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Abstract: DLC coatings have attracted an enormous amount of interest for science and engineering 
applications. DLC occurs in several different kinds of amorphous carbon materials. Owing to the 
extensive diversity in their properties, DLC coatings find applications in mechanical, civil, aero-
space, automobile, biomedical, marine, and several other manufacturing industries. The coating life 
of DLC is predominately influenced by its constituent elements and manufacturing techniques. Nu-
merous researchers have performed multiple experiments to achieve a robust understanding of 
DLC coatings and their inherent capabilities to enhance the life of components. In this review, a 
wide range of DLC coatings and their classification, properties, and applications are presented. 
Their remarkable performance in various applications has made DLC coatings a promising alterna-
tive over traditional solitary-coating approaches. 
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1. Introduction 
DLC is a group of indistinct carbon (C) materials with the unique property of a dia-

mond. Several techniques have been used for the coating process of different material 
composites, which make them more superior and multi-purpose applications, including 
biomedical and marine engineering [1]. Moreover, DLC has a large scale of sp3 hybridized 
C molecules as a diamond, and discloses their seven distinctive forms. 

DLC coatings are made through the mixing of poly-type, as a different form in nano-
scale of structures that simultaneously are formless and adaptable, but are then only sp3 

reinforced like a diamond. The hardest and most grounded is such a blend, referred to as 
tetrahedral amorphous carbon (ta-C). For instance, a covering of just 2 μm of ta-C expands 
the obstruction of stainless steel against rough wear, changing its lifespan from a week to 
85 years. Such ta-C can be viewed as the “unadulterated” type of DLC, as it comprises 
only sp3-reinforced C ions. Fillers, for example, hydrogen (H), graphitic sp2 C, and metals, 
are utilized in the other six structures to decrease manufacturing costs [2,3]. In October 
2011, Science Daily announced that researchers at Stanford University had made a super-
hard shapeless diamond under states of ultrahigh-pressure conditions that came up short 
on the translucent structure of diamond [4]. Normally, diamond is quite often found in a 
glass-like structure with a cubic direction of sp3-reinforced C ions. 

The inner energy of the cubic poly-type is smaller than the hexagonal structure and 
growth rates from liquid material in both (i.e., normal and heavy) diamond manufactur-
ing techniques. Meanwhile, they are moderate enough that cross-section structures have 

Citation: Rajak, D.K.; Kumar, A.; Ajit, 

B.; Menezes, P.L. Diamond-Like  

Carbon (DLC) Coatings:  

Classifications, Properties, and  

Applications. Appl. Sci. 2021, 11, 4445. 

https://doi.org/10.3390/app11104445 

Academic Editors: Witold  

Kaczorowski, Damian Batory and  

Alberto Milani 

Received: 25 March 2021 

Accepted: 10 May 2021 

Published: 13 May 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2021 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://cre-

ativecommons.org/licenses/by/4.0/). 



Appl. Sci. 2021, 11, 4445 2 of 20 
 

the opportunity to fill the least energy (cubic) structure and are feasible for sp3 bonding of 
C ions, whereas DLC is normally synthesized, utilizing rapid cooling on high-energy pre-
liminary C on cool surfaces. In such a case, cubic and hexagonal lattices are combined with 
several layers, a very short period time elapses for either lattice to produce over another, 
and prior molecules become frozen. A few methods introducing DLC depend on the lower 
density of sp2 and then on sp3 C. So, the synergic effects of pressure, impact, and catalysis 
at the microscopic level constrain sp2 particles closer into sp3 bonds. Typically, this is 
achieved by introducing a group of new sp3 C along with the pressure in the depth of the 
coating, leaving no space for sp2 detachments, or the new group is covered by the appear-
ance of a new C-bond for the upcoming pattern of effects. They occur separately at many 
spots marked on films or coatings. In addition, DLC reveals unique types of undefined C 
materials. Herein, it has been observed that DLC coatings were discovered for numerous 
applications in several engineering works, including biomedical, marine, and other as-
sembling ventures. The covering life of DLC is based on its constituent components and 
manufacturing methods. Thus, the practical properties of different constituents accessible 
worldwide, their characterizations, and properties to be concentrated, have to distinguish 
the enhanced material properties for the ideal application. An outline of a different scope 
of DLC coatings, characterization, properties, and applications is introduced here. 

Historical Background of DLC 
Indistinct DLC coatings reveal exceptionally smooth surfaces, resistance to wear, and 

low-friction behavior. Nowadays, DLC films are utilized globally in a wide range to im-
prove apparatuses and segment quality, particularly for automobile applications [5–9], 
with greater than 100 million covered parts for every year and a market volume of ap-
proximately EUR 100 million. 

In 1953, Schmellenmeier introduced C-films using acetylene gas instead of tungsten–
cobalt alloy [10]. The significant outcome of the experiment was to achieve a thin sheet of 
tungsten carbide (WC) produced by glow discharge in the presence of hydrocarbons at 
low temperatures. In continuation of the same work, it was observed that black hard form-
less layers were set up at the cathode pole as long as the flow rate of current was low. 
However, thick (μm) hard films were recognized as diamonds after performing X-ray dif-
fraction (XRD) [11]. In 1951, Konig and Helwig [12] investigated direct current (DC) 
through the glow-discharge process in a benzene (C6H6) atmosphere. However, they ana-
lyzed only the film grown on the discharged anode, and the films had a yellow color and 
comparatively low-density. Hereafter, Heisen [13,14] investigated that more films with 
high density were deposited on the cathode compared to the anode, which showed that 
positive particles had larger cross-sections than negatively charged particles. Heisen [13] 
found that the films’ growth rate significantly depended on the substrate geometries, 
while those protecting the substrate were charged under ion-bombardment then stopped 
the film growth. The term DLC was initially introduced by Aisenberg and Chabot [15] in 
1971, the layers were formed at ambient temperature, making use of ion beam deposition 
technique, which involves C, argon (Ar) particles, and a graphite electrode. After exami-
nation, it was determined that films showed optical transparency, resistance to wear, and 
electrical and chemical flow. The film structure was described as partly crystalline, having 
lattice parameters the same as diamond. In 1971, Aisenberg et al. reported improvement 
of cutting performance of paper-cutting blades by employing DLC coatings. When the 
blades were tested for wear, they found a decrease in frictional coefficient [16]. Spencer et 
al. [17] investigated DLC coating performance like Aisenberg and Chabot [15]. Whitmell 
and Williamson [18] organized hard and protecting coatings of up to 4 μm thickness on 
various metal surfaces utilizing the ion beam deposition method of Schmellenmeier and 
Heisen, but used a gas combination of ethylene (C2H4) along with 5% Ar. The protective 
layer required to holds a positive charge attaining maximum thickness should be normal. 
Holland [19] clarified this, expecting that secondary electrons produced at the boundary 
of the domed aperture compensate for the positive charge. Later, the result was confirmed 
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for a DC-based particle plating a-C: H measure on protecting glass substrates [20]. 
Throughout the tenure, new techniques like responsive faltering and cathodic circular 
segment measures as changes of diamond-like indistinct C-based films were made. Now, 
a maximum utilization, particularly in the automobile, has been set up, and, for example, 
for diesel infusion system, DLC coatings are essential. 

2. Classification of DLC Coatings 
DLC is a type of thin-film material of amorphous carbon (a-C) or hydrogenated 

amorphous carbon (a-C: H), which has a high binding rate of the metastable sp3 C bond. 
These particles provide an ascent for the sp3 bond, which is in stark contrast to the sp2 
bond unless balanced by the C-H bond. It has been suggested that cyclic particles are dif-
ferent from plasma polymerization. In this reaction, with the development of subatomic 
H2, the accumulation of C-H groups will form C sp3 bonds. The DLC can be linked with 
different compositions (such as Si and F). This section discusses unalloyed materials first, 
rather than specifying alloyed materials. Specifically, it has four bases: (1) processing, (2) 
structure, (3) properties, and (4) performance, and improves the bond between them—
each edge of the tetrahedron is connected at the edge to each other corner [21]. 

However, academicians and industrial researchers have turned their attention to-
ward the development of DLC coatings due to excellent optimization among tribological, 
mechanical, and chemical properties. DLC coatings are deployed in automotive engines 
because of superior friction behavior, increased life cycle, and compatibility with chemi-
cals because of their inert nature. However, such kinds of properties will be influenced by 
mixing nonmetals and metals (see Figure 1). 

 
Figure 1. The general classification of DLC coatings. 

In this classification section, the sp3 ratio, H content, and other properties of several 
types of C-films were studied to categorize the amorphous C-films, including DLC. The 
results demonstrated that amorphous C exists in a wide range in the ternary diagrams of 
sp2, sp3, and H. Subsequently, amorphous C was categorized in four groups of the DLC 
region and one group of the PLC region. Herein, the percentage contribution factors of 
categorized groups were observed as ta-C content >50% of sp3 ratio and <5% of H. At the 
same time, a-C content was <50% of sp3 ratio and <5% of H. As they categorized four DLC 
regions, it was more reasonable to classify these DLC groups as polymer-like C-films ra-
ther than DLC films. The maximum level of sp3 ratio was expected to suppress film cor-
rosion, due to mellite reactions for corrosion resistance; therefore, this was almost distinct 
from the sp3 ratio. Typically, it has been introduced to internationally standardize C-films, 
including DLC, without disclosing data, and reports have been published as 
ISO20523:2017 [22]. The major findings of this study are expected to serve as a basis for 
deriving the sp3 ratio and H content at high precision using XPS and glow-discharge op-
tical emission spectroscopy. DLC films can be further classified as a biocompatible mate-
rial [23] in a refraction index plane and extinction coefficient [24], which can help in large-
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scale development and industrial applications. However, as per ISO 20523:2017 disclosed 
of the standard specifies classification, and designations, and predominant constituent on 
DLC films. Amorphous C-based films are also known as DLC, as well as graphite, poly-
mer-like films, and CVD diamond films. This applies to mass-production on an industrial 
scale, which is appropriate for the C-based films. However, it does not apply to the entire 
coating, and it can be made up of a main functional layer and additional layers on the top 
and bottom. Over the development of its thickness, a material’s property may be changed. 
These kinds of layers are known as gradient layers. C-based films can include other ele-
ments like H, metal, and other elements. Metal carbide can be used as a metal constituent 
with supplementary elements, and are only covered if C is the predominant constituent 
part. However, a detailed informative fact was found regarding the DLC films classifica-
tion based on the experimental results, and their characteristics and applications are ex-
plained in different subsections. 

2.1. Stage Diagram 
1. The types of DLC on the ternary graph are shown in Figure 2, which also shows the division of the targets in the combination; 

i.e., C sp3, C sp2, or H [1], according to Jacob and Moller’s recommended graph [25]. The outline of the stage consists of three 
main areas: (1) without H a-C along with the left pivot, (ii) sp2 a-C is commonly lustrous C or a-C produced by dissipation, and 
(iii) cutting-edge variations of faltering, including uneven magnetron faltering, can make DLCs with an enormous sp3 substance. 
At considerably maximum sp3 content, there is an explicit sort of a-C assigned as tetrahedral shapeless C. This is produced 
using plasma particles or radiation with high particle splitting and almost no characteristic particle energy [26–29]. 

 
Figure 2. Ternary phase diagram of the C, H system [1]. 

The second position of the stage outline is in the lower right corner of the figure, 
where the H content is so high that the material cannot form a fully connected network, 
and can only form gas molecules [25]. In the center, the area in the material is a-C: H, 
which is usually produced by the deposition of plasma-enhanced chemical vapors 
(PECVD) of hydrogen atoms and C, or by the susceptible interference of graphite in air, 
or from the precursors of hydro C gases [30–35]. A common PECVD or staggering cycle 
produces a-C: H, which is located in the area referred to as a-C: H. It can go from the 
material by including 20 to 25% of H content up to exceptionally high, with H substance 
of ∼60% of the total number of atoms. With the improvement of PECVD, it is conceivable 
to produce high-density plasma. These methods produce thicker a-C: Hs, which we call 
tetrahedral, hydrogenated invisible C, or ta-C: H [36,37]. High-density plasma is achieved 
by working at a lower pressure than typical PECVD and using a magnetic field to generate 
longer electron path lengths, thus promoting high plasma ionization. 

In addition, since the last decade, researchers have described and revealed the devel-
opment of high-level accuracy of metal-free C electrocatalysts for oxygen reduction reac-



Appl. Sci. 2021, 11, 4445 5 of 20 
 

tion (ORR), and this is one of the promising methods for the exploitation and use of re-
newable and clean energy; however, there still are major challenges to resolve. Mean-
while, the facile synthesis approach is arranged in such a way for three-dimensional (3D) 
N-doped C with a selected sp3/sp2 interface, which is derived from ionic liquids through 
shift transformation [38]. However, density functional theory reveals improved perfor-
mance of ORR, and it can be ascribed to the existence of N dopants at the sp3/sp2 C inter-
face [39–45]. 

Another investigation of DLC coatings was conducted on stainless steel (SS) employ-
ing a plasma-based particle-deposition methodology along with two different parameters 
[46]. Herein, specimens were characterized by several techniques, such as exploitation 
high-resolution elastic recoil analysis, micro scale X-ray negatron spectrometry, and nano-
indentation testing to work out the chemical element content, sp2/sp3 magnitude relation, 
and mechanical properties of the coating [47,48]. 

2.2. Structural Arrangement 
Strong C is broadly classified; i.e., ordered (diamond, nanotubes, and graphite) and 

disordered DLC structures. The structure of formless C comprises sp2- and sp3-hybridized 
C. The sp3-rich material has 3D organizations with completely covalent bonding. In this 
way, it is precisely hard and possesses moderately higher density. A density value of more 
than 3 g/cm3 is described as a density near the density of diamond [49]. Then again, the 
sp2-rich material has 2D organizations with a covalent bond, a weak bond starting from 
intermolecular powers. In this way, this structure is precisely delicate and has a moder-
ately low density. This material is indistinct C (a-C), which is infrequently perceived as 
DLC in a wide range [50]. Hydrogenated C films are additionally utilized for engineering 
applications. 

2.3. Processing 
The vapor deposition method is one of the well-known procedures applied to blend 

indistinct C. Vaporization methods are essentially isolated into two ways: (1) PVD and (2) 
CVD. As non-ionized particles are added to the film development to increase the voltage 
to the substrate and do not cause any changes in the structure of C: H, it is regularly added 
to the plasma gas for forming a-C: H films. The C bond, with around 30% ionized C par-
ticles, flows toward the substrate [51]. It additionally consists of a large number of small 
C particles. 

In the CVD cycle, hydro C gases, for example, acetylene and methane are deterio-
rated synthetically and dense into the C or hydrogenated C films on the substrate. For 
deterioration, plasma response measures are presented, in which the dehydrogenation of 
the hydro C particles continues to diminish the disintegrated stress. High-plasma-density 
PECVD sources are proposed to create sp3-rich films; these sources incorporate electron 
cyclotron reverberation (ECR) [52], the plasma bar source (PBS) [53], and electron cyclo-
tron wave reverberation (ECWR). These methods are completed under generally low 
weights [54]. In this way, the ionization capacity of gas atoms by electron sway and speed-
ing up the level of the ionic species around the substrate is high. 

2.4. Properties 
2.4.1. Film Density 

DLC films can be isolated into four classes, depending on film density properties: ta-
C, ta-C: H, a-C, and a-C: H. The sp3-rich material ta-C regularly shows a high density of 
3.2 g/cm3. For example, ta-C films were saved by FCVA (filtered cathode vacuum arc) at 
various substrate negative biases. Generally, a 2.71 g/cm3 density was considered for pre-
disposition voltage of 0 V to achieve a high density (3.42 g/cm3) at a predisposition voltage 
of 80 V [55]. As the strength of the applied S-twist (two-fold curve) filter was expanded, 
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the plasma was engaged and limited more strongly, and a slight increment in atomic cur-
rent density was identified. The materials required to produce these films were acquired 
from high-plasma-density PECVD sources; for example, PBS (plasma beam source) and 
ECWR (electron cyclotron wave reverberation) [56,57]. The energy and transition of the 
particles moving at the developing film surface were shifted by providing an outside volt-
age to the substrate [58–60]. 

2.4.2. Sp3—Density Curvature  
There are two types of densities with sp3 content. First, hydrogen-free a-carbon 

changes linearly [61], which is predicted according to Vegard’s law of alloys. The second 
is for a-C: H. It is ta-C: H, which can be formed from a high-density plasma source and 
the density, is improved with the sp3 content. Usually, the density expands at the most 
extreme point, at which time the H content increases rapidly, and the huge atomic size of 
the C-H group translates into the highest density and decreases with a high sp3 value. It 
was found that for the most part, for a-C, the FWHM amplitude of the G peak corre-
sponded to the density. Furthermore, it was found that the dispersion of the peak wave-
numbers G (dispersion G) with different excitation energies corresponded to the content 
of sp3 [62–64]. 

2.4.3. Refractive Index 
Generally, ta-C films exhibit a high refractive index, sometimes higher than diamond 

(2.419). In a-C films carrying a refractive index range of 1.6 to 2.6, it has been seen to be 
less than that of ta-c films. Even though the tests showing a refractive index above 2.0 
demonstrated a moderately high extinction coefficient of over 0.1, the samples with re-
fractive records less than 2.0 showed a moderately low extinction coefficient than 0.1 [65]. 

2.4.4. Growth Rates in PECVD 
The precursor molecule for a-C: H development is, for the most part, picked as to the 

film growth rate. The growth rate is discovered to be firmly connected to the ionization 
capability of the atom [30]. Unsaturated atoms with low ionization possibilities; for exam-
ple, acetylene, return a large number of high development rates compared to methane 
[65]. Acetylene is likewise preferred by several researchers, since it has the most reduced 
H content (alongside benzene) of the standard precursor molecule, and hence the H sub-
stance of the subsequent a-C: H film likewise will, in general, be lower [66]. As modulus 
of elasticity is identified with the part of C-C bonding, it makes the H content inclined to 
drop to increase the modulus, and accordingly the hardness, for a given sp3 content. Sub-
sequently, one should keep a high atomic energy of state 500 eV for each C to decrease 
pressure. Particle energy for each C ion demands 500 eV for methane, but 1000 eV for 
acetylene. An irregular mix stores a-C: H from methane at high atomic energy (600–1200 
eV) [67–72].  

In this way, the atomic energy is well over the ideal estimation of 100 eV compared 
to the highest sp3 content. Hence, the C-bonding is partly graphitic. Yet, the high ion en-
ergy also leads to the implantation of a large part of the H atoms of the incident methane, 
with the goal that the film has an uncommonly higher H content for a-C: H films of sp2 
content [73,74]. 

2.4.5. Stress 
Thick films produce intrinsic compressive stress that causes delamination of the film 

[1]. There are many ways to minimize this effect; for example, the use of an adhesive layer 
of Si, a graded adhesive layer, or multilayer or metal alloy. In this case, the average state 
of the particles of the film deposition is 100 eV. However, it is also subject to short pulses 
(~10μs), which have a much higher bias voltage, greater than 1000 eV. Energy particles 
cause stress relaxation [75,76]. The high-energy particles allow for some degree of atomic 
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relaxation, thus reducing stress. A limited number of sp3 sites will be converted to sp2, 
which is enough to keep the diamond-shaped attribute. At the basic level, this cycle will 
act on both ta-C and a-C: H. 

2.4.6. Alloyed DLCs 
Novel properties of DLC are a promising way to meet the requirements for several 

applications, and normally they can be enhanced by alloying with other elements [77–82]. 
An investigation of the impact of alloying with different transition metals; (for example, 
Ti, Cr, and Al), was conducted. Al, in particular, was found to reduce the stress and 
thereby permit the growth of thicker films. These can be referred to as a-C: Me or a-C: H: 
Me, separately. Alloying with transition metals is additionally used to expand the me-
chanical strength of the films. DLC is a rather brittle ceramic, and alloying with carbide-
forming metals makes it harder as a result of the development of nano-sized carbide in-
clusions. Furthermore, the expansion of Si to a-C: H resulted in low stress and reduced 
friction coefficient in humid conditions [81]. In addition, after mixing of fluorine (F), the 
surface energy was found to be significantly low. However, it may vary if Si, nitrogen (N), 
and boron (B) are added [79]. The addition of N in films has been pointed out because of 
the hypothetical compound, i.e., C3N4, where C is sp3 and N is sp2 bonded [80]. 

3. Characterizations/Properties of DLC Coatings 
3.1. DLC Substrate Compatibility 

The main challenge for substrate compatibility with DLC and DLC coatings is the 
way of showing good adhesion. Table 1 illustrates the substrates that were used in the 
PECVD reactor for DLC treatment. In some cases, the DLC cannot adhere directly to the 
substrate (treated stainless steel). At the same time, the DLC coatings were completed us-
ing intermediate layer materials to improve the adhesion properties. 

Table 1. List of DLC-compatible substrates 

Kevlar 
Polyethylene PolyCate (Lexan) 
Poly (Styrenec Arylate) 
Silicon (Si) 

304 Stainless steel 
440 Stainless steel 
Iron 
Tantalum 
Aluminum (Al) 

3.2. Tribological Properties of DLC Coatings 
Numerous investigations have been carried out in the field of tribology on DLC coat-

ings since the last decade, due to its low friction coefficient and low wear resistance. One 
of the foremost studies published recently regarded the impact of plasma pretreatment 
on the wear behavior of DLC coatings on PDMS (poly-dimethyl-siloxane) substrates [83]. 
A technology-supported low-pressure plasma and dielectric barrier discharge (DBD) 
plasma was used for the very first modification procedure. The essential properties of the 
DLC coatings delivered on unmodified substrates were contrasted with those of the coat-
ings influenced to plasma pretreatment. The tests exhibited a cross-linking of the polymer 
substrate during plasma pretreatment. 

With 0.7%, 5.8%, and 23.3% Ti in DLC, coatings were applied via pulsed cathode arc 
deposition and magnetron sputtering on AISI 316L chrome steel substrates [84]. The var-
iable value of Ti content was managed by setting the Ti target current at 3, 5, and 7 A. The 
tribological properties of Ti-doped DLC (Ti-DLC) coatings were studied using X-ray pho-
toelectron spectroscopy, Raman spectroscopy, nano-indentation, and a ball-on-disc tribo-
meter. The main output of this investigation regarded TiC, which formed when Ti content 
within the coating was above 5.8%. Ti-DLC with 0.7% Ti had the very best  and  ra-
tios, and exhibited optimal tribological properties under lubrication. 
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In another study, soft DLC films were deposited on Si (100), iron, and chrome steel 
substrates with a Cr adhesive interlayer using PVD magnetron sputtering technology [85]. 
The major output was to connect the coating chemical and mechanical behaviors to the 
various deposition parameters, such as discharge power and substrate-target distance. 
Stronger sp3 dependence was found on the discharge power for DLC deposited closer to 
the target. These tribological results were not dependent on the chosen substrate-target 
distance, but rather on the hardness of the substrate. 

3.3. Chemical Resistance of DLC Coatings 
The chemical inertness of diamond makes it attractive as a protective coating against 

chemical formations [86]. In this study, 2” diameter discs of 6061-T6 and 5053 Al, 1/4” 
thick, were metallographically polished to a 0.5 μm finish by utilizing a silica slurry and 
cleaned with isopropyl alcohol. After the deposition of DLC layers, the samples were 
tested for analyzing chemical attacks or formation on the substrate surface by using acid 
drops (Figure 3). The principal tests were produced by applying one layer of 1 μm to 2 
μm thickness of DLC deposited on the Al substrates [87]. Further investigation was car-
ried out for enhancing the substrate surface and deploying the SEM test examination to 
identify the stress cracking on the substrate surface. Al- 6061-T6 contains insolvable 
(FeCr)3SiAl12 incorporations and excess Mg2Si particles that are harder than the matrix. 

 
Figure 3. Diagram representing the chemical test procedure [87]. 

Different effects were pursued to eliminate imperfections in the DLC coatings; in-
cluding the utilization of thick coatings (≤2 μm), different layered coatings, and silicon 
between interlayers. None of the coatings was completely free from the inclusion of un-
desirable particles. The thicker coating was moderately resistant to chemical formation 
compared to thinner coatings; since they expanded the ideal opportunity for acid perme-
ation through the layer [87] (see Figure 3). For instance, with the thinner coatings, the 
response between the Al substrate and the acid was immediate. Utilizing various layered 
coatings (comprising both thin and thick layers, 0.5 μm and 1.5 μm, respectively), the pro-
tection from chemical reaction was expanded up to 20 min. At the same time, coatings 
with a Si layer between the DLC and Al substrate gave the best protection from permea-
tion, delaying chemical reaction with the substrate up to 60 min. Moreover, while consid-
ering the permeation time, the effect of time on the permeation process was not completely 
removed by using the Si interlayer due to the inclusion particles of coating defects. 

3.4. Thermal Stress: DLC Films 
Stress is a significant inherent parameter of DLC deposition, as stress leads to poor 

adhesion. Moreover, stress is a mechanical property that can be readily measured. As in 
bulk materials, the crack at the interference is resolved in large part by mechanical prop-
erties. 
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The thermal stress at interference can be readily assumed [88–90]. Thermal stress is a 
big problem for DLC and diamond films due to the small coefficient of thermal expansion 
of diamond (see Table 2). However, if diamond films are deposited on a substrate at ele-
vated temperature, after they cool at room temperature, the substrate will bond better 
than diamond over-layers. Later, the diamond film is bonded to the substrate, and the 
interface area will change to match that of the substrate’s orientation, resulting in the de-
velopment of compressive stress on films. 

Table 2. Mechanical and thermal properties of various materials. 

Materials 
Linear Coefficient of 
Thermal Expansion 
(at 20 °C) ×10−60C−1 

Modulus of 
Elasticity×1011 (Pa) 

Density (g cm−3) Reference 

Al 23 0.706 2.702 [91–93] 
Al2O3 5.3 4.0 3.965 [91,93,94] 
Chromium 5.0 2.79 7.20 [91–93] 
Cu 16.7 1.298 8.92 [91–93] 
Diamond 1.0 9.1 3.51 [91,93,94] 
Germanium 5.7 ----- 5.35 [91–93] 
Glass 4–9 0.48–0.83 ----- [91,95] 
Graphite 7.8 ----- 2.25 [91–93] 
Fe 11.8 1.523–2.114 7.86 [91–93] 
Molybdenum 5.0 3.248 10.2 [91–93] 
Ni 12.8 1.995–2.192 8.9 [91–93] 
Platinum 8.9 1.67 21.45 [91–93] 
Si 2.5 6.6 2.33 [91,93,96] 
SiC 3.7 4.8 3.217 [91,93,94] 
SiO2 11.2 ----- 2.64 [91–93] 
NaCl 42.3 ----- 2.165 [91–93] 
Stainless Steel 15.9 2.153 ----- [91–93] 
Ti 8.6 4.7 4.5 [91–93] 
Tic 6.2 ----- 4.93 [91–93] 
Tungsten 4.5 4.11 19.35 [91–93] 
Uranium 14.1 ----- 19.05 [91–93] 

 
The stress due to the thermal expansion mismatch between a substrate and over-layer 

can be determined utilizing Equation (1): 

𝜎 = 𝐸 𝛼 − 𝛼 ∆𝑇(1 − 𝑉)  (1)

where σ: stress; E: modulus of elasticity; αf and αs: average coefficients of expansion of 
film and substrate, respectively; ΔT: change in temperature; and v: Poisson’s ratio. Ac-
cepting that the thermal coefficient of growth of the DLC film was equivalent to diamond 
and that Poisson’s ratio is 0.2 [90], the pressure in a thin film was determined to be 1.4 x108 
Pa compressive stress. The range of measured stress values for a film on Si may vary be-
tween 5 × 108 and 4 × 109 Pa (see Table 3). 

Table 3. Quantitative stress measurements for DLC and diamond films. 

Film Stress (Pa) 
(C) = compressive 
(T) = tensile 

Film composition Deposition process Reference 

5. To 7 × 109 (C) DLC on glass Glow discharge [97] 
5 × 108 (C) DLC on glass E-beam heated C rod [98] 
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7.5× 108 (C) To 9.6 × 108 (T) DLC on glass Bias sputtered and plasma deposited [99] 
3. To 4 × 109 (C) DLC on quartz glass and Si Ion source [100] 
0.5 To 3. × 109 (C) DlCon Si Ion source [101,102] 
1.6 × 109 (C) DLC on glass RF magnetron sputter [103] 
~ 109 (C) DlC on ZnS and ZnSe Ion source [104] 
1.2 × 109 (C) DLC on Si DC plasma reactor [105] 
9.4 To 139 × 106 (T) Diamond on Si Microwave plasma [106] 
2.1 To 4.7 × 109 (C) Diamond on Si (100) Filament [107,108] 

 
Angus [109] and Tsai and Bogy [110] have disclosed a quick survey on the issue of 

stress in DLC and diamond film coatings. As opposed to adhesion, the stress in films can 
be quantitatively measured. Generally, it can be performed by the beam deflection 
method, which was examined by Campbell [92]. Table 3 shows the investigations of quan-
titative measurements of the stress for films. Gille and Rau [100] analyzed the buckling of 
C-films on a glass substrate to infer internal stress. D. Nir [101,102,111] examined the stress 
for DLC deposition on Si and many sheets of steel prepared by a DC glow-discharge 
source. The stress did not seem to be identified with the H content of the film, which con-
tradicted earlier assumptions made by Enke [97], Zelez [100], and Anttila [112]. In any 
case, the stress expanded at low temperatures at that point leveled at higher temperatures. 
Specht et al. [107,108] analyzed the strain effect on diamond films using X-ray diffraction. 

In the view of understanding the methods of coating deposition by using sputtering 
deposition techniques [113], Ager et al. [114] discussed whether the shifting and broaden-
ing of the Raman line from film was due to stress. They observed that the diamond Raman 
line was moved by 2.5 cm−1 to a higher frequency, which could be clarified by stress of 9.0 
× 108 Pa, which agreed with other measurements in Table 3. So far, in the view of bonding 
aspect, only adhesion strength has been considered, and it improved the mechanical prop-
erties of DLC films. This was resolved to a limited extent by the strength of the bonding 
between substrate and film [115–119]. 

The strength of this combination was based on their thermodynamic properties, as 
given in Table 4. 

Table 4. Thermodynamic properties of carbides 

Compound ∆H°f (25 °C) 
(kcal mol−1) 

∆G0f (25 °C) 
(kcal mol−1) 

Linear Coeff. of Thermal 
Expansion  
(at 25 °C) × 10−60C−1 

Reference 

Al4C3 −30.9 −29 ----- [120] 
CoC3 9.5 7.1 ----- [120] 
Cr3C2 −21 −21.2 8.0 [120,121] 
Cr3C2 −9 to −29 −11 to −31 ----- [122] 
Fe3C 5.0 3.5 ----- [120] 
MoC 34.4 ----- 5.95 [121] 
Mo3C2 −14 −14.1 ----- [123] 
Mo2C −11.5 −12.5 5.48 [121,123] 
Mo2C ----- ----- 7.8 to 9.3 [94] 
Ni3C 11.0 ----- ----- [120] 
SiC −16.5 −15.9 4.63 [121,123] 
TaC −34.6 −34.6 8.2 [121,123] 
TaC −32.3 to −53 −35 to −56 7.1 [94,122] 
Ta2C −47 −47 ----- [123] 
TiC −43.8 −43.8 6.52 [121,123] 
TiC −44.1 −45.8 8.0 to 8.6 [94,122] 
UC −21.1 ----- 9.47 [121,122] 
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UC2 21 to 30 ----- 6.32 [121,122] 
U2C3 −54 ----- 6.26 [120,121] 
U2C3 −49 ----- ----- [122] 
WC −9.09 −8.5 4.9 [120–122] 
WC −8.4 ----- 3.8 to 3.9 [94,123] 
W2C −6.3 to −9.7 ----- ----- [122] 

3.5. DLC Film Adhesion 
The synthesis and property improvement process for DLC film has been imple-

mented by Angus [109] and Tsai and Bogy [110], who examined the bonding delectations 
phenomena. Angus et al. suggested that the best adhesion was obtained on substrates that 
formed carbides such as Si, Fc, and Ti. Table 5 lists four investigation reports and quanti-
tative measurements of the adhesion strength. The last section in Table 5 gives a correla-
tion to put the measured adhesion qualities in context. 

Table 5. Adhesion strength of various films and their fabrication procedures. 

Adhesion 
Strength (Pa) 

Type of Film 
Process Deposition Measurement 

Technique Reference 

1 to 3 × 109 
(0.1 to 0.3 J m−2) DLC on glass e-beam heated C 

rod Film buckling analysis [98] 

4 to 7 × 1010 

4 to 7 J m−2) 
DLC on glass 

Electron and ion 
beam source 

Film buckling analysis [100] 

> 2. to 2.8 × 107 

(failure occurred 
in substrate) 

DLC on ZnS 
(ZnSe with 200 to 
1000 𝐴 Ge or Si 
interlayer) 

Iron source Sebastation pull test [124,125] 

2 × 109 DLC on glass 
RF magnetron 
sputtering Scratch test [103] 

 
Several researchers have reported on adhesion of DLC films in a qualitative manner 

[97–105,111,112,124–135]. It may be difficult to compare the outcomes from these different 
papers, because of the stated conditions, substrates, and methods for examination ap-
proach of the coatings. 

BN and SiC have been used to improve diamond bonding and nucleation on ZnS and 
Si [136]. Ti and Ta were used to improve the adhesion of the DLC on Si [135]. However, 
the bonding abilities need to improve as a part of the interlayers between substrate and 
DLC. Sometimes the interlayer materials are those components in carbide structures with 
free ions. It is only possible to vary the process input parameters by altering the tech-
niques. For DLC films, these issues have not been considered in detail, but Murakawa and 
Watanabe [137] used a BN film on Si as an example. 

The interlayer examination was fragmented, in any case, since it only considered the 
bonding of the interlayer to the C over layers. In iron, many compounds are extraordinary 
due to the significance of treated steels. This segment, consequently, considered the iron 
compound and alloys for increasing the C-films/substrates adhesion [138–142]. 

In several cases, thermodynamic qualities for iron alloys and compounds have been 
measured at elevated temperatures. 
3.6 Recent Manufacturing Process 

In the above subsections, we described the properties and characterizations of DLC 
coatings. However, little recent advancement of manufacturing characteristics was also 
noted. The significant major part of this discussion is focused on the latest investigation 
of spark and arc sources, high power impulse magnetron sputtering (HiPMS), structure 
and nonlinear optical properties, and texturing. Vacuum electro-spark alloying (VESA) 
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and pulsed cathode arc evaporation (PCAE) were investigated for the deposition of TiC-
based coatings in inert (Ar) and reactive (C2H4) atmospheric conditions [143]. An investi-
gation was done by using high-power impulse magnetron sputtering (HiPIMS) for the 
deposition of micrometer-thick DLC coatings over Si and steel substrates [144]. The adhe-
sion on both sorts of substrates was ensured with an easy Ti interlayer, while the energy 
of contact ions was adjusted by using RF (radio frequency) biasing on the substrate at 100 
V DC self-bias. 

Recently published work revealed DLC films that contain 4–29% of Si and were de-
posited by reactive magnetron sputtering of C target [145]. H-free DLC films with embed-
ded Cu nanoparticles, such as DLC: Cu, were increased by simultaneous DC magnetron 
sputtering with graphite and Cu points of view [146]. 

4. Applications of DLC Coatings 
DLC coatings are used for several applications, which are highlighted for PVD coat-

ings, generally apart from cutting tools, for high operational temperatures. DLC coatings 
are particularly helpful wherever a mixture of friction and wear reduction is required. 
DLC coats the forefronts of devices for the rapid, dry molding of troublesome uncovered 
surfaces of wood and Al, such as on vehicle dashboards. The better wear, erosion, and 
electrical properties of DLC make it an attractive material for clinical applications. Fortu-
nately, DLC has been demonstrated to possess astounding bio-similarity. Typical appli-
cations include: 
• Automotive: piston pins, rocker arms 
• Medical: surgical tools, prosthetic applications 
• Firearms: firearm slides, barrels, bolt carriers 
• Industrial parts and machinery: pistons, plungers, gears, mechanical seals 
• Injection molding: dies, ejector pins, slippery machine components 
• Consumer products: wrist joint watches, jewelry, golf clubs 

4.1. Carbon Coatings on Front Surface of Al Mirrors 
In the current scenario, front surface mirrors created by single-point diamond ma-

chining of bulk Al were utilized for pivoting polygons, fluttering mirrors, and relay ele-
ments with optical force. This impact has been illustrated [147,148] in Al mirrors ensured 
with thin over coating of SiOx, and is expected for use in the 8–12 μm spectral bands. This 
impact occurred for just one direction of polarization, RP, corresponding to the plane of 
occurrence. Comparable impacts were noticed for some other protective coatings and 
other metallic reflectors [149,150], making these coatings unsatisfactory for use in 8–12 μm 
thermal imaging systems on 45° mirrors. 

The beginning of this impact has been distinguished, and has shown that it does not 
occur in DLC protective coatings [148]. An RSRE-coated polygon for a coaxial scanner is 
outlined in Figure 4. 

 
Figure 4. RSRE-coated polygon for a coaxial scanner [148]. 
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4.2. DLC Coatings for Photothermal Conversion of Solar Energy 
The primary objective of photo thermal solar energy transformation is to gather solar 

radiation to convert it into useful thermal conversion. There are two fundamental sorts of 
converter: the flat plate collector and the focusing collector. However, the heat losses are 
high from flat plate collectors, and their operating temperature is likely to be 70 °C. The 
focusing system has higher thermal efficiencies and working temperatures of approxi-
mately 100 °C are conceivable. It is common to eliminate thermal effects from both sys-
tems with circulating water [150–155]. 

4.3. Mechanical Applications of DLC Layers 
In addition to the attractive properties of DLC, the material is additionally hard and 

artificially solid to make it helpful for securing metal objects from scratching and chemical 
reactions. This has been seen in various moving parts inside vehicle motors, and it has 
effectively reduced wear rates. The frictional properties of DLC were studied by Enke et 
al. [156], utilizing a ball-on-disc apparatus. They noticed an increase in the coefficient of 
friction from 0.01 to 0.19 μ with increasing humidity. A sharp increase in μ that occurred 
for relative humidities was around 1%. These results were in opposition to those for 
graphite and diamond reported by Bowden and Young [157], who noticed a reduction in 
μ with expanding water emission pressure. Kim et al. [158] studied the impacts of O on 
the frictions and wear of DLC films. Moreover, they considered the use of DLC films as 
protective overcoats on a thin-film magnetic recording disc. Comparative applications 
have been discussed by Tsui and Bogy [110] and by Marchon et al. [159], who related their 
perceptions with Raman and resistivity measurements. The utilization of DLC in mag-
netic and optical recoding discs would seem to offer promising market opportunities. 

4.4. Electronic Device Applications of DLC 
DLC films have been studied as both active and passive elements in devices. Their 

use in an exchanging-current thin-film electroluminescent device was reported by Kim et 
al. [160]. The emission that occurred during the breakdown of the DLC layer was wide-
band, and seemed to be white. In another implement application, Kapoor et al. [161] ex-
plored the utilization of DLC films as the protector in metal–insulator–semiconductor 
(MIS) devices. The findings were not useful, owing to the low resistivity of the films and 
the enormous number of imperfections. Rothschild et al. [162] exhibited the utilization of 
DLC film as a method for high resolutions of semiconductor surfaces [163]. 

4.5. Medical Applications of DLC Layers 
DLC films have received more attention within the last 20 years as candidate bio-

materials due to their superior mechanical properties and biocompatibilities. In addition, 
C in several structures has been utilized for a number of biomedical applications. Tissue 
can adhere well to C implants and support a robust interface. Additionally, in the presence 
of blood, a protein layer is formed, which prevents the formation of blood clots at the C 
surface [164–167]. C fiber inserts can advance the fast ingrowth of tissue [168–175]. How-
ever, in recent years, several researchers have shown an interest in this application for the 
biomedical sector [176–180]. 

4.6. Others Applications of DLC 
DLC coatings have found broad industrial applications, particularly in optical and 

electronic areas. They also have been effectively utilized in various tribological applica-
tions [181–183]. In tribological applications, DLC coatings were used successfully as coat-
ings for ball bearings, where they decreased the friction coefficient between the ball and 
race; in shaving applications, where they increased the life of razor blades in wet shaving 
applications; and increasingly in automotive applications, such as racing engines and 
standard production vehicles. The structural and mechanical behaviors of DLC coatings 
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are the dependent factors of the deposition method and the incorporation of additional 
elements such as nitrogen, hydrogen, and silicon. These additional elements control the 
hardness of the resultant film, the level of residual stress, and the tribological properties. 
As DLC films increasingly become adopted for use in industry, knowledge of the factors 
that control their properties, and thus the ultimate performance of coated components in 
practical tribological applications, are becoming increasingly important. 

Muthuraja et al. [184] developed a coating composition for improving the coating 
adhesion on high C steel, and progressively the coating morphology. Further, DLC coat-
ings were employed by Grigoriew to enhance the strength of ceramic tools [185]. Recently, 
Podgornik et al. [186] demonstrated that a DLC/steel blend gave a smoother running in a 
measure when contrasted with DLC [187]. 

DLC coatings are an amorphous C material that exhibits typical diamond-like hard-
ness and low-friction, characterized by the sp3-reinforced C and the structure. The pro-
portion of sp2 (graphically) and sp3 (diamond-like) determines the properties of the DLC. 
The novel fabrication of DLC coatings that incorporated nanoparticles (WO3/MoO3) and 
PECVD for automobile applications has shown improvement within the adhesion prop-
erties of the DLC coatings [188]. 

DLC has been discovered to have great application in biomedical zones, where its 
biocompatibility and erosion obstruction permit it to be utilized in tribological applica-
tions. 

5. Conclusions 
DLC coatings have received more attention for various enhancements in distinct ma-

terial properties since the last century. A viable approach for presenting and characteriza-
tion of applications related to DLC coatings has been attempted. DLC coatings have quite 
alluring wear behavior that can be customized by modifying the C sp2/sp3 proportion. 

Classifications of DLC coatings based on different considerations, while simultane-
ously providing their applications in a wide array of industrial sectors such as biomedical, 
marine, automobiles, and aerospace engineering, has been provided so that the reader 
understands the viability and importance of the DLC coating process. This work further 
highlights that much work needs to be done to develop DLC coatings by mixing compo-
site material additives, which should be cost-effective. 

The current literature shows that DLC coatings are one of the most promising coating 
processes for fulfilling the increasing demands where certain properties such as lower 
friction, good tribological behavior, and thermal characteristics are required. DLC coat-
ings have importance in the hybrid industry, from clinical to automotive. Some of the 
fundamental difficulties with DLC coatings are in choosing the correct types of films for 
a particular application, and adhesion with other materials. More future investigation is 
expected to discover new/reformed DLC coatings with a combination of various influenc-
ing parameters and implementation of new methodologies. 
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