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Abstract: In this paper, we explore a generative music method that can compose atonal and tonal
music in different styles. One of the main differences between regular engineering problems and
artistic expressions is that goals and constraints are usually ill-defined in the latter case; in fact the
rules here could or should be transgressed more regularly. For this reason, our approach does not
use a pre-existing dataset to imitate or extract rules from. Instead, it uses formal grammars as a
representation method than can retain just the basic features, common to any form of music (e.g., the
appearance of rhythmic patterns, the evolution of tone or dynamics during the composition, etc.).
Exploring different musical spaces is the responsibility of a program interface that translates musical
specifications into the fitness function of a genetic algorithm. This function guides the evolution
of those basic features enabling the emergence of novel content. In this study, we then assess the
outcome of a particular music specification (guitar ballad) in a controlled real-world setup. As a
result, the generated music can be considered similar to human-composed music from a perceptual
perspective. This endorses our approach to tackle arts algorithmically, as it is able to produce novel
content that complies with human expectations.

Keywords: generative music; formal grammars; L-systems; evolutionary computation; genetic
algorithms; music perception

1. Introduction

Creativity is a complex concept that has been forged in the modern eras when it was
started to be perceived as a capability of great men, in contrast to just being productive [1].
There are a variety of definitions, but here we understand it as the ability to generate novel
and valuable ideas [2]. Music composition is considered an expression of human creativity,
even if composers (like artists in general) take inspiration from other sources, such as Nature
sounds and -mostly- other authors. Similarly, the algorithmic composition of music usually
follows an imitative approach by feeding a computer system with a large corpus of existing
(human-made) scores. However, here we investigate music composition from a different
perspective: as an iterative process to discover esthetically pleasing musical patterns.

1.1. Automated Composition

The digital era brought yet another step in the evolution of musical genres [3] and
the development of algorithmic composition [4]. Some works at the early age were: an
unpublished work by Caplin and Prinz in 1955 [5], with an implementation of Mozart’s
dice game and a generator of melodic lines using stochastic transitional probabilities; the
Hiller and Isaacson’s Illiac Suite [6], based on Markov chains and rule systems; and MUSI-
COMP by Baker [7], implementing some methods used by Hillers and Xenakis’s stochastic
algorithms in the early 1960s, working as CAAC [7]. In 1961, a dedicated computer was
able to compose new melodies related to previous ones by using Markov processes [8]
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and in 1963, Gill’s algorithm applied classical AI techniques (hierarchical search with
backtracking) [9]. Machines were becoming less expensive and more powerful and the
field of algorithmic composition grew along, intersecting the field of Artificial Intelligence.

Composing music imitating an existing corpus has been approached quite successfully.
For example, Cope’s EMI [10] was able to analyze a musical style, extract patterns of short
musical sequences and determine how to use them when composing in that style. More
recently, with the rise of neural networks, while not being as widespread as other forms
of arts that use Generative Adversarial Networks [11] and other methods, we find many
examples of systems following this imitating approach. For example, using long short-term
memory (LSTM) recurrent network to learn complete musical structures and produce music
in that style [12] or networks based on gate recurrent units (GRU) to produce monophonic
melodies by learning from a corpus of different styles [13].

On the other hand, composing with no creative input has been a harder problem for
computational intelligence, partly because of the difficulty of assessing the results, although
some frameworks have been proposed [2,14–16]. Genetic algorithms have proven to be
very suitable to produce novel musical content. In 1994, GenJam [17] was an interactive
method to create jazz melodies. More examples of interactive genetic algorithms are Vox
Populi [18], based on evolving chords, and Darwin Tunes [19] that studied the evolution of
short audio loops. There has been a wide variety of automatic musical fitness assessments.
Nam and Kim [19] recently proposed a method to create jazz melodies, encoding explicitly
the musical variables in the chromosomes and using a fitness function based on the
theory of harmony and note patterns. However, evolutionary and developmental (evo-
devo) methods, using indirect encoding, although more complex to design, are meant to
provide more unpredictable and diverse results. Musical Organisms [20] defined a gene
regulatory network and focused on structural modularity, hierarchy and repetition as a
common principle of living beings and music to produce musical scores. Formal grammars
have been suitable to express this inner structured nature of music, for example to study
melody [21], musical structure [22] or harmony in tonal music, even with a generative
approach [23]. L-systems [24] in particular have been frequently used as representational
models in evo-devo processes due to their simplicity, sometimes with an interactive fitness
and studying ways of visualizing music [25,26].

In Section 2 we present an approach of encoding music by means of L-systems and
context-free grammars and then compose music by evolution of these formal models. The
two representational systems are actually part of different programs developed from the
same principles, but adapted for the composition of both atonal and tonal music. These
mathematical systems, which are able to represent self-similarity encoding compositional
and performance properties, can evolve as to produce valid and esthetic music scores and
then synthesize them in multiple audio formats.

1.2. Application in the Real World

This work is also concerned with how “human” the production can be considered.
While measuring the performance of an assembly robot in a production line is straightfor-
ward, assessing the quality of other AI systems, particularly those involving simulated
cognition or creativity, is always controversial. To date, the Turing Test (TT) [27] is still
considered the best way to determine if an artificial system involves some sort of thought.
The validity of this approach stands, even if the TT was epistemic rather than ontic or
more heuristic than demonstrative [28]. That is the reason why a wide range of variations
have been proposed to measure the success of AI systems in related areas. Some of them
consider the term “creative” in a very restrictive sense, like the Lovelace Test (LT) [29]
that demands full creativeness on the machine under study, which is hard to meet (and
verify) for an artificial system. Some interesting and more practical variants are the Musical
Directive Toy Test (MDtT) and the Musical Output Toy Test (MOtT) [30], with the second
one focusing more on the results of the composition and paying less attention to how the
composers were commissioned. Both the MDtT and MOtT remove the essential component
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of natural language discourse, while keeping the blind indistinguishability of the TT. As
such, they must be considered surveys of musical judgments, not a measure of thought
or intelligence.

Another important aspect of generative music systems is their lack of experimental
methodology [31] and the fact that typically there is no evaluation of the output by real
experts. Delgado [32] considered a compositional system based on expert systems with
information about emotions as input and described an interesting study where the extent
to which the listeners match the original emotions is evaluated, but the test was only
completed by 20 participants. Monteith [33] presented another system and tested it in an
experiment where the participants had to identify the emotions evoked for each sample,
as well as assess how real and unique they sounded as musical pieces. There were two
major limitations in this case: the sample contained only 13 individuals and they knew in
advance that there were computer-generated pieces. A more recent example was described
by Roig [34], with a questionnaire including three sets of compositions, each with two
compositions made by human and the other generated by their machine learning system,
which the participants had to identify. In that experiment, there was a bigger sample
(88 subjects), however it suffered from lack of control, since the test was performed through
the web, and simplicity, because the participants only had to answer which of the three
samples was computer generated.

Affective algorithmic composition [35] has promoted new strategies of evaluating the
results of automatic composition systems, as compared to human produced music. Here,
emotions are understood as relatively short and intense responses to potentially important
events that change quickly in the external and internal ambience (generally of social
nature). This implies a series of effects (cognitive changes, subjective feelings, expressive
behavior or action tendencies) occurring in a more or less synchronized way [36]. This
theory of musical emotion [37] asserts that music can elicit emotions from two different
involuntary mechanisms of perception and interpretation of the human being: (a) the
(conscious or unconscious) assessment of musical elements; and (b) the activation of mental
representations, related to memories with significant emotional component [38,39]. Even
though self-report has been associated with some obstacles, like a quantitative demand
of lexicon or the presence of biases, it is considered one of the most effective ways of
identifying and describing the elicited emotions [36]. This work has opted for an open-
answer modality of the cited method, since the fact that establishing explicit emotional
dimensions might itself condition their appearance due to the human empathy [36].

In Section 3.2 we describe a MDtT designed to assess the compositional and synthesis
capabilities of the developed system. The experiment involved more than 200 participants,
professional musicians and non-musicians, who listened to and assessed two different
pieces of music: one from our generator of tonal music and another composed by a
musician. As compared to previous works, the main contributions here are the rigor of the
study and the significance of the results.

The conclusion of this endeavor is Melomics, a tool that is able to produce objectively
novel and valuable musical scores without using any knowledge of pre-existing music, but
trying to model a creative process.

2. Melodies and Genomics

In order to produce full music compositions through evolutionary processes, we
need to encode the structure of the music, not only the single pitches and other music
variables, but also the relations among them. That meaning, there must be a higher-level
structure more compact than the entire composition. In a sense, it is a compressed version
of the composition, which implies the presence of some kind of repetitions and structured
behaviour, since truly random data would not be susceptible to compression.

While computers are capable of sound synthesis and procedural generation of sound,
we are interested in the production of a music score in the traditional staff notation. Some
systems aim to reproduce a particular style of a specific artist, period, or genre by using a
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corpus of compositions from which recurring structures can be extracted. We pursue music
composition from scratch, modeling a creative process able to generate music without
imitation of any given corpus. The ability to create music in a specific style is enforced by a
combination of two important constraints:

• The encoding, which generates a bias in the search space. That is, by changing the way
we represent music we also change what is easy to write and what is difficult -or even
impossible- to express. By forcing music to be expressed as a deterministic L-system
or a deterministic context-free grammar, regular structures are easier to represent and
will appear more often than completely unrelated fragments of music. A set of rules
can appear not to provide any repeated structure, but its product might contain a
high amount of repetitions and self-similar structures. This is, indeed, an essential
aspect in both biology and music [40]. The structure of an entire piece of music is
unequivocally encoded, including performing directions, and deploys from a series of
derivations. This provides a way to generate repetitions in the product from a simple
axiom, without being repetitive.

• The fitness function, which associates a measure of quality to each composition,
determined by looking at some of its high-level features, such as duration, amount of
dissonance, etc.

The dual effect of having an encoding that restricts the search into a more structured
space, where individual changes in the genome can produce a set of organized alterations
on the phenotype, combined with the filtering of a fitness function, helps the generation
process to “converge” to music respecting a particular style or set of conditions, without
any imitation.

2.1. Representational Models
2.1.1. Atonal Music

The atonal system uses an encoding based on a deterministic L-system (genetic part)
and some global parameters used during the development phase (epigenetic part). An
L-system is defined as a triple (V, S, P) where V is the alphabet (a non-empty, finite set of
symbols), S ∈ V is the axiom or starting symbol and P ⊆ V ×V∗ is the set of production
rules in the form A→ x, A ∈ V, x ∈ V∗. Each production rule rewrites every appearance
of the symbol A in the current string into x. Because it is deterministic, there is only one
rule A → x for each symbol A ∈ V. In our model, we divide symbols of the alphabet V
into two types:

• Operators, which are reserved symbols represented by a sequence of characters with
the form @i, i ∈ Z or $j, j ∈ {1 . . . m}. There are no rules explicitly written for
them, the rule A → A is assumed instead. They control the current state of the
abstract machine, modulating the musical variables: pitch, duration, onset time,
effects, volume, tempo, etc.

• Instruments, with the form #k, k ∈ {0 . . . p}. These symbols have an explicit produc-
tion rule with them on the left side and can represent either a musical structural unit
(composition, phrase, idea, etc.) or, if it appears in the final string, a note played by
the instrument that has been associated to that symbol.

Since the rewriting process could be potentially infinite, in order to stop it, we intro-
duce the following mechanism: each of the production rules have an associated value ri,
indicating the possibility of that rule to be applied in the next rewriting iteration. There
is a global parameter T which serves as the initial value for all ri and there is a weight
Ii for each production rule, to compute the new value of ri from the previous time step,
rit = f (rit−1 , Ii). All ri will progressively get a lower value until reaching 0, when the
associated rule will not be applied anymore. The formula is applied if that rule is used at
least once in the current iteration. To illustrate the process, let us introduce some of the
operators that we use:
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$1 increases pitch value one step in the scale.
$2 decreases pitch value one step in the scale.
$5 saves current pitch and duration values in the pitch stack.
$6 returns to the last value of pitch and duration stored in the pitch stack.
$7 saves current time position in the time stack.
$8 returns to the last time position saved in the time stack.
$96 applies dynamic mezzo-forte.
@60$102 applies the tempo: quarter equals 60.

Now, let us consider the following simple and handmade L-System

Ga = (V, S, P)
V = {#0, #1, #2, #3, #4, $1, $2, $5, $6, $7, $8, $96, @60$102}
S = {#0}

And P consisting of the rules:

P = {
#0→ @60$102$96#2$1$1$1$1$1$1$1#2
#1→ #1
#2→ $7#3$8#4
#3→ #3$2#3$1$1#1#3
#4→ #4#1$5$1$1$1#4$6#4
}

Below we show the whole developmental process to get the composition generated
by Ga, considering T = 1 and Ii = 1 for all the rules. And the following global parameters:

Scale: C major
Tempo: 80 bpm
Default duration: quarter note
Default dynamic: mezzo-piano
Initial pitch: middle C
Instruments: piano (0), rest (1), church organ (2 and 3), cello (4)

The vector r will show the current values of ri for all the production rules.
Iteration 0
With no iterations, the resulting string is the axiom, which is interpreted as a single

note, played by its associated instrument, the piano, with all the musical parameters being
on their default values still.

String: #0
r = [11111]
To better illustrate the interpretation procedure, Figure 1 shows the resulting score

from the current string, if we supposed that the rewriting counter is 0 for the first rule
(r0 = 0) at this point. Since it is not the case, the rewriting process will continue.

Version April 18, 2021 submitted to Appl. Sci. 6 of 26

Piano G 4
4

ˇ = 80

ˇ > <
Figure 1. Resulting score from Iteration 0 (Audio S1).

String: @60$102$96#2$1$1$1$1$1$1$1#2243

r = [01111]244

245

This is interpreted from left to right as: change the tempo to “quarter equals 60”, apply246

the dynamic mezzo-forte, play the current note on instrument 2, rise the pitch seven247

steps on the given scale and finally play the resulting note on instrument 2. As before,248

Figure 2 shows the resulting score.249

Church Organ G 4
4

ˇ = 60

ˇ ˇ <
Figure 2. Resulting score from Iteration 1 (Audio S2).

Iteration 2250

The previous score showed the hypothetical outcome if we supposed r2 = 0 already.251

Since that symbol is in the string and r2 = 1, the rule has to be applied once.252

253

String: @60$102$96$7#3$8#4$1$1$1$1$1$1$1$7#3$8#4254

r = [01011]255

256

257

Violoncello

Church Organ

I
G

4
4

4
4

ˇ = 60

ˇ ˇ <
ˇ ˇ <

Figure 3. Resulting score from Iteration 2 (Audio S3).

Figure 3 shows the hypothetical score for Iteration 2. At this point, symbol #2, as258

opposed to what would have happened if it had stopped at Iteration 1, no longer acts259

as a playing instrument, but rather as a compositional block that gives place to two260

instruments. These instruments play at the same time due to the use of the time stack261

operators $7 and $8. The “synchronization” between the two instruments is an emerging262

property from the indirect encoding.263

264

Iteration 3265

The rules with #3 and #4 need to be applied, resulting:266

267

String: @60$102$96$7#3$2#3$1$1#1#3$8#4#1$5$1$1$1#4$6#4$1$1$1$1$1$1$1$7268

#3$2#3$1$1#1#3$8#4#1$5$1$1$1#4$6#4269

Figure 1. Resulting score from Iteration 0 (see Audio S1).

Iteration 1
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For the first iteration, the rule associated to the only symbol in the string needs to be
applied and then, applying the formula, r0 will be set to 0.

String: @60$102$96#2$1$1$1$1$1$1$1#2
r = [01111]
This is interpreted from left to right as: change the tempo to “quarter equals 60”, apply

the dynamic mezzo-forte, play the current note on instrument 2, rise the pitch seven steps
on the given scale and finally play the resulting note on instrument 2. As before, Figure 2
shows the resulting score.
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Iteration 3265

The rules with #3 and #4 need to be applied, resulting:266

267

String: @60$102$96$7#3$2#3$1$1#1#3$8#4#1$5$1$1$1#4$6#4$1$1$1$1$1$1$1$7268

#3$2#3$1$1#1#3$8#4#1$5$1$1$1#4$6#4269

Figure 2. Resulting score from Iteration 1 (see Audio S2).

Iteration 2
The previous score showed the hypothetical outcome if we supposed r2 = 0 already.

Since that symbol is in the string and r2 = 1, the rule has to be applied once.
String: @60$102$96$7#3$8#4$1$1$1$1$1$1$1$7#3$8#4
r = [01011]
Figure 3 shows the hypothetical score for Iteration 2. At this point, symbol #2, as

opposed to what would have happened if it had stopped at Iteration 1, no longer acts as a
playing instrument, but rather as a compositional block that gives place to two instruments.
These instruments play at the same time due to the use of the time stack operators $7 and
$8. The “synchronization” between the two instruments is an emerging property from the
indirect encoding.
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Figure 3 shows the hypothetical score for Iteration 2. At this point, symbol #2, as258

opposed to what would have happened if it had stopped at Iteration 1, no longer acts259

as a playing instrument, but rather as a compositional block that gives place to two260

instruments. These instruments play at the same time due to the use of the time stack261

operators $7 and $8. The “synchronization” between the two instruments is an emerging262

property from the indirect encoding.263

264

Iteration 3265

The rules with #3 and #4 need to be applied, resulting:266

267

String: @60$102$96$7#3$2#3$1$1#1#3$8#4#1$5$1$1$1#4$6#4$1$1$1$1$1$1$1$7268

#3$2#3$1$1#1#3$8#4#1$5$1$1$1#4$6#4269

Figure 3. Resulting score from Iteration 2 (see Audio S3).

Iteration 3
The rules with #3 and #4 need to be applied, resulting:
String: @60$102$96$7#3$2#3$1$1#1#3$8#4#1$5$1$1$1#4$6#4$1$1$1$1$1$1$1$7
#3$2#3$1$1#1#3$8#4#1$5$1$1$1#4$6#4
r = [01000]
The music has acquired a structure, the initial rewriting resulted in a change of tempo

and dynamic and a shift up in the pitch one octave for the second part of the composition.
The following rewriting developed two instruments playing in polyphony and the latest
one provided the final melody to each instrument.

There is a fourth iteration that will rewrite symbol #1 into itself and set r1 = 0. The
score shown in Figure 4 for Iteration 3 is the same as the final score in this case.
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ˇ ˇ
ˇ ˇ > ˇ
ˇ

>
ˇ ˇ

Figure 4. Resulting score from Iteration 3 (Audio S4).
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Figure 4. Resulting score from Iteration 3 (see Audio S4).

Supplementary material Scores S10 shows two of the first actual pieces that were
generated with the atonal system.

2.1.2. Tonal Music

While the system used to produce atonal music can also generate tonal music, in order
to favor the emergence of structures and elements that are usually present by convention
in popular Western music, there are different changes introduced to the original system.

In order to establish a compositional structure as it is common in a traditional compos-
ing process, inspired by Bent’s Analysis [41], the production rules are explicitly structured
in five hierarchical levels:

• Composition. This is the most abstract level and it is formed by a sequence of similar or
different kinds of periods, possibly with music operators (alterations in tone, harmony,
tempo, macro-dynamics. . . ) between each of them.

• Period. This is the highest structural subdivision of a composition. There can be
more than one type of period, built independently, becoming separate musical units
recognizable in the composition.

• Phrase. This is the third structural level, the constituent material of the periods.
• Idea. Constitutes the lowest abstract level in the structure of a composition. A phrase

can be composed by different ideas that can be repeated in time, with music operators
in the middle. A musical idea is a short sequence of notes generated independently for
each role, using many different criteria (harmony, rhythm, pitch intervals, relationship
with other roles. . . ).

• Notes. This level is the most concrete level, composed only by operators and notes
played by instruments.

Global parameters are introduced to force the occurrence of tonal music. Some of
these are applied straight away when creating a new genome, by filtering the use of certain
strings as the right hand side of a production rule and some others are used as part of
the fitness function (see Section 2.2.2 below). These parameters can be grouped in the
following categories:

• Duration. Boundaries or specific values to set up the duration or length of the compo-
sition or any of the structural levels.

• Tempo. Specific values or boundaries to establish tempos along a composition.
• Dynamics. Specific values or boundaries to establish the macro-dynamics to be applied

along a composition.
• Role types. List of roles or behaviors that may appear in the compositions. There

are currently 89 different roles implemented that can be classified in melody, ac-
companiments, homophony (harmonized melody) and counterpoint. The harmonic
and rhythmic accompaniments can appear in different forms: Chords, Bass, Pads,
Arpeggios, Ostinati, Drums and Percussion.

• Arpeggio configuration. If the role arpeggio is enabled, some additional parameters
must be given, such as mode or contour type, durations or time segments to divide the
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primary rhythmic cell, scope or number of octaves and tie notes, indicating whether
consecutive similar notes shall be tied or not.

• Instruments. For each role there is a list of allowed instruments, plus additional
specific properties and their probability to be chosen.

• Rhythmic incompatibilities. Defines the incompatibilities of instruments to play notes
at the exact same moment.

• Scales. A set of modes and notes of reference to build the musical scales to be
used in the compositions. Resulting scales can be C-major, C-minor, D-Dorian
or C-Mixolydian.

• Harmony. This category includes parameters to describe how to build the harmony
in the different compositional levels; containing for example the allowed chords and
roots, a measure of the allowed dissonance between melodies or the form of the
chord progressions.

• Rhythmic modes. Includes the allowed types of measures, the types of accents to
perform the notes and other related parameters.

• Rhythmic patterns. For each role a list of valid note values or patterns may be given,
establishing the desired frequency of occurrence in a composition.

• Melodic pitch intervals. For each role of the melody kind, a weighted list of pitch
intervals may be given to define how the melodic contour should be.

• Texture. This sub-section allows the possibility to define rules for the inclusion of roles;
different types of dependencies between them; the compositional units where they
are forced, allowed or prohibited to appear in; and general evolution of the presence
of instruments.

There are a few new operators to improve harmony management, some of them with
a more complex interpretation process and dependencies with other operators and global
parameters, like the operator M to create chords (see development example below).

Since we enforce a strict hierarchical structure, it is useful to distinguish the symbols
that represent compositional elements that will be rewritten during the development from
those that have the same specific meaning at any given moment. For this reason we use an
encoding based on deterministic context-free grammar, defined as (V, Σ, S, P), where V is
the set of non-terminal symbols, Σ is the set of terminal symbols (the alphabet), S ∈ V is the
axiom or starting symbol, P ⊆ V × {V ∪ Σ}∗ is the set of production rules. The symbols
in the set V can be identified with the structural units: composition, periods, phrases and
ideas, while the symbols in Σ represent notes and music operators, such as modulators of
pitch, duration, current harmonic root or current chord. In our implementation, on the
right hand side of the production rules, there are only terminal symbols or non-terminal
symbols from the following level in the hierarchy in a decreasing order.

To illustrate the rewriting process, let us introduce some of the reserved terminal
symbols and their interpretation:

N increases the counters pitch and harmonic root in one unit.
n decreases the counters pitch and harmonic root in one unit.
[ saves in a stack the current value of pitch, harmonic root and duration.
] restores from the stack the last value of pitch, harmonic root and duration.
< saves in a stack the current time position, value of pitch, harmonic root and duration.
> restores from the stack the last saved time position, value of pitch, harmonic root
and duration.
W4.0 applies the macro-dynamic mezzo-forte.
M0.0.0.0 makes the next symbol linked to an instrument to play the root note of the current
chord, instead of the current pitch.

Let us define Gt, a simple and handmade grammar to illustrate the development
using this new model:
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Gt = (V, Σ, S, P)
V = {Z, A, B, C, D, E, F}
Σ = {N, n, [, ],<,>, W4.0, a, b, s, M0.0.0.0}
S = {Z}

And P consisting of the following rules:

P = {
Z →W4.0[ANNNNNNNA]B
A→ CC
B→ D
C → ENEnE
D → FFNF
E→< anaNNsa > M0.0.0.0bM0.0.0.0bsM0.0.0.0b
F → as[NNNa]a
}

Iteration 0 (composition)
String: Z
The axiom Z represents the highest structural level, the composition.
Iteration 1 (periods)
String: W4.0[ANNNNNNNA]B
The composition develops into two identical musical units (periods), represented by

the symbol A, separated by seven steps in the pitch dimension and then followed by the
period B.

Iteration 2 (phrases)
String: W4.0[CCNNNNNNNCC]D
The two types of periods A and B would develop into two simple sequences of

phrases, CC and D respectively.
Iteration 3 (musical ideas)
String: W4.0[ENEnEENEnENNNNNNNENEnEENEnE]FFNF
Each phrase C and D consists of a sequence of three ideas.
Iteration 4 (notes)

String : W4.0[
< anaNNsa > M0.0.0.0bM0.0.0.0bsM0.0.0.0bN < anaNNsa > M0.0.0.0bM0.0.0.0bsM0.0.0.0bn
< anaNNsa > M0.0.0.0bM0.0.0.0bsM0.0.0.0b
< anaNNsa > M0.0.0.0bM0.0.0.0bsM0.0.0.0bN < anaNNsa > M0.0.0.0bM0.0.0.0bsM0.0.0.0bn
< anaNNsa > M0.0.0.0bM0.0.0.0bsM0.0.0.0b
NNNNNNN
< anaNNsa > M0.0.0.0bM0.0.0.0bsM0.0.0.0bN < anaNNsa > M0.0.0.0bM0.0.0.0bsM0.0.0.0bn
< anaNNsa > M0.0.0.0bM0.0.0.0bsM0.0.0.0b
< anaNNsa > M0.0.0.0bM0.0.0.0bsM0.0.0.0bN < anaNNsa > M0.0.0.0bM0.0.0.0bsM0.0.0.0bn
< anaNNsa > M0.0.0.0bM0.0.0.0bsM0.0.0.0b]
as[NNNa]aas[NNNa]aNas[NNNa]a

The last idea, F, is interpreted only by the instrument linked to a while the idea E
is performed by the instruments associated to a and b, in polyphony; the latter always
playing a harmony consisting of the root note of the current chord. To interpret the final
string we will use the following values:
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Initial scale: C major
Tempo: 80 bpm
Default duration: quarter note
Default dynamic: mezzo-piano
Initial pitch: middle C
Initial chord: major triad
Initial root: I
Instruments: violin (symbol a), double bass (symbol b), musical rest (symbol s)

See the resulting composition in Figure 5.
Supplementary material Theme S11 provides the genome, the auxiliary MIDI and the

MP3 of an actual piece for clarinet generated with the tonal system.
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Figure 5. Resulting score from Iteration 4 (Audio S5).
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2.2. Composing Process

Melomics uses a combination of formal grammar to represent music concepts of
varying degrees of abstraction and evolutionary techniques to evolve the set of production
rules. The system can be used to compose both atonal and tonal music and, although using
slightly different encoding methods and a much stronger set of constraints in the second
case, they both share a similar structure and execution workflow (see Figure 6). From a
bio-inspired perspective this can be thought of as an evolutionary process that operates
over a developmental procedure, held by the formal grammar. The music “grows” from the
initial seed, the axiom, through the production rules to an internal symbolic representation
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(similar to a MIDI file), where finally the compositions are subject to test by the set of
constraints provided. The execution workflow can be described as follows:

• Filling the desired input parameters. These parameters represent musical specifi-
cations or directions at different levels of abstraction, such as instruments that can
appear, amount of dissonance, duration of the composition, etc., with no need for
creative input from the user.

• The initial gene pool is created randomly, using part of the input parameters as
boundaries and filters.

• Each valid genome, based on deterministic grammar and stored as a plain text file, is
read and developed into a resulting string of symbols.

• The string of symbols is rewritten after some adjustment processes that can be of
different forms: cleaning of the string, for example by removing sequences of idempo-
tent operators; adjustments due to physical constraints of the instruments, like the
maximum number of simultaneous notes playing; or the suppression (or emergence)
of particular musical effects.

• Each symbol in the final string has a musical meaning with a low level of abstraction,
which is interpreted by the system through a sequential reading from left to right and
stored in an internal representation.

• Once again the musical information will be adjusted and stabilized. For example, shift
the pitches to satisfy constraints in the instruments’ tessituras, discretization of note
durations and so on.

• The input directions are used to assess the produced composition that might be
discarded or pass the filter. In that case it is saved as a ’valid’ composition.

• A discarded theme’s genome is replaced by a new random genome in the gene pool.
On the other hand, a “valid” genome is taken back to the gene pool, after being
iteratively subject to random mutations and possible crossover with another genome
in the gene pool (see Section 2.2.1), until it passes the filters defined at genome level
(the same as with a random genome).

• If desired, any composition (usually the ones that pass the filter) can be translated,
using the different implemented modules, to standard musical formats that can
be symbolic (MIDI, MusicXML, PDF) or audio (WAV, MP3, etc.), after executing a
synthesis procedure with virtual instruments, which is also led by the information
encoded in the composition’s genome.

Figure 6. A graphical representation of the composition workflow.

The average time to build a new valid genome varies very much depending on the
style and constraints imposed at this level. Using single core on an Intel Xeon E645, for
a very simple style it can be ready in less than one second, while for the most complex
style, symphonic orchestra in the atonal system, the process takes 283 s on average. Given
a built gene pool, the time to obtain a new valid composition, which includes executing the
developmental process possibly repeatedly until passing the filters, varies a lot too. It can
take 6 s for the simplest atonal style, while it takes 368 s on average for the most complex
style in the tonal system.
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2.2.1. Mutation and Crossover

The genomes can be altered in any way possible in the valid set of symbols defined
by removing, adding or altering symbols in any position; the developmental procedure
will always give place to a valid musical composition. However, the disruption provided
by genetic operators (mutation and crossover) should be balanced in order for the system
to converge properly to the given directions. In Melomics, a small amount of disruption
combined with the hierarchical structure granted by the encoding makes the system
produce reasonable results since early iterations, typically less than 10.

For atonal music we allow stronger alterations, since the styles addressed in general are
less constraining than the popular styles pursued with the tonal system. The implemented
mutation are: (1) changing a global parameter (e.g., default tempo or dynamics); (2)
changing the instrument associated to a symbol in the grammar; (3) adding, removing or
changing a symbol on the right hand side of a production rule; (4) removing a production
rule; and (5) adding a new production rule, copying an existing one or generated randomly,
and introducing the new symbol randomly in some of the existing production rules. The
implemented crossover mechanism consists of building a new genome taking elements
from two others. The values for the global parameters and the list of instruments are taken
randomly from any of the source genomes. The set of production rules is taken from one of
the parent genomes and then the right hand side can be replaced with material from the
other parent. The disruption introduced with these mechanisms are still too high, even for
atonal music, hence the mutation operations (4) and (5) are used with less probability and
the rule with the symbol associated to the musical rest is always kept unaltered. Audio S6
shows a mutation of the Nokia tune (https://www.youtube.com/results?search_query
=nokia+tune, accessed on 30 April 2021), reverse engineered into the system, where the
instrument has been altered as well as the rules at the lowest level of abstraction, resulting
in some notes being changed while maintaining the more abstract structure.

For tonal music the mutation and crossover operations are similar, but more restricted
and executing less of them at each iteration. Mutations allowed are: (1) changing a global
parameter; (2) changing an instrument for another valid for the same role; (3) adding,
removing or changing a non-terminal symbol or a terminal reserved symbol (operators,
no instruments associated) on the right hand side of a production rule, provided that it
does not alter the five-level hierarchical development; and (4) removing or adding a new
terminal non-reserved symbol (Instrument), in the second case duplicating appearances
and forcing polyphony with an existing one (enclosing the new one with the symbols <,
> and placing it to the left) and assigning an instrument of the same role. The crossover
is also similar, taking the genome of one of the parents and only replacing a few rules
with material of the same structural level from the other. The global parameters are taken
randomly from any of them and the same for the instruments, respecting role constraints.
Audio S7 shows a sample generated in the style DiscoWow2 and Audio S8 shows a crossover
of it with the tune SNSD SBS Logo Song (https://www.youtube.com/results?search_que
ry=SNSD+SBS+Logo+Song, accessed on 30 April 2021) of Korean TV, reverse engineered
into the tonal system.

2.2.2. Fitness

Both the atonal and the tonal systems count on a set of parameterized rules to guide
the composing process, by allowing the development of those composition that comply
with the rules, while filtering the rest of them out. There are (a) global rules that basically
constitute physical constraints of the musical instruments, such as the impossibility for a
single instrument to play more than a certain number of notes simultaneously or to play a
note too short or too long; and (b) style based constraints that encode expert knowledge
and are used to assure the emergence of a particular kind of music, resembling the way a
human musician is requested to create music in a certain style. This latter kind of rules, in
general looser in the atonal system, can be grouped as follows:

https://www.youtube.com/results?search_query=nokia+tune
https://www.youtube.com/results?search_query=nokia+tune
https://www.youtube.com/results?search_query=SNSD+SBS+Logo+Song
https://www.youtube.com/results?search_query=SNSD+SBS+Logo+Song
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• Duration. For example lower and upper boundaries for the duration of a composition,
which exist both in the atonal and tonal systems and are assessed at the end of the
developmental process, on the phenotype, when the musical information is explicitly
written in the internal symbolic format. There are also duration filters for other
compositional levels depending on the style.

• Structure. These are constraints to the number and distribution of compositional blocks.
• Texture and dynamics. In the atonal system both polyphonic density and global

dynamics are checked at every point of the musical piece, according to the specified
function at the input, with a margin of tolerance. For the tonal system the procedure
is more restrictive and applied at genotype level. Valid musical roles, dynamics and
instrumental density are defined for each type of compositional block.

• Instruments. Both systems check the instruments chosen to build a valid genome in a
defined style.

• Harmony and rhythm. In the atonal system there is a measure of the amount of
dissonance, a count of pitch steps and a count of changes of note duration. Each of
these properties has a lower and an upper threshold that must by complied for a
specified time window that moves along the composition. The tonal system is more
restrictive. For each defined style there is the list of optional parameters described in
Section 2.1.2, where some of them translate directly to filters of the fitness function.
The main filters regarding harmony and rhythm are: a set of valid modes and tones;
valid measure types; valid rhythmic modes for the melody; valid chords for each
role type; valid “harmonic transitions”, as a way to assess and filter out certain chord
progressions; and valid rhythmic patterns, expressed in terms of the current measure
type and including rests. All the filters have a tolerance value associated and most of
them can be defined globally or at the level of compositional block (period, phrase
or idea).

3. Results
3.1. Preliminary Assessments

We used music information retrieval tools to measure similarity of compositions
generated under common musical requirements, then compare these themes with other
generated in a different style and also with music created by humans.

To deal with music in a symbolic way, we used the open-source application jMIR [42],
in particular jSymbolic, which is able to extract information from MIDI files. We set up
the tool to get features classified into the categories of instrumentation, texture, rhythm,
dynamics, pitch statistics, melody and chords adding up to 111 in total.

For the atonal system, we picked a collection of 656 pieces of classical contemporary
music, with different ensembles, then computed the average value for each feature, obtain-
ing a sort of centroid of the style. After that, we added to the bundle 10 more pieces from
the same contemporary classical substyle, 10 from the style Disco02, produced by the tonal
system and 25 pieces from the Bodhidharma dataset [43] tagged as “Modern Classical”,
created by human composers, representing 701 pieces in total.

For the tonal system we performed a similar test. Choosing 220 themes from Melomics’s
DancePop and excluding 14 themes to compute the centroid. Then we added: these 14 pieces,
10 from the style Melomics’s Disco02 that we consider the predecessor of DancePop and 10
more from Melomics’s atonal DocumentarySymphonic.

For both cases, Figure 7 shows a representation of the distances of each theme to the
computed centroid. In the atonal, the extra pieces generated of contemporary music appear
scattered around the centroid of the group that had been generated previously (mean and
standard deviation: µ = 1819.7, σ = 1603.2 and µ = 1842.54, σ = 1838.3 respectively); the
human made compositions in similar styles appear close but shifted to farther distances
(µ = 2101.88, σ = 2158.76), while music created with different directions appear at the
farthest distance to the centroid (µ = 2363.76, σ = 1755.02). In the second case, the pieces
of the same style that were added later are close to the centroid of the group of reference



Appl. Sci. 2021, 11, 4151 14 of 25

(µ = 8091.64, σ = 977.71 and µ = 8273.57, σ = 1071.6); compositions of a similar style
appear close but shifted farther (µ = 8879.0, σ = 1065.41) and music of a more different
style are located at the farthest distance (µ = 10,141.4, σ = 575.53).

(a) Study of distances for Contemporary style (b) Study of distances for DancePop style

Figure 7. Chart (a) shows a representation of the distances to the centroid of Melomics’s Contemporary
style from themes of other styles configured with Melomics and a collection of themes composed
by human artists from the Bodhidharma dataset. Chart (b) shows the distances to the centroid of
Melomics’s DancePop style from themes of different styles configured with Melomics tonal system.

We also used the API provided by The Echo Nest [44] (acquired by Spotify in 2014),
to put in context Melomics music, this time analyzing audio files, among another set of
musical pieces, natural sounds and noise, extracting some of the musical properties that
they define (loudness, hotness, danceability, energy) and obtaining similar results.

3.2. Experiment in the Real World

The aim, through an MDtT design, is quantifying to what extent are Melomics and hu-
man music perceived as the same entity and how similarly do they affect the emotions of a
human listener (musician or naive). The hypothesis is that a computer-made piece is indeed
equivalent to conventional music in terms of the reactions elicited in a suitable audience.

In an effort to verify this hypothesis, an experiment registered the mental repre-
sentations and emotional states elicited in an audience while listening to samples of
computer-generated music, human-generated music and environmental sounds. It in-
volved 251 participants (half of them professional musicians) who reported on the mental
representations and emotions that were evoked while listening to the various samples. The
subjects were also asked to differentiate the piece composed by computer from the one
created by a human composer.

3.2.1. Methodology

Two musical pieces were commissioned in a specific style to both a human composer
and the Melomics tonal system. In the first stage a comparison between both pieces was
made using an approach that focused on human perception: listeners were asked what
mental images and emotions were evoked on hearing each sample. In this phase of the
experiment the listeners were not aware that some of the samples had been composed by a
computer. In an effort to gauge whether or not both works were perceived in a similar way,
the nature of the composer was not revealed until the second stage.

Data analysis has been performed with a fourfold contingency table (two by two) and
the differences between groups were evaluated by the chi-squared test with continuity
correction. The Fisher test has been used only in those cases where the expected frequency
was lower than 5. The significance level has been established at p < 0.05. In the second phase
of the study, the sensitivity (i.e., the capacity to correctly identify the pieces composed by
the computer) and the specificity (i.e., correct classification of pieces composed by humans)
were also evaluated for both musicians and non-musicians, at a confidence level of 95%.
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3.2.2. The Audio Samples

The specifications for the musical pieces were kept simple and the duration short, in
order to ease their assessment, especially by non-musician participants:

style: guitar ballad
instruments: piano, electric piano, bass guitar and electric guitar
bar: 4/4
BPM: 90
duration: 120s
structure: A B Ar
scale: major

Guitar ballad was chosen also because its compositional rules were already coded
within the system. The final audio files were obtained in MP3 format with a constant bitrate
of 128 kbps and shortened to a duration of 1 m 42 s, meaning the beginnings and endings of
the pieces (around 9 s each) were removed since they typically render constant composing
patterns in popular music. Following composition, both the human- and the computer-
composed ballads were doubly instantiated by means of, on the one hand, performance by
a professional player and, on the other hand, through computerised reproduction. For the
purposes of the performance the human player interpreted the scores of both works while
the computer automatically synthesized and mixed a MIDI representation of both pieces
using a similar configuration of virtual instruments and effects, the four combinations
resulting in corresponding music samples. Table 1 shows how the pieces were labelled:
HH stands for human-composed and human performance, CC for computer-composed
and synthesized, HC for human-composed and computer-synthesized, CH for computer-
composed and human performance, and NS for natural sounds. In contrast to the musical
samples, this final sample has been introduced in an effort to gauge the listeners’ response
to non-musical sounds and consists of a two-minute excerpt from natural sounds (Jungle
River, Jungle birdsong and Showers from The Sounds of Nature Collection [45] combined
with animal sounds [46]. Audio S9 contains the five audio samples used in the study.

Table 1. Classification of audio samples according to the composer and the interpreter.

Composed

Human Computer Nature

human HH CH -
interpreted computer HC CC -

nature - - NS

3.2.3. Participants

The experiment was carried out in two facilities in Malaga (Spain): the Museum for
Interactive Music and the Music Conservatory. Subjects were recruited via posters in the
museum facilities and internal calls among students and educators at the conservatory.
Selected participants ranged in age from 20 to 60 and the answers were processed differently
according to music expertise: subjects with five or more years training were labelled as
’musicians’ while subjects with less or no training were classified as ’non-musicians’.
Musicians are assumed to process music in a far more elaborate manner and possess a
wider knowledge of musical structure, so they would be expected to outperform non-
musicians in a musical classification task.

The final sample consisted of 251 subjects, the mean age being 30.24 (SD = 10.7)
years, with more musicians (n = 149) than non-musicians (n = 102). By gender the sample
featured marginally more women (n = 127) than men (n = 124) and, in terms of nationality,
the majority of the participants were Spanish (n = 204), the remainder being from other,
mainly European countries (n = 47).
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3.2.4. Materials

In both facilities the equipment used to perform the test was assembled in a quiet,
isolated room in order to prevent the participants from being disturbed. Each of the three
stations used for the experiment consisted of a chair, a table and a tablet (iPad 2). The tablet
contained both the web application that provided the audio samples and the questionnaire
that was to be completed by means of the touch screen. The text content (presentation,
informed consent, questions and possible answers) were presented primarily in Spanish
with English translations located below each paragraph. The device was configured
with a WIFI connection to store the data in a cloud document and featured headphones
(Sennheiser EH-150) both for listening to the recordings and to avoid external interferences.
The iPad device was configured to perform only this task and users were redirected to the
home screen when all the answers had been saved. The possibility of exiting the app was
also disabled. The test is publicly available at http://www.geb.uma.es/mimma/, accessed
on 30 April 2021.

3.2.5. Procedure

Supported by neuroscientific studies [47], critiques to computer-made compositions
are suitable to be affected by anti-computer prejudice, if knowing in advance the non-
human nature of the author. Hence, during the test, each subject was informed that
they were undergoing an experiment in music psychology, but the fact that it involved
computer-composed music was not mentioned at the beginning so as not to bias the
results [48]. Participants were also randomly assigned to one of two different groups and
the compositions were distributed between these two groups in such a way that each
subject listened to the musical pieces as rendered by the same interpreter (Table 2). In this
way, the responses were independent of the quality of the execution since each subject
would listen to both the human and computer compositions interpreted either by the artist
or by the computer, meaning that potential differences in composition and performance
became irrelevant.

Table 2. Distribution of musical pieces into groups according to the interpreter.

Group A Group B

Phase I HH/CH/NS CC/HC/NS
Phase II HH/CH CC/HC

The workflow of the test detailed in Figure 8 shows that the subject is first introduced
to the presentation and the informed consent screens and then prompted for personal data
relevant to the experiment (see specific questions in Table 3). The subject is then assigned
to either group A or B, listens to five sequential audio recordings and answers a number of
questions. The listening and answering process is divided into two phases:

1. During Phase I each subject in group A listens to the three pieces in random order. HH
and CH have been composed by a human and by our computer system, respectively,
and both are performed by a human musician. Subjects assigned to group B proceed
similarly, listening to the same compositions, but in this case synthesized by computer.
Both groups also listened to the same natural sounds recording (NS). Having listened
to each piece the subject is then asked whether the excerpt could be considered
music and what mental representation or emotional states it has evoked in them.
This final question requires an open answer as the subject was not given a list of
specific responses.

2. In Phase II, the subject listens to the same musical pieces (but not the natural sounds),
following which they are asked whether they think the piece was composed by a
human or by a computer. As previously stated, it is important that identification of
the composer is withheld until the second phase so that subjects can provide their

http://www.geb.uma.es/mimma/
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assessment of the music in Phase I without the potential bias of Phase II, in which the
subject becomes aware that the music might have been composed by a computer.

Figure 8. Test workflow. After the initial pages, the participants are randomly assigned to one group
(A or B). Then, the samples are played and evaluated in a random order. Finally, the human or
artificial nature of the musical pieces is assessed.

Table 3. Information requested to participants and questions to interrogate the personal opinion and
feelings elicited by the recordings.

Stage Questions Input Type

Participant’s
information

Age Numeric
Sex Option button
Country Text box
Email address (optional) Text box
Do you have at least 5 years of academic musical
training? Option button

Perception
assessments

Q1. Would you say that what you have listened to
is music? Option button

Q2. Does it generate mental representations when
you listen to it? Option button

Q3. If so, could you write three mental representa-
tions that have come to mind listening to it? Text box

Q4. Does it generate any feelings? Option button
Q5. If so, could you write three feelings that you
have felt while listening to it? Text box

Human/Computer
judgements

Q6. Do you think that the piece you have listened
to has been composed by a composer or by a com-
puter?

Option button

In summarizing the process, a subject assigned to group A might proceed as follows:

1. Presentation screen
2. Informed consent
3. Participant’s information

Perception assessment of S1
4. Listen to HH (labelled as M1, and then S1)
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5. Q1-Q5
Perception assessment of S2

6. Listen to NS (labelled as S2)
7. Q1-Q5

Perception assessment of S3
8. Listen to CH (labelled as M2, then S3)
9. Q1-Q5

Human/computer judgement of M1
10. Listen to HH
11. Q6

Human/computer judgement of M2
12. Listen to CH
13. Q6

3.2.6. Experiments Results

Table 4 shows the results in percentage of the yes/no questions provided in the first
(blind) phase of the experiment. All the questions asked to the subject referred to the piece
that had just been listened to: in random order, HH, CH and NS for subjects of group A,
and CC, HC and NS for group B. None of the contrasts performed, for the total sample or
for each type of listener, was found significant.

Table 4. Results of the yes/no questions proposed in Phase I of the experiment. The percentages of
“yes” are shown. Q1: Would you say that what you have listened to is music? Q2: Does it generate
mental representations when you listen to it? Q3: Does it generate any feelings?

Sample Musicians Non-Musicians

Group A Group B Group A Group B Group A Group B
(n = 134) (n = 117) (n = 89) (n = 60) (n = 45) (n = 57)

HH HC HH HC HH HC

Q1 98.5 96.6 98.9 100.0 97.8 93.0
Q2 70.1 62.4 68.5 60.0 73.3 64.9
Q4 82.1 82.1 84.3 81.7 77.8 82.5

CH CC CH CC CH CC

Q1 97.8 99.1 97.8 100.0 97.8 98.2
Q2 63.4 55.6 66.3 51.7 57.8 59.6
Q4 87.3 80.3 89.9 76.7 82.2 84.5

NS NS NS NS NS NS

Q1 36.6 38.5 41.6 41.7 26.7 35.1
Q2 91.8 95.7 94.4 95.0 86.7 96.5
Q4 83.6 84.6 84.3 81.7 82.2 87.7

An affirmative answer was almost unanimously given to the first question (Q1) by the
subjects after listening to a sample of a musical piece (as opposed to NS), independently of
who composed or interpreted it. By contrast, the NS sample was classified as non-music,
although the results were narrower. Regarding the second question (Q2), all the musical
pieces elicited mental images, with global percentages ranging from 55.6% to 70.1% and
without significant differences observed in terms of who composed or interpreted the
pieces (p > 0.05). Meanwhile, natural sounds elicited mental images in more than 90% of
the cases, more than with any of the musical samples. Regarding the responses elicited by
the recordings (Q4), subjects answered affirmatively (up to 80%) to both musical pieces
-regardless of who was the composer or the interpreter- and the natural sounds. Only in
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the case of the music sample composed by computer and played by human musicians did
the global percentage approach 90%. Most of the answers (179) were given in Spanish.
Among the responses provided in English (23), three were given by US citizens, three by
UK citizens, one by a Canadian and the remaining sixteen by subjects from non-English
speaking countries. One subject provided the answers in German and the remainder (48)
left the text boxes empty.

Regarding mental representations, three different categories were established: ’na-
ture/naturaleza’, ’self/sí mismo’ and ’others/otros’. This taxonomy aims to clearly distin-
guish whether the representational object is associated with the subjective realm or with
the world [49]. Regarding emotions, the model proposed by Diaz & Flores [50] contains
28 polarized categories and an associated thesaurus for the task of grouping and was
adopted for the purposes of classification. The aim was, first of all, to provide sufficient
classes in which to include most of the participants’ subjective characterizations while
avoiding oversimplification and, secondly, to reduce the number of classes in the analysis
where possible. The particular clustering model can be described as a combination of
Plutchik’s affective wheel [51], with the terms arranged together based on similarity, and
the valence-arousal plane [52] that settles polarities for each of the present terms.

In order to analyse the distribution of frequencies in the assembled descriptive data,
the different groups were compared using a chi-squared test with continuity correction in
two by two tables, establishing the significance level at p < 0.05. Among the 753 descriptive
entries for mental representations (251 subjects × 3 samples), 501 were classified into the
categories defined above: nature (n = 300), others (n = 112) and self (n = 89); 23 were
not classified and subjects did not offer a response (the box was left empty) in 229 cases.
With respect to the emotional states, among the 753 entries, 600 were classified, 9 were
not classified and 144 were left empty. Table 5 shows the contingency table for the five
audio samples and the 501 classified mental representations, those descriptions relating to
’nature’ (59.9%) being the most abundant. In the study of distributions there exist significant
differences, since the mental representations elicited by the NS sample are mostly described
using terms relating to ’nature’ (91.7%). In the rest of the samples (the musical ones) the
percentages are distributed more evenly among the categories, with a slight predominance
of the type ’others’.

Table 5. Contingency table audio sample, type of mental representation.

Type of Mental Representation
Total

Nature Others Self

sample

CC n 19 21 12 52
% 36.5 40.4 23.1 100.0

CH n 30 24 24 78
% 38.5 30.8 30.8 100.0

HC n 15 29 17 61
% 24.6 47.5 27.9 100.0

HH n 26 36 19 81
% 32.1 44.4 23.5 100.0

NS n 210 2 17 229
% 91.7 0.9 7.4 100.0

total n 300 112 89 501
% 59.9 22.4 17.8 100.0

In the study of the described emotions, the 600 valid descriptions of emotional stimuli
were classified into 20 of the 28 established categories. The the most frequent emotional
state was “calm” (57.5%), followed by “sadness” (13.3%) and the rest of them appearing
with a notably smaller percentage. Since there are several categories and groups of study,
in order to compute the hypothesis testing, they have been arranged into three classes, the
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two most frequent emotional states, “calm” and “sadness”, and “other emotions”. Table 6
shows the results. There is a significant difference in the group NS (p < 0.001), since most
of the emotional descriptions are associated with “calm” (89.7%), while the rest of groups
show similar percentages.

Table 6. Contingency table audio sample, affective system (grouped).

Affective System (Grouped)
Total

Calm Sadness Other Emotions

sample

CC n 33 16 40 89
% 37.1 18.0 44.9 100.0

CH n 53 27 32 112
% 47.3 24.1 28.6 100.0

HC n 34 11 47 92
% 37.0 12.0 51.1 100.0

HH n 42 24 37 103
% 40.8 23.3 35.9 100.0

NS n 183 2 19 204
% 89.7 1.0 9.3 100.0

total n 345 80 175 600
% 57.5 13.3 29.2 100.0

In addition, the emotional states were analysed according to the polarity (or valence)
in the 14 defined axes. Table 7 shows the results of this arrangement. The majority of emo-
tional descriptions fit into the ’pleasant’ category or positive valence (75.7%). Nevertheless,
there is once again a significant difference with the group NS (p < 0.001), since 96.1% of the
descriptions come under the category of ’pleasant’, while in the music samples this figure
ranges from 60.7% to 71.7%.

Table 7. Contingency table audio sample, valence.

Valence
Total

Unpleasant Pleasant

sample

CC n 28 61 89
% 31.5 68.5 100.0

CH n 44 68 112
% 39.3 60.7 100.0

HC n 26 66 92
% 28.3 71.7 100.0

HH n 40 63 103
% 38.8 61.2 100.0

NS n 8 196 204
% 3.9 96.1 100.0

total n 146 454 600
% 24.3 75.7 100.0

Table 8 provides a summary of the final stage of the experiment in which the partici-
pants responded to the question regarding the identity of the composer of each of the two
musical pieces they had previously listened to. These questions were again presented in
random order (HH, CH for group A subjects and HC, CC for group B).
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Table 8. Results of the explicit inquiry about the nature of the composer in Phase II of the experiment.

Sample (n = 251) Musicians (n = 149) Non-Musicians (n = 102)

Q6
Group A Group B Group A Group B Group A Group B

n % n % p n % n % p n % n % p

HH HC HH HC HH HC

computer 65 48.5 58 49.6 0.967 44 49.4 31 51.7 0.921 21 46.7 27 47.4 0.897human 69 51.5 59 50.4 45 50.6 29 48.3 24 53.3 30 52.6

CH CC CH CC CH CC

computer 61 45.5 66 56.4 0.111 46 51.7 39 65.0 0.149 15 33.3 27 47.4 0.220human 73 54.5 51 43.6 43 48.3 21 35.0 30 66.7 30 52.6

In the analysis, no differences were observed regarding the composer or interpreter
of the music (the human or the computer) and this lack of bias was observed for both
professional musicians and non-musicians. The results are shown in Table 9. Musicians
showed marginally higher values and a slight tendency to classify the piece CC as computer
made. In general, all subjects failed to correctly identify the compositional source of the
two musical samples.

Table 9. Sensitivity and specificity in the human-computer judgement.

Musicians Non-Musicians

Value CI (95%) Value CI (95%)

sensitivity (%) 57.05 48.76 65.33 41.18 31.14 51.22
specificity (%) 49.66 41.3 58.03 52.94 42.76 63.12

4. Discussion and Conclusions

In this paper we have presented a system that combines formal grammars and evolu-
tionary algorithms to compose in both atonal and tonal music styles. We have described
how it works internally and how, differently from many other approaches, this one does
not require a pre-existing dataset of compositions. This property brings a set of impor-
tant advantages:

• The product is innovative, since it is not based on imitation and has complete freedom
to explore the space of search defined by the (more restrictive or looser) input rules,
which act merely as a check that the new samples comply with the commission. Apart
from the fitness and the evolutive mechanisms, the other essential part of the system
that allows this free search is its implicit encoding based on formal grammars. They
impose a hierarchical structure and favor behaviours like repetitions of musical units,
satisfying some of the basic requirements of music composition.

• The syntax to write the genomes (and hence the music) is (a) highly expressive, since
it allows the representation of any piece of music that can be expressed in the common
music notation; (b) flexible, any musical sequence can be written in infinite forms; (c)
compact, meaning that in spite of including all the compositional and performing
information, it consumes between a half and a third less storage than the equivalent
in MIDI format, between a third and a quarter of a corresponding MusicXML file and
definitely less than any audio based format; and (d) robust, meaning that if a genome
is altered in any way, not only it still produces a valid piece of music, but it also shares
many elements in common with the original, as being a mutation of it.

• The system is affordable: (a) to set up, since there is no need to search and obtain
samples from any external source; (b) regarding memory space, since there is no need
to store or move large amounts of data to train; (c) while it is true that it requires the
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intervention of an expert to input the rules and achieve convergence to a particular
style, once it is done, the execution is not very computationally demanding. Using
a single CPU thread in a current computer, both the atonal and the tonal systems
roughly produce one genuine composition in their most complex style in 6.5 min; and
it is possible to run in parallel as many of these tasks as wanted.

The system is set up at the beginning, if desired, by using just a few simple highly
abstract parameters, such as amount of dissonance, repetitiveness, duration of the compo-
sition, etc., which are then translated to the genomes that undergo the evolving process.
It neither requires any existing creative input from the user nor does it require an itera-
tive interaction from them (i.e., interactive fitness function). For a more specific purpose,
the system can be constrained by allowing people with musical knowledge to produce
music in a particular style, in roughly ten minutes, through a set of global parameters
(harmony, rhythm, instruments, etc.) that act as fitness and can still be considered highly
abstract musical directions, nothing more than what would be given to an expert musician
to compose.

However, normally the composition of music is regarded as a creative process where
humans can express and evoke sensations. Could we ever consider this artificially-created
music, actual music? The definition of music is a tricky question, even if only instrumental
music is considered. For example, thinking of it as an organized set of sounds can be too
broad an understanding, as it includes a collection of sounds that, while organized, are
not music and, at the same time, it takes the risk of excluding the compositions made
by Melomics, since until they are synthesized (or performed) they are just scores. Two
properties that are usually required in the definition of music are either tonality—or the
presence of certain musical features—and an appeal to esthetic properties. The first can
be guaranteed by Melomics through the encoding and the fitness function. The second
property is certainly more complex to be respected, since we are unable to ascribe any
esthetic intention to the software, but if we move the focus from the composer to the
listener, the fact that the composer is a machine is not as relevant. Among the different
comments on Melomics music, Peter Russell’s [53] positive judgement was interesting to
us as he, who had no knowledge of the origin of the composition, does not express any
doubt on the musical nature of the piece. This encouraged us to follow this understanding
to assess whether the system generated actual music. The mentioned properties are not the
only way to define music and, indeed, they have problems in capturing all and only what
humans usually consider music. There are multiple possible definitions, each one with
strengths and weaknesses and their discussion is more the domain of the philosophy of
music [54]. We needed to take a more practical approach, instead of looking at Melomics’s
compositions from a more philosophical perspective, we considered the opinion of critics
and of the general public. If they considered the end result as music, then it could be
considered music.

The TT was designed to identify thought traces in computer processing and its in-
teractive nature makes the adaptation to a musical version difficult. Nevertheless, the
underlying principle of Turing’s approach remains a valid inspiration for new tests that
measure how close artificial music from human music is. In contrast with previous works,
the experiment presented illustrates a controlled and rigorous methodology for a trial of
this nature performed over a large sample of participants. The first question of the ques-
tionnaire was motivated to measure potential differences perceived from the original music
sample composed by a musician and the other samples. In this sense, it is worth noting that
the natural sounds sample was classified as music by 41.7% of the professional musicians.
In contrast, both music samples were classified as music by most of the subjects (over 90%).
With respect to the capability of eliciting mental images, it also endorsed the hypothesis
of this experiment, as there was no significance when evaluating the musical samples,
eliciting images in around 50% of the subjects. With respect to the natural sounds sample,
this measure raised to 90% (both in the specific question and in the presence of terms in
the descriptions). This is not surprising: natural sounds are associated with concrete and
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recognizable physical sources, while music is produced by musical instruments and images
arise in the form of memories not directly related to the perceived sounds, following a
more abstract channel. The study of qualitative data confirmed this fact: most of the terms
used in these descriptions fit the category “nature”, differing from those used to describe
the musical samples, which do not point to any of the defined categories. These results
highlight the difference between natural sounds and the presented music, which appears
to generate a more complex and wider set of mental images, with independence of the
musical training of the listener or who composed or interpreted the pieces. With respect
to the evoked emotional states, one of the most revealing results was that natural sounds
had a significant rate of 89.7% of descriptions assigned to the state “calm”, in contrast to
the music recordings, with a maximum rate of 47.3% in this category, even though the
music style presented was arguably calm. As in the case of mental images, all the musical
pieces seemed to elicit a wider range of emotions, with independence of the listener, the
composer or the interpreter. The second interesting result came from the study of valence
in the descriptions. They turned out to be significantly positive (p < 0.001) when describing
sounds of nature, while in the case of music, with no relevant differences among the groups
of study, they also elicited unpleasant feelings. The final part of the test confirmed that the
subjects were unable to distinguish the source of the composition. Even if it was done only
with two different musical pieces, the sample was wide and the fact that about a half of it
was made of professional musicians is an indicator of the robustness of the conclusions,
which confirms the hypothesis, suggesting that computer compositions might be used
as “true music”. This is, of course, a first result in this line of quality assessment. The
model can be extended to different musical styles, given that the automatic music synthesis
module (in that particular style) is good enough as considered by the subjects involved in
the present experiment.

There are a lot of cases in daily situations that can benefit from music being produced
automatically, especially those cases that are not the focus of composers. It can make music
composition accessible to more people, even those with very little or no knowledge of
the process, which could eventually lead to new styles. A particular application that we
would like to develop more in the future is adaptive music. The potential of generative
music that complies with human music allows the creation of tailored music (specific
genres, structure, instrumentation, tempo, rhythm, etc.) considering personal preferences
as well as particular needs or goals, such as responding in real time to the evolution of
physiological signals. This can be used for example in therapy (pain relief, sleep disorders,
stress, anxiety) or to assist during physical activity.
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