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Abstract: The rapid development of artificial intelligence technology has made deep neural networks
(DNNs) widely used in various fields. DNNs have been continuously growing in order to improve the
accuracy and quality of the models. Moreover, traditional data/model parallelism is hard to expand
due to communication bottlenecks and hardware efficiency issues. However, pipeline parallelism
trains multiple batches, reducing training overheads, so that it can achieve better acceleration effect.
Considering the complexity of solving the pipeline parallel task allocation problem in heterogeneous
computing resources, in this paper, a task allocation in pipeline parallelism (TAPP) based on deep
reinforcement learning, is proposed. In TAPP, the predictive network is trained by a policy gradient
until it obtains the optimal pipeline parallel task allocation scheme and speeds up the model training.
Experimental results show that, on average, the single-step training time of TAPP is decreased by
1.37 times and the proportion of communication time is reduced by 48.92%, compared with the data
parallelism, bulk synchronous parallel (BSP).

Keywords: computing node; pipeline parallelism; heterogeneous computing resources; task allocation

1. Introduction

DNNs have been popularly used to solve various problems such as image classifi-
cation [1-3], speech recognition [4-6], and language translation [7,8] by virtue of their
complex modeling capabilities. The essential reason why DNNs can make such huge
progress is that they simulate the human brain neural-learning system, which enables the
machine to learn high-level features from a huge amount data by increasing the layers
of the network. The size of DNN models (i.e., the number of parameters) have been
continuously increasing in order to improve the accuracy and quality of models and to
deal with complex features of data [9-11]. The size of input data and batches used for
training have also increased to achieve higher accuracy and throughput [12,13]. OpenAl
researchers have already trained an autoregressive language model called GPT-3 with
175 billion parameters, 10 x more than any previous non-sparse language model [14]. In
addition, with the increase in the number of parameters and the complexity of the DNNS,
more data is needed to train the model to avoid overfitting.

The model parameters and intermediate outputs that need to be in the memory during
training cannot be stored in a single computing node due to the limited memory space.
In recent years, heterogeneous computing platforms represented by general processing
units (GPUs) and field programmable gate arrays (FPGAs) have the advantage of high
performance and are widely used to accelerate the training of DNN models. More and
more scholars have begun to study distributed deep learning in depth, looking at how to
divide training data, allocate training tasks, allocate computing resources, and integrate
distributed training results in order to achieve the balance of training speed and train-
ing accuracy. For training large DNN models, data parallelism [15,16], which employs
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multiple workers using parameter servers or all-reduce communication, and model paral-
lelism [17,18], which divides the network layers of a DNN model into multiple partitions
and assigns each partition to a different GPU, have commonly been leveraged. Further-
more, to mitigate the critical issue of low GPU utilization of naive model parallelism,
pipelined model parallelism, where minibatches are continuously fed to the GPUs, one
after the other, and processed in a pipelined manner, has recently been proposed [13]. In
this work, we design a training model, a task allocation in pipeline parallelism (TAPP)
based on deep reinforcement learning aimed at the low efficiency of the asynchronous
pipeline parallel training method. TAPP can improve the efficiency of model training
without loss of precision.

In summary, the continuous growth of training data sets and DNN model scales have
caused a single computing node to be unable to efficiently complete training tasks, and the
various drawbacks of traditional distributed parallel training methods will cause expensive
training costs. Therefore, combining the characteristics of DNN models, it is significant
to study the use of distributed computing clusters to optimize existing training methods,
reduce model training costs, and speed up model training.

The contributions of this paper are as follows:

1.  Task partition is based on the feedforward neural network. The DNN model is
grouped by layers. For a DNN model, the task partition network can divide each layer
into corresponding groups. For each layer, the partition network generates the probabil-
ity value of each packet and divides it into the packet with the highest probability.

2. Attention mechanism is introduced to task allocation. According to the grouping re-
sult of the task partition network, the task allocation network allocates corresponding
computing nodes for each grouping. Before the task allocation network is processed,
the information of each group needs to be integrated. Similar to the task partitioning
network, the allocation network also transforms the grouping results into word vec-
tors. The allocation network considers the operation name, parameter metric, and the
next packet information of all layers in the whole packet. In this paper, the average
of the relevant information of the containing layer in the group is taken as the word
vector of the group.

3.  Strategy gradient joint training is carried out. The prediction network uses the policy
gradient to train the task partition and allocation network. The purpose of the network
is to get the task allocation scheme which can minimize the total training time of a
single training batch. The DNN model is trained in the total time of a batch under the
condition of the task allocation scheme, including a forward calculation, a backward
propagation, and a parameter update. In order to avoid running time measurement
variance, we allocate a scheme to each predicted task. Then the DNN model is run on
the actual computing node according to the scheme, the running time of the DNN
model is measured several times to calculate the average value, the reward function of
the current scheme is calculated, the parameters of the prediction network model are
updated backwards, and the task allocation scheme with the shortest actual running
time is obtained through several iterations.

2. Related Works

Data parallelism and model parallelism are the most commonly used methods in
distributed deep learning model training. For computationally intensive operations with
a small number of training parameters (e.g., convolutional layers), data parallelism is
effective, however, for operations with a large number of parameters (e.g., fully connected
layers), data parallelism is noneffective. Although model parallelism eliminates param-
eter synchronization between one computing node and another, it requires intermediate
computation results to be transmitted. Model parallelism usually achieves faster training
speed than data parallelism due to the used batch data volume being smaller than in data
parallelism. The communication mechanism of the parallel training method can select a syn-
chronous parameter update such as data-parallel stochastic gradient descent (DSGD) [19],
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elastic averaging stochastic gradient descent (EASGD) [20], or an asynchronous parameter
update such as averaging stochastic gradient descent (ASGD) [21]. The synchronous com-
munication method can maintain the weight consistency, but the hardware efficiency is low.
However, the asynchronous communication method can improve the hardware efficiency,
but it will cause weight inconsistency, which is not conducive to system convergence.

In contrast, pipeline parallelism can improve the training speed. PipeDream [22]
divides the DNN layer into several stages, and it uses asynchronous parameter synchro-
nization to inject multiple batches of training data into the system, so that each stage
executes different batches of training tasks. At the same time, in order to ensure that the
pipeline system achieves good load balancing, PipeDream allocates one or more GPUs for
each stage to achieve data parallelism, reducing the difference in calculation time of each
stage. The task allocation scheme based on a graph search has been extensively studied.
For example, Isard et al. [23] proposed Quincy, which maps task allocation to the flow
network and uses the minimum-cost maximum-flow (MCMF) algorithm to search for the
optimal task allocation plan. Gog et al. [24] further improved Quincy, using a variety of
MCMF optimization algorithms to reduce the delay of the task allocation algorithm and
improve the efficiency of task allocation. Jia et al. [25] proposed the use of hierarchical par-
allelism, applying different parallel strategies for each layer of the model, turning the DNN
parallel task allocation problem into a graph search problem, and using a graph search
algorithm based on dynamic programming to find the global optimal parallel strategy.
But this method is not suitable for DNN models such as language modeling and machine
translation. In order to explore more parallel strategies, Jia et al. studied the dimensions
of samples, operations, attributes, and parameters [26], extended the parallel dimension
to four dimensions, and used Markov chain Monte Carlo (MCMC) method. This method
searches for the optimal parallel policy in a larger search space to achieve training accelera-
tion. However, the method has high time complexity and is not conducive to expansion.
Pipe-torch [27] sorts the computing nodes by network bandwidth and assigns them to
each stage of the DNN model in order to achieve pipeline parallel training acceleration,
but it does not consider the heterogeneity of node computing capabilities. Park et al. [13]
considered the computing power and memory differences between different nodes, so
they proposed the concept of a virtual worker. The virtual worker is encapsulated by
several heterogeneous GPUs, so that the computing power and storage capacity of each
virtual worker are roughly the same, so as to achieve a semantically homogeneous cluster,
but this method does not consider the network differences between GPUs. Dapple [28]
also combines pipeline parallel and data parallel under the condition of isomorphism. It
defines three kinds of device allocation mechanism of sensing topology to achieve good
acceleration effect and save memory consumption. However, it does not consider the
limitation of heterogeneous hardware.

Heuristic algorithms often fall into the local optimal solution. In order to explore
the optimal solution of the global solution space, reinforcement learning algorithms have
been widely studied. Mirhoseini [29] and others used neural network and reinforcement
learning to divide the computational graph of TensorFlow to accelerate the training process
of the target network.

Aimed at the low efficiency of the asynchronous pipeline parallel training method,
this paper proposes a pipeline parallel task allocation method based on deep reinforcement
learning to improve the efficiency of model training without losing accuracy.

3. Overall Framework

Considering the complexity of solving the pipeline parallel task assignment problem
in heterogeneous computing resources, TAPP focuses on better acceleration effect. TAPP
analyzes the operation of the DNN model to obtain information such as the number
of model layers, names, parameters, and calculations. Two key novelties exist in this
architecture. First, according to the acquired text information of the model parameters,
the task allocation prediction network is constructed. Then the prediction network is
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trained using the policy gradient until the optimal pipeline parallel task allocation scheme
is generated. The second novelty is that, according to the generated optimal task allocation
plan, the model is deployed in heterogeneous computing nodes to complete the training
task. The overall processing framework of TAPP is shown in Figure 1.

Phasel: profile

DNN computational profile: |
Input DNN Activation sizes Parameter sizes
| Compute time ... |

Figure 1. TAPP’s automated mechanism to partition DNN layers into stages.

The task allocation includes two phases:

(1) Analyze the operating status of the target model and build a model parameter text
library. Then analyze the short-term operating status of the model to be trained and
record detailed model information, including the total number of layers of the model,
the name of each layer, calculation time, calculation amount, parameter amount, and
activation value, and build a text library of the model parameters to be trained.

(2) Construct a task allocation prediction network, according to the parameter infor-
mation of the model to be trained. Then use the predictive network to generate a
pipelined parallel training task allocation plan, p, for the DNN model to be trained.
According to the allocation plan, p, several batches of training are performed in the
experimental environment, sampling to obtain the average training time of a sin-
gle batch t(p), calculating the reward function, and updating the parameters in the
prediction network backwards. After that, the prediction network is trained several
times until it generates a task allocation plan with the smallest running time ¢(p). If
the model is deployed to heterogeneous computing nodes by the plan, a pipelined
parallel training allocation plan for the target network to be trained will be obtained.

The DNN model is deployed and trained according to the optimal task allocation plan
by the task allocation prediction network so that the pipeline parallel training acceleration
can be realized. Since model parameter information is not affected by hardware conditions
such as computing nodes, this article performs 1000 batches of training in a single com-
puting node, records detailed information of each layer of the model, and builds a model
parameter text library. Finally, a task allocation prediction network is constructed based on
the obtained parameter text library.

4. Task Allocation Prediction Network

The task allocation prediction network generates a pipeline parallel training task
allocation plan for one DNN model. The prediction network includes two phases: DNN
task partition and task allocation. The task partition divides all layers of the model
into groups. Each group corresponds to a stage in the pipeline system. Task allocation
assigns several computing nodes to each group to achieve parallel training. Therefore, the
prediction network is divided into two parts. The first part is the task partition network,
which is responsible for dividing all layers in the DNN into several groups. The second part
is the task allocation network, which is responsible for assigning each grouping task to the
corresponding computing node. The predictive network uses deep reinforcement learning
methods to solve the task allocation problem [29]. The difference is that the previous work
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uses manual grouping to divide the calculation operations in the model into several groups
to reduce the complexity of allocating computing nodes. This method is not suitable for
processing larger DNN models. In this paper, by a feedforward neural network instead of
manual grouping, the DNN model is divided into layers to achieve rapid allocation.

The overall structure of the prediction network is shown in Figure 2. A feedforward
neural network in which the last layer is the Softmax layer is used in the DNN partition
network and the output size is equal to the number of groups. The task allocation network
adopts the Seq2Seq model based on the attention mechanism [30]. The details in our
network are as follows: We used a feedforward network with a hidden size of 64 and a
Seq2seq model with a DNN hidden size of 256. For the encoder of the Seq2seq model,
we used two layers of DNN to form a new DNN. We used a uni-directional DNN for the
decoder. The Softmax output size was equal to the number of groups, which we set to 256
in our experiments. We train policies using Adam optimizer with a fixed learning rate
of 0.1, gradient clipping of norm 1.0, tanh constant C = 5.0. The DNN partition network
divides each layer in the model into corresponding groups. Once all layers are grouped,
the average information of all layers in the group is used to generate the word vectors of
the group. Then, these grouped word vectors are passed as input to the task allocation
network. The task allocation network assigns corresponding computing nodes to each
grouped task which can deploy the DNN model, according to the results of task partition
and allocation network, to get the final pipeline task allocation plan.

Softmax Task Allocation Network

Attention

Hidden State !

Embedding

Hidden State ‘
&&
Softmax

Embedding | Task Group Network
Figure 2. The overall framework of the prediction network. For the “go” in Figure 2, there is usually
a “go” in the Seq2seq diagram, which represents an order of execution.

4.1. Task Partition Based on Feedforward Neural Network

The task partition network groups a DNN model by layer. For a DNN model, the
task partition network can divide each layer into corresponding groups. The partition
network adopts a feedforward neural network in which the last layer is the Softmax layer
and the output type is equal to the number of groups. For each layer, the partition network
generates its corresponding probability value for each group and divides it into the group
with the highest probability.

Each layer of the DNN model includes several attributes, such as the name, operation,
input, output, and dependent layers. In order to better evaluate the association relationship
of each layer, this article focuses on the following attributes: the operation name of each
layer, the parameter metrics, and the next associated layer.
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(1) Operation name: In the DNN model, each layer corresponds to a different operation,
such as convolution operation, pooling operation, and fully connected operation.
Since the operation names are all character types, they are converted to word vectors.
The experiment encodes the operation name of each layer and builds a dictionary
library, which will be constantly updated during the training process. In the experi-
ment, the width of the code is set to 16 bits and five commonly used operation names
are selected: Convolution, Relu, Pooling, Fully-Connected, and Padding. For the
remaining operation names, use Unknown instead.

(2) Parameter metric: The parameter metric of each layer of the model includes the num-
ber of parameters, the amount of calculation, and the size of the generated activation
value. The required parameter quantity of each layer is calculated according to the
model structure definition for which the unit is expressed in MB, the required calcula-
tion quantity according to the parameter quantity of each layer and the corresponding
calculation operation is estimated for which the unit is expressed in GFLOPS, and
the size of the generated activation value of each layer according to the parameter
quantity of each layer and the corresponding calculation operation is estimated for
which the unit is expressed in MB. Each metric is allocated 4 bits of coding width,
that is, the total coding width of the parameter metric is 12 bits.

(3) Associated next layer: The DNN model is composed of several layers. The output
of each layer is used as the input of other layers. In this paper, the DNN model is
numbered layer by layer. The numbering starts from 1. The number is used to indicate
the next layer associated with the current layer. Because the number of the next layer
associated with each layer in the model is different, the number of experiments is set
to 2, and each number is assigned a 2-bit code width. If there is no information in the
next layer, we will fill it with —0.1.

For a DNN model, each layer in the model is traversed. After the above-mentioned
processing steps, each layer obtains 32-bit vector information. This information is input
into the task partition network to predict the partition result of the DNN model layers.

4.2. Task Allocation Based on Attention Mechanism

The task allocation network assigns a corresponding computing node to each group
according to the grouping results of the task partition network. Before the task allocation
network processes, it needs to integrate the information of each group. Similar to the task
partition network, the allocation network also converts the grouping results into word
vectors. The allocation network considers the operation names of all layers in the entire
group, the parameter metric, and the next group information which is associated with them.
In this paper, the relevant information of the contained layers in the group is averaged as
the word vector of the group.

(1) Operation name: The word vectors of the operation names in the group are averaged
to get the operation name information of the current group.

(2) Parameter metric: The parameter metric information of all layers in the group is
averaged to get this part of information.

(3) The next set of information: One-hot encoding is used to indicate the dependency
between groups. If a DNN layer in the current group is connected to the layer in the
ih group, this article will set the it" bit of the current group to 1, otherwise it will be
set to 0.

A connection relationship between each group exists. The information contained
in each group in DNN model is treated as sequence data in this paper. In addition, an
unequal-length relationship exists between the original input information and the output
target calculation node sequence, so the Seq2Seq model based on the attention mechanism
is used in this paper.

In the task allocation process, the grouping results of the DNN model predicted by the
task partition network are processed by the encoder to generate semantic vectors, which
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are sequentially transmitted to the decoder. Then the decoder allocates computing nodes
according to the grouping order. In each step of the decoder’s prediction, the attention
mechanism is used to pass the number of the calculation node assigned in the previous step
to the decoder and generate the calculation node assignment in the current step. Finally, we
deploy the DNN model partition result and task allocation result in the actual computing
node to get the overall task allocation plan.

4.3. Joint Training of Policy Gradient

The policy gradient is jointly trained with the task partition and allocation network
in the prediction network which can obtain a task allocation plan that minimizes the total
training time of a single training batch. The total time of training a batch of DNN models
under task allocation plan, p, is defined as t(p), including one forward calculation, one
backward propagation, and one parameter update for which the unit of time is seconds.
In order to avoid the variance of the running time measurement, for each predicted task
allocation plan, we run the DNN model on the computing node according to the plan. Then
we measure it several times to calculate the average value to get the reward function of
the current plan. Finally, after several iterations, the task allocation plan with the shortest
actual running time is obtained. In the experiment, each task allocation plan was run
20 times. And the average value of the last 10 running results was taken as the running
time measurement value.

In the actual running process, sampling the running time as the reward function
directly will cause poor training effect. On one hand, the task allocation scheme which was
proposed in the early stage of training may lead to a longer running time with producing
inappropriate learning signals for the convergence of the prediction network. On the
other hand, as the prediction network converges, the predicted task allocation schemes are
more similar, which will result in smaller differences in the corresponding execution time.
Therefore, the reward function for a task allocation plan, p, is defined as:

Rp=—=4/t(p) @

The prediction network should minimize the expected value of R, to achieve a better
training effect. In summary, the loss function [31], | (Gg, 6;) ,is defined as:

] (Qg, 01) = Ep(, 6, [Rp] 5
= L ¥ p(&0)p(d|g:04) Ry @

8Ty drriy

where 6 and 6, respectively, represent the parameters of the task partition network and
the task allocation network; p(g; ) represents the probability of the task partition network
generating the grouping result, g; and p(d|g;6;) represents the probability of the task
allocation network generating the task allocation result, d, according to the grouping
result, g.

The task partition network independently predicts the partition of the DNN model.
Then the task allocation network allocates computing nodes to each group according to
the task partition. The changes in the grouping results make the predicted task allocation
plan correspond to a large difference in running time. This paper introduces exponential
moving average (EMA) to better reflect the actual execution time of the predicted allocation
plan. Combining EMA to obtain the partial derivative of Equation (2), the gradients of
parameters 0, and 6; [31] of the prediction network are as follows:

Vo, J(05,04) = L Vo logp(g,6s) ¥ (Ry — Base)
8§~y

o 6)
= Y Ve p(80;) L pldlg;0a) (R, — Base)

8§~ Tg dNr(d
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Among them, Base is the EMA that rewards R,. The gradients of parameters, 6 and 6y,
related to the prediction network can be calculated by Equations (3) and (4). Combined with
the stochastic gradient ascent algorithm, detailed training steps are shown in Algorithm 1.

Algorithm 1 Task allocation in pipeline parallel training based on deep reinforcement learning

Input: DNN model, G; heterogeneous computing node set, D; number of iterations, n.
Output: Task allocation plan, p.

1: Initialize Gg, 04

2: for step =0 ton do

3: for layer in G

4: Assign layer to group

5: for group in G

6: Assign group to device

7: Assign DNN to devices, D, according to parallelism scheme, p
8: Sample runtime, ¢(p)

9: Update parameters g, 04

10: end for

According to heterogeneous computing node set and the DNN model, Algorithm 1
trains the prediction model to obtain the optimal task allocation plan. The task partition
network obtains the initial grouping; at the same time, it inputs the grouping information
into the task allocation network. The model is deployed on the computing node to run sev-
eral batches of data according to the distribution plan. The execution time is sampled and
averaged to obtain the single-step execution time, and, the predicted network parameters
are updated inversely using this as a reward until the model converges.

4.4. Pipeline Parallel Training of Task Allocation

Pipeline parallel training adopts an asynchronous parameter update architecture.
Multiple computing nodes concurrently execute forward and backward transfer tasks
of different training batches to ensure that the system achieves better throughput and
hardware utilization efficiency.

Figure 3 shows a typical pipeline parallel training example. Assume that a DNN
model with five layers is divided into four groups, the first three layers are in different
groups and the last two layers are divided into the same group. Each packet corresponds to
a stage in the pipeline system. Each stage executes the training tasks in a pipelined manner
according to the grouping sequence. In stages 1, 2, and 3, multiple computing nodes are
configured, improving the training throughput. The combination of data parallelism and
pipeline parallelism can reduce the difference of calculation time to ensure that the pipeline
has a higher throughput. The data communication in the pipeline system mainly exists at
the boundary of each stage.

Pipeline parallel training is different from traditional stand-alone training, which
involves two-way pipelines. Each training batch in the pipeline system starts the forward
pass from the initial stage of the pipeline. After the forward pass is completed in the final
stage, the backward pass is performed. Then the results are sequentially pushed to the
upstream stage for calculation. Each batch may be located at a different computing node
and perform forward or backward pass calculations. In a stable pipeline system, each
computing node is performing any one of the following two tasks to ensure an orderly
training: perform a forward pass calculation on a batch and push the calculation result
to the next stage or perform a backward pass calculation on different batch and push the
calculation result to the upstream stage.

In order to ensure that the pipeline system has a higher throughput, an asynchronous
parameter update method is used to perform parameter updates asynchronously for
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different training batches. This paper is based on the asynchronous pipeline parallel
architecture. At the beginning of the pipeline system, a specified number of batch training
samples are injected into the system. Once the final stage of the pipeline completes the
forward pass calculation task of the first batch, it will perform the backward pass in the
same batch. Then it will start to perform the forward and backward pass calculation
tasks of the subsequent batches in turn. When the backward pass task is propagated
to the initial stage of the pipeline, the system starts to continuously inject new training
batches, so that each stage starts to execute different batches of forward and backward pass
calculation tasks. After the pipeline system reaches a stable state, each computing node
alternately executes different batches of forward and backward delivery tasks, so that all
computing nodes in the pipeline system participate in training to ensure system utilization
and throughput.

Pipelined parallelism

s

para]lehsm

Stagel Stage2 Stage3 Staged
Figure 3. Example of pipeline parallel training.

5. Performance Evaluation
5.1. Experiment Setup
5.1.1. Data Set

The experiment used the CIFAR-10 [32] data set to train the DNN model. CIFAR-10 is
a commonly used data set for universal object recognition in the field of deep learning. It
contains 50,000 training pictures and 10,000 test pictures in total. There are 10 categories in
this total. Each picture is a 32 x 32 color picture. The experiment trains three DNN models
on the CIFAR-10 data set: AlexNet [33], VGG-16 [34], and Inception-V3 [35].

AlexNet uses an eight-layer neural network, including five convolutional layers
and three fully connected layers (the maximum pooling layer is added after the three
convolutional layers). The model size is approximately 240 MB. The batch size used in the
experiment is set to 128 with the RMSprop optimizer [36] with the learning rate set to 0.01.

VGG-16 uses several consecutive 3 x 3 convolution kernels to replace the larger
convolution kernel in AlexNet. The model size is about 550 MB. The batch size used in the
experiment was set to 64 with the momentum SGD optimizer which the initial learning
rate was set to 0.01 and the momentum was set to 0.9.

Inception-V3 consists of several blocks. Each block consists of several convolutional
layers and pooling layers, where the layers can be executed in parallel, however the output
is connected to form the input of the next block. Blocks are executed in sequence from block
to block. The model size is approximately 157 MB. The batch size used in the experiment
was set to 128 with the Adam optimizer being used, for which the initial learning rate was
set to 0.01.

5.1.2. Benchmark

The pipelined parallel training task allocation method proposed in this paper was
implemented using deep reinforcement learning, which aims to solve the optimal task
allocation plan and accelerate the neural network model training process. A single CPU
node and the data parallel training method were selected as the experimental benchmark
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with using the synchronous parameter update method BSP. The pipeline parallel training
method Pipe-torch based on heterogeneous network was selected as a control to evaluate
the acceleration effect of the task allocation scheme.

5.1.3. Metric

Based on the above data sets and methods to carry out the experiment, the evaluation
criteria used in the experiment are considered from the following perspectives:
(1) Single-step training time

The single-step training time is used to evaluate the acceleration effect of pipeline
parallel training. The single-step training time is the time that it takes to complete a batch
of forward pass, backward pass, and parameter update. In order to avoid the error of
the actual environment operation, the experiment selects 100 training batch running time
results. After that, the average value is taken as the single-step running time of the current
allocation plan. The shorter the training time used, the better the acceleration effect of the
task distribution plan.

(2) Proportion of communication time

The ratio of communication time to total training time is used to evaluate the opti-
mization effect of pipeline parallel training communication. The smaller the proportion of
communication time used, the better the effect the pipeline parallel training overlapped
computing and communication tasks achieved—this will speed up the. Suppose that the
DNN model layer is divided into s groups, corresponding to s stages in the pipeline. The
optimization objective of task allocation method can be expressed as follows:

S
T=min)  (As+Cs) ®)
s=1

where Aj is the total calculation time in stage s, and C; is the communication time between
stage s and stage s + 1. The goal of task allocation method is to find the optimal pipelined
parallel task allocation to minimize T.

(3) Training accuracy

The model training accuracy is used to evaluate the effectiveness of the pipeline
parallel training method. The experiment performed 100 epoch training for the model and
recorded model training accuracy and time changes. The higher the accuracy, the better
the effect achieved by the pipeline parallel training.

5.2. Experimental Results and Analysis
5.2.1. Pipeline Parallel Training
(1) Single-step training time

Four different training methods were designed in the experiment. In this way, the
single-step training time in each model training was calculated, for which the time unit
was the second. Taking the data-parallel BSP as the baseline, we studied the acceleration
effect of TAPP single-step training. The experimental results are shown in Table 1.

Table 1. Experimental results of pipeline single-step training time (seconds).

SingleCPU Pipe-Torch BSP TAPP Speedup (BSP/TAPP)
AlexNet 0.811 0.675 0.803 0.602 1.33x
VGG-16 1.972 1.634 1.865 1.432 1.30x
Inception-V3 0.985 0.632 0.914 0.614 1.49x

It can be seen from Table 1 that the training speed of TAPP in the three models was
better than that of BSP, which was increased by 1.33 times, 1.30 times, and 1.49 times,
respectively, with an average decrease of 1.37 times. In Table 1, single CPU is the time
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required to complete the training task with one CPU. Speedup is a comparison between
TAPP method and data-parallel BSP method. BSP is affected by slow nodes and network
bandwidth, so the improvement effect was the worst. In the VGG-16 model training, due
to the large amount of parameter communication, the BSP acceleration effect is not obvious.
According to the network bandwidth, Pipe-torch sorts the computing nodes and allocates
them in order, which can effectively reduce the communication delay. The effect was most
obvious in the training of the Inception-V3 model, which was 1.44 times faster. Pipe-torch
did not consider the heterogeneity of computing power. However, due to the relatively
high network bandwidth and strong computing power between the two GPU nodes in
the experiment, Pipe-torch put the two GPUs in the early stage of the pipeline training
system, which can be effective. The communication time consumption of parallel training
of the model was reduced. Because of it, a higher acceleration effect was achieved. TAPP
comprehensively considers the heterogeneity of node computing capabilities and network
transmission capabilities, so it uses predictive networks to find the optimal task allocation
method, improves training speed, and achieves the best effect.

(2) Proportion of communication time

The experiment counted the ratio of communication time to total training time in the
three training methods. The experimental results are shown in Figure 4.
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Figure 4. Experimental results of the proportion of communication time.

It can be seen that in different parallel training methods of the three models, the
communication time and the total training time had the same general trend with BSP
taking the highest proportion, Pipe-torch second, and TAPP the lowest. In terms of the
effect of reducing communication time, TAPP was significantly better than other methods.
Compared with BSP, the proportion of communication time in TAPP training of the three
models decreased by 31.43%, 67.95%, and 47.37%, respectively, with an average decrease of
48.92%. The VGG-16 model has huge parameters, so the parallel data requires the most
communication data. Pipeline parallel training can effectively overlap computing and
communication tasks, so the communication time can be significantly reduced. Inception-
V3 has a secondary effect of reduced communication time because the scale of intermediate
communication in the parallel model is larger than the size of the parameter activation
value. Compared with the other two models, the parameters of the AlexNet model are
small and uncomplicated, but the proportion of communication time is also 31.43% lower
than that of the BSP. Pipe-torch can effectively reduce the amount of data communication
by considering the different bandwidths between computing nodes when assigning tasks.
TAPP comprehensively considers the heterogeneity of node computing capabilities and
network bandwidth. It uses pipelines to parallel training, overlapping communication and
computing tasks, which can reduce the communication time obviously.

(3) Training accuracy

The experiment counted the accuracy and training time change about the three models
under different training methods for 100 epoch training for which the time unit was the
hour. The experimental results are shown in Figure 5.
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Figure 5. Experimental results of training accuracy and time.

It can be seen from Figure 5 that the model acceleration effect ranked TAPP as the
fastest, Pipe-torch second, and BSP the slowest. TAPP had the shortest training time
among the three model trainings. The total training time was shortened by about 1.5 h,
10 h, and 1.6 h, respectively, and training accuracy consistent with BSP was achieved.
BSP is affected by slow nodes and network bandwidth, so the acceleration effect was not
obvious. TAPP and Pipe-torch use pipeline parallel training, which overlaps computing
and communication tasks well, to achieve significant acceleration. The acceleration effect
was the best in the VGG-16 model training. VGG-16 has many parameters, strong model
fitting ability, and long training time. It took about 52 h for BSP to train the VGG-16 model
for 100 epochs.

TAPP can predict the optimal task allocation plan, which can alleviate expensive
data communication and shorten the training time of the VGG-16 model by 1.24 times,
achieving the best training acceleration effect. The experimental results prove that TAPP
can effectively accelerate the model training speed and achieve model training accuracy
consistent with data-parallel BSP.

5.2.2. TAPP Algorithm Evaluation
@)

Experiment with different computing power

The experiment used two different computing nodes to perform the prediction net-
work training process to calculate the time consumption of prediction network training.
SingleCPU used the No. 1 node CPU and SingleGPU used the No. 2 node GPU, for which
the time unit is the hour. The experimental results are shown in Table 2.

Table 2. Predicted network training convergence time (hours).

AlexNet VGG-16 Inception-V3
SingleCPU 0.5 1.6 0.8
SingleGPU 0.3 0.6 0.5

It can be seen from Table 2 that, due to the powerful computing performance of GPU,
the convergence speed of the SingleGPU method model was generally faster than that
of SingleCPU. For the VGG-16 model, the GPU accelerated model had the most obvious
convergence effect, with the training time shortened by 2.17 times. The AlexNet and
Inception-V3 models are smaller than VGG-16, so the training was faster. However, the
training time was not significantly improved, being 1.67 times and 1.6 times, respectively.
Figure 6 shows the training-loss curve of the pipeline parallel task allocation scheme
generated by the prediction network for the VGG-16 model. The SingleGPU method can
complete the convergence in about 40 min. Therefore, it can be concluded that the use
of GPU nodes can effectively improve the training speed of the prediction network and
reduce the time overhead.
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Figure 6. The impact of different computing power: the training-loss curve of the pipeline parallel
task allocation scheme generated by the prediction network for the VGG-16 model.

(2) Experiment with different batch sizes

The experiment put the No. 1 node CPU into train the AlexNet model, as an example,
to explore the convergence of the pipeline parallel task allocation scheme generated by
the network under different batch size conditions. The experimental results are shown in
Figure 7. It can be seen from the Figure 7 that the batch size affects the convergence speed
of the prediction network with the smaller batch size having the faster convergence speed.
The prediction network was trained based on the word vector constructed by the runtime
parameters of the DNN model as input. The batch size affects the parameter amount,
calculation time, activation value, and other information of each layer of the model to be
trained, thereby affecting the training complexity of the prediction network.
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Figure 7. The impact of different batch sizes: the batch size affects the convergence speed of the
prediction network with the smaller batch size having the faster convergence speed.

It can be seen from the experimental results that the prediction network had different
convergence times due to different batch sizes, but the overall convergence time was
within 1 h. Combined with the analysis of the pipeline parallel training experiment, it can
be shown that the sum of the predicted network training time and the pipeline parallel
training time is always less than the BSP running time, which proves the effectiveness of
the task allocation scheme based on deep reinforcement learning proposed in this paper.

5.2.3. Experimental Results

TAPP uses deep reinforcement learning to complete the prediction of the pipeline
parallel training task allocation method, which effectively avoids the imbalance load
problems caused by the difference of node computing power and network bandwidth in
improving the acceleration of model training. The pipeline parallel training experiment
results showed that the single-step training time of TAPP in the three models is better
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than that of data parallel, which was increased by 1.33 times, 1.30 times, and 1.49 times,
respectively. The training time of TAPP was the shortest among the three models, which
was shortened by 1.5 h, 10 h, and 1.6 h, respectively. The training accuracy of TAPP was
consistent with the data-parallel BSP. The evaluation experiment of the TAPP algorithm
explored the influence of different computing powers and different batch sizes on the time
required to train the prediction network.

Experimental results showed that high-performance computing nodes can effectively
improve the prediction network convergence time, and a smaller batch size requires a
shorter convergence time. In the experiment, the sum of the predicted network convergence
time and the pipeline system parallel training time was less than the time required for
data parallelism, obviously in the VGG-16 model. This experiment proves that the TAPP
method achieves a good training acceleration effect in DNN model training, and the greater
the number of the model parameter, the more obvious the lifting effect achieved.

6. Conclusions

In this paper, we propose a task allocation method, TAPP. According to a DNN model
and the heterogeneous computing resources, the predictive network has been used to
continuously train to generate the optimal pipeline parallel task allocation plan. TAPP
divides the DNN model into pipeline tasks by constructing task allocation prediction
network. It uses the Seq2seq network based on attention mechanism to allocate computing
nodes for each task. TAPP uses the policy gradient to train the prediction network and
obtains the pipeline parallel task allocation scheme within the shortest training time.
Compared with different parallel training methods on DNN models, the experimental
results show that TAPP can comprehensively consider the heterogeneity of hardware
node computing capacity and network transmission capacity. At the same time, it uses
the predictive network to solve the optimal task allocation method, which had the best
improvement effect. Furthermore, compared with the BSP method, without affecting
accuracy, the TAPP model single-step training time was reduced by an average of 1.37 times,
and the proportion of communication time was reduced by an average of 48.92%.
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