution of space objects. (a) Point object. (b) Object streak.

ỹk = BG + A exp(
−xk

2

2σ2 ) (2)

where ỹk are object gray values of the constructed model, BG are local image backgrounds,
A is the object amplitude above the local background intensity, σ2 is the variance of the
Gaussian function, and xk are image ordinates. In order to ensure that the model can fit the
image data better, mean square error should be minimized.
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The pixel numbers occupied by dim objects in star images are different and unsta-
ble [29]. For star images taken by our wide field telescope, dim objects or stars usually
occupy several pixels, and the bright stars usually occupy more pixels. Of course, the object
size on the images is determined by telescope configuration and parameter setting, but
it does not affect the extraction of column data with Gaussian form, and five continuous
values can reflect the change trend of Gaussian morphology. If more data are selected, the
computational complexity increases and overfitting occurs easily. Therefore, we select five
consecutive pixels in a column to fit a Gaussian model at a time in the regions of interest or
in the entire star image and take the center of the Gaussian model as the zero point, so the
coordinates are

x0
2 = 0, x1

2 = x−1
2 = 1, x2

2 = x−2
2 = 4 (5)

In addition, we set a parameter t = exp{−1/(2σ2)}, and Equation (4) is rewritten as

8At7 − 4 (y2 + y−2 − 2BG)t3 + 2At− (y1 + y−1 − 2BG)→ 0 (6)

The local background BG and the peak value A in each group of column data are
defined as

BG =
1
2
(min{yk}+ Nextmin{yk}) (7)

A = max{yk} − BG (8)
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where Nextmin{·} is defined as the second minimum value of the group of data. It is easy
to solve for t0, so the variance is

σ0
2 =

−1
2 ln t0

(9)

Whether or not each group of column data is an object, an ideal object model that
is closest to the data is generated. We conduct star image segmentation and identify the
objects and stars based on correlation between objects and ideal object models. Of course,
a few false alarms with Gaussian morphology can be removed by analyzing standard
deviation and 2D characteristics of space objects.

3. Parameter Analysis of Object Determination
3.1. Correlation Coefficient

Correlation coefficients (denoted by r) are used to measure the degree of correlation
between the data and models. Usually, the object streak center occupies one or two lines of
pixels, and we call the two types of object streaks Ob 1 and Ob 2, as shown in Figure 2a,b.
We take the position of each pixel in the red dotted lines as the longitudinal center to
conduct model fitting, and the correlation coefficients are shown in Figure 2c,d. Six pixels
in different positions of the two objects, including object centers, object edges and image
backgrounds, are focused on, and their data and Gaussian models are shown in Figure 3.

Figure 2. Two types of object streaks and correlation coefficients between data and models in different positions (pixel
a: center of Ob 1, pixel b: image background 1, pixel c: longitudinal edge of Ob 1, pixel d: image background 2, pixel e:
center of Ob 2, pixel f: longitudinal edge of Ob 2). (a) Ob 1. (b) Ob 2. (c) Correlation coefficients of Ob 1. (d) Correlation
coefficients of Ob 2.
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Figure 3. Image data and fitting models in six positions of Ob 1 and Ob 2 (pixel (a–f)).

It can be seen that the correlation coefficients are more than 0.9 from the center of
Ob 1 to the horizontal edges, which means that there is a high correlation. However, the
correlation at the background 1 is weak and less than 0.5. Line1 and Line3 are the two
vertical edges of Ob 1, and the Gaussian models are slightly mismatched with the data,
whose correlation coefficients are usually less than 0.6 but more than that of the image
background 1. However, there is a background noise at image background 2 where the
correlation coefficient is also high. The centers of Ob 2 are Line2 and Line3, and most of
the correlation coefficients are between 0.6 and 0.9. Line1 and Line4 belong to the two
vertical edges, and the Gaussian models are heavily mismatched with the data, so there is
no correlation between the two.

If selected correlation coefficient thresholdings are low, objects with weak Gaussian
morphology can be recognized well, but lots of false alarms appear, just like pixel d.
Contrarily, if the thresholdings are high, the dim objects with low model correlation cannot
be recognized. Therefore, the correlation coefficient thresholding is set to 0.5. On the
premise that the objects and stars can be recognized, a few false alarms of background
noise are considered to remove.

3.2. Standard Deviation

We take Figure 4a as an example to analyze the method of removing false alarms
with standard deviation. First, all the pixels in the image are sorted by increasing gray
values, and we calculate standard deviations of the minimum 1–100% pixels, which we
call grayscale sequence method (GS). Based on experience, we start the calculation of the
change rate of standard deviation from the minimum 90% pixels and control the calculation
interval to reduce the number of calculations. When GS method is applied to large data sets,
star image partitioning becomes more important. We divide the star image into multiple
subimages and calculate the data in the regions of interest. The standard deviations that we
obtain are increasing, and we analyze their change rate to find the mutation value where
the standard deviation is the boundary between the objects and image backgrounds. The
change rate of standard deviation is stable when the selected pixels are image backgrounds,
and only when a large number of object pixels are selected does it fluctuate significantly.
Therefore, the standard deviation thresholding selected with GS method has a certain
hysteresis, and a part of the dark objects and stars may be filtered out.
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Figure 4. Standard deviation thresholdings with the GS method and SDS method. (a) A star image with bright stars, faint
stars and object streaks. (b) σ change rate with GS method. (c) σ change with GS method.(d) σ change rate with SDS
method.(e) σ change with SDS method.

If the standard deviation corresponds to the object itself rather than the variation trend
of image grayscales, the hysteresis can be avoided. We consider our column recognition
method where five data are grouped, and the standard deviations of all the groups are
calculated and sorted incrementally, which we call standard deviation sequence method
(SDS). Since the standard deviation represents the fluctuant characteristics of the object or
background, the change rate changes significantly when it is converting from the image
backgrounds to the dark objects. The results of thresholding selection in both methods are
shown in Figure 4. In Figure 4b,d, a mutation value is greater than all previous values,
and there is a relatively large increase in the mean value of a certain interval of the same
size before and after this value. However, we cannot expect how significant the mutation
of the change rate at this value is, because it is in a short transition interval, after which
the change rate increases rapidly. What we can do is to find an optimal value within the
transition interval and to obtain the standard deviation at the position of the optimal value
as thresholding for the segmentation of backgrounds and dark objects.

The results show that the selected thresholdings with both methods are respectively
11.4 and 7.29, and we will verify the effectiveness of SDS method in Section 4.2. If the
standard deviation of a group of data is less than 7.29, we regard it as a background directly
and there is no need to model, which reduces 71% time of model fitting and avoid the risk
of misidentifying the background data with Gaussian morphology as the target data. Of
course, if the standard deviation of a group of data is greater than 7.29, we cannot rule out
the possibility that it is a bad pixel or background noise.

3.3. K Value

The mean square error values between the data and models differ greatly due to the
different amplitudes of models, and mean square error values at the object are much larger
than those at the background, which does not mean that the fitting effect at the background
is better. Therefore, it is crucial to unify the mean square error values for the object models
of different amplitudes.

The mean square error represents the degree of deviation between the model and the
data, whereas the variance represents the degree of fluctuation of the data. Now, the ratio
of the two is defined as

K =
MSE
D(y)

=
∑(ỹk − yk)

2/n

∑(yk −m)2/n− 1
(10)
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where MSE is mean square error, D(y) is the variance, m is the mean value of a group of
data, n is the number of data points, and K means the mean square error between the
model and the data under unit fluctuation.

We analyze K values in Ob 1 and Ob 2. It is found that K values are small when the
correlation coefficients are large, and there is an obvious linear relation. When r is 0.5, both
K values are less than 1, as shown in Figure 5a,b. For a star image containing more objects,
the relation between K values and correlation coefficients is shown in Figure 5c,d. Some
K values decrease with the increase of r, and K values of another part increase with the
increase of r. Others have no regular distribution, but they are all greater than the K value
when r is 0.5. We think r ≈ 0 means that there is no correlation between the two groups
of data, which are orthogonal. At this time, it can be approximately regarded as random
noises with the equal mean.

Figure 5. The relation between K values and correlation coefficients. (a) Ob 1. (b) Ob 2. (c) Pixel: 200× 200. (d) Pixel: 400× 400.

Finally, we can filter out the false alarms by setting K thresholding. We focuses on the
part where r is greater than 0.5 and K values decrease with the increase of r, and it reflects
the significant Gaussian morphology of the image data and has a high correlation with the
model. From Figure 5, K value is 1 when r is 0.5, and the false alarm pixels are randomly
distributed in the places where K value is greater than 1.5. Therefore, we chose k = 1 (of
course, any value between 1 and 1.5) for K thresholding. Other parts are background noises,
bad pixels and the edges of objects. In this way, the objects and stars can be well segmented
from the star image.

4. Experimental Results

In the experiment, real and simulated star images in different scenes are used to verify
the effectiveness of our proposed correlation segmentation method. First, we analyzed
the problems existing in the segmentation process through the experiments of two simple
scenes, and demonstrated the effect of horizontal supplementary recognition. Second,
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we verified the validity of the SDS method. Then, the results of our proposed method
are compared with traditional threshold segmentation methods in complex backgrounds.
Finally, the identification rate and false alarm rate of our method in complex backgrounds
are obtained based on two special scenes with 2000 frames each.

4.1. Horizontal Supplementary Recognition

The correlation segmentation method can recognize and extract point targets and
streaks with 1D Gaussian morphology. We choose two simple scenes for analysis, and
the difference between the two scenes is whether a point object in the image is close to a
streak, as shown in Figure 6. It is found that the vertical Gaussian features of objects at the
upper and lower edges are not significant, so the identified point object is a strip and the
longitudinal edges are lost. Besides, when an object and a star are approaching vertically,
the column recognition method is influenced, making the point object unrecognizable.
Therefore, the horizontal supplementary recognition should be carried out at the upper and
lower lines (about 2 lines) of the identified objects and stars by using the same modeling
method. This has a good supplementary effect on point object recognition but only has low
impact on the recognition of extending object streaks.

Figure 6. Recognition results in two scenes including point objects and star streaks are shown, and the difference between
the two scenes is whether the point object in the image is close to the streak. Supplementary recognition is beneficial to the
completion of point object contour recognition, but has little effect on streak recognition. (a) Original images containing
stars and objects. (b) Column recognition. (c) Horizontal supplementary recognition.

4.2. Comparison of GS Method and SDS Method

For bright objects, the star image can be well segmented by using the correlation
segmentation method combined with the standard deviation thresholding selected with
the two methods in Section 3.2, and the difference is that the lower standard deviation
thresholding slightly results in more noise points. However, for a dark object without clear
contour and significant Gaussian morphology, the SDS method has obvious advantages, as
shown in Figure 7.
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Figure 7. Recognition results of extended objects. (a) Original image. (b) GS method (th1 = 37.67). (c) SDS method
(th2 = 24.11). (d) Recognized pixel number of the five objects in different σ thresholdings.

We analyze the recognized pixel number of the five objects in different σ thresholdings.
When the σ thresholding is more than 24.2, the pixel number begins to decrease, which
means that part edges of the objects are filtered out, as shown in Figure 7d. The thresholding
obtained with SDS method, 24.11, is perfectly consistent with the optimal thresholding, 24.2.
This result proves that the SDS method is more valid, and it can identify the dark objects
and can also filter out most of the noises. Although the removal effect of background noises
with GS method is good, it makes the object recognition incomplete or impossible.

4.3. Comparison of Segmentation Methods

In order to verify the effectiveness of our proposed star image segmentation method
combining correlation coefficient, standard deviation and K value, the global and local
thresholding segmentation methods are used for comparison. We use the statistical method
to set the thresholdings: T1 = µ + σ and T2 = µ + 2σ. The local thresholding method has
different segmentation results due to different sub-blocks, so the principle of the sub-block
size is that the minimum false alarms are produced on the basis of identifying more objects.
In the comparison, an object streak whose recognition length is more than half of its length
is considered to identify successfully, otherwise, the objects are not reflected in the figures.
If multiple objects that overlap in original images are identified as an extended object streak
whose shape is easy to distinguish, we count according to the original image. The results
are shown in Figure 8.

Figure 8. Results of star image segmentation (green squares are false alarms, orange squares are
objects that are not clearly identified, and red ellipses are distinguishable objects). (a) S4 is an
original image, and the lower right part is seriously affected; S5 has forty simulation streaks, and
its background comes from S4; S6 is a simulation image with forty streaks, and the upper left part
is affected. (b) Global T1 = µ + σ. (c) Global T2 = µ + 2σ. (d) Local T1 = µ + σ. (e) Local T2 = µ + 2σ.
(f) Our proposed method.
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The star images with a size of 120 × 120 pixels have uneven backgrounds. The
recognition results are terrible under low and high global thresholdings, and the results
of local thresholding segmentation are obviously better. However, the contours of some
objects are not clear, and there are many false alarms caused by the selection of windows.
We find that gray thresholding segmentation has poor adaptability, and our proposed
segmentation method is more effective and identifies more objects. The segmentation
results of different star images with different methods are shown in Table 1.

Table 1. Segmentation results of different star images with different methods.

Scenes
Global Methods Local Methods Our

MethodT1 T2 T1 T2

Number of
recognized

objects

S4 6 3 27 13 47
S5 1 3 34 21 40
S6 5 1 30 11 40

Number of
false

alarms

S4 Heavy 0 8 0 0
S5 Heavy Slight 15 0 0
S6 Heavy 0 4 0 1

In addition, we respectively simulated 2000 frames based on the backgrounds of S5
and S6. Forty target streaks in each frame were randomly distributed, and the recognition
rate and false alarm rate were calculated. The recognition results are shown in Table 2.
Our correlation segmentation method ensures low false alarm rate and achieves high
recognition rate. Of course, both metrics are influenced by many factors, such as the noise
level, target intensity, background complexity, and threshold selection. For star image
recognition, in order to achieve better recognition rate, we can reduce each thresholding at
the cost of increasing false alarm rate. Therefore, a balance between the two needs to be
struck according to application environments. Moreover, the large fluctuation of image
backgrounds and the low target intensity has a great impact on target recognition.

Table 2. Recognition results of simulation star images with 2000 frames each (m: mean,
σ: standard deviation).

Scenes
The Number of

Recognized Objects Recognition
Rate

The Number of
False Alarms

False
Alarm
Rate

Algorithm
Speed (s)

m σ m σ

S5 39.02 1.08 97.6% 0.17 0.47 0.43% 0.29
S6 39.16 1.05 97.9% 0.19 0.51 0.48% 0.30

For the star images with a size of 120 × 120 pixels, we run our algorithm on the
platform of Intel Core i5-6500 CPU 3.2GHz, MATLAB2016a, and the average calculation
time of our method is about 0.3s. For ground-based telescope observation, the exposure
time is generally at second level. When processing star images with complex backgrounds,
we often select some areas of interest with small sizes. Therefore, it meets the real-time
requirements. Through the simulation experiments of 2000 frames each, the recognition
rate of more than 97% and false alarm rate of less than 0.5% can be stably obtained by
our method.

The grayscale values of image backgrounds change greatly everywhere, so it is ob-
viously impossible to select a certain global thresholding to separate all the objects from
the backgrounds. However, the local thresholding method needs to select appropriate
sub-blocks according to the size of the objects. In addition, it should not only ensure that
the complete object is in the same sub-block but also ensure that there must be objects in
each sub-block, otherwise there are many problems such as false alarms and incomplete
object recognition across sub-blocks. For a star image with a large number of objects, it
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is difficult to satisfy the two situations. Our proposed correlation segmentation method
solves the problems well and overcomes the limitation of gray segmentation.

5. Conclusions

The influence of clouds and moonlight is a challenge for star image segmentation, and
local thresholding methods can slightly improve but not well overcome it. We present a
new star image segmentation method, and the correlation coefficients between the data and
models are used to segment star images. In addition, the standard deviation thresholding
and K value are combined to remove false alarms. The results show that our proposed
method works well in complex background, which can be used for object detecting and
tracking in the cloudy and bright moonlit night and can be applied in machine learning
system for astronomical observation and object classification.
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