
applied  
sciences

Article

Knee Osteoarthritis Classification Using 3D CNN and MRI

Carmine Guida 1 , Ming Zhang 2,3,* and Juan Shan 1,*

����������
�������

Citation: Guida, C.; Zhang, M.; Shan,

J. Knee Osteoarthritis Classification

Using 3D CNN and MRI. Appl. Sci.

2021, 11, 5196. https://doi.org/

10.3390/app11115196

Academic Editor: Syoji Kobashi

Received: 22 April 2021

Accepted: 1 June 2021

Published: 3 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, Seidenberg School of CSIS, Pace University, New York, NY 10038, USA;
cguida@pace.edu

2 School of Computing and Data Science, Wentworth Institute of Technology, Boston, MA 02115, USA
3 Division of Rheumatology, Tufts Medical Center, Boston, MA 02111, USA
* Correspondence: zhangm1@wit.edu (M.Z.); jshan@pace.edu (J.S.)

Abstract: Osteoarthritis (OA) is the most common form of arthritis and can often occur in the knee.
While convolutional neural networks (CNNs) have been widely used to study medical images, the
application of a 3-dimensional (3D) CNN in knee OA diagnosis is limited. This study utilizes a 3D
CNN model to analyze sequences of knee magnetic resonance (MR) images to perform knee OA
classification. An advantage of using 3D CNNs is the ability to analyze the whole sequence of 3D
MR images as a single unit as opposed to a traditional 2D CNN, which examines one image at a
time. Therefore, 3D features could be extracted from adjacent slices, which may not be detectable
from a single 2D image. The input data for each knee were a sequence of double-echo steady-state
(DESS) MR images, and each knee was labeled by the Kellgren and Lawrence (KL) grade of severity
at levels 0–4. In addition to the 5-category KL grade classification, we further examined a 2-category
classification that distinguishes non-OA (KL ≤ 1) from OA (KL ≥ 2) knees. Clinically, diagnosing a
patient with knee OA is the ultimate goal of assigning a KL grade. On a dataset with 1100 knees,
the 3D CNN model that classifies knees with and without OA achieved an accuracy of 86.5% on the
validation set and 83.0% on the testing set. We further conducted a comparative study between MRI
and X-ray. Compared with a CNN model using X-ray images trained from the same group of patients,
the proposed 3D model with MR images achieved higher accuracy in both the 5-category classification
(54.0% vs. 50.0%) and the 2-category classification (83.0% vs. 77.0%). The result indicates that MRI,
with the application of a 3D CNN model, has greater potential to improve diagnosis accuracy for
knee OA clinically than the currently used X-ray methods.

Keywords: knee osteoarthritis classification; 3D MRI; X-ray; 3D convolutional neural network

1. Introduction

The most common form of joint disorder in the United States is osteoarthritis (OA) [1].
Knee OA can cause pain and is the number one disease at causing loss of ability to perform
daily activities such as walking and stair climbing [2]. Knee OA is associated with age [3]
and is characterized by the loss of articular cartilage volume [4]. OA is viewed as a “whole-
organ” disorder, manifesting damage to a range of articular structures, especially the
hyaline cartilage, meniscus, periarticular bone, ligaments, and tendons [5]. Despite its
importance for public health, we have no interventions that effectively modify the OA
disease process [6]. The absence of useful biomarkers to detect OA progression is a major
technological obstacle to the development of treatment and prevention of knee OA [7].

While joint replacement is effective for treating end-stage OA, the evaluation of
potential disease-modifying treatments in populations meeting current clinical criteria for
OA has had limited success [6]. In the past decade, early diagnosis and early treatment
strategies in rheumatoid arthritis have reduced patient morbidity and associated costs [8].
The early diagnosis and treatment of OA conditions may similarly improve outcomes
and reduce disability and costs for OA. However, the absence of useful image biomarkers

Appl. Sci. 2021, 11, 5196. https://doi.org/10.3390/app11115196 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1511-0125
https://orcid.org/0000-0003-1076-1973
https://orcid.org/0000-0002-2718-3164
https://doi.org/10.3390/app11115196
https://doi.org/10.3390/app11115196
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11115196
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11115196?type=check_update&version=3


Appl. Sci. 2021, 11, 5196 2 of 12

to detect OA progression has been a critical technology gap in the early diagnosis and
treatment of OA [9].

The conventional radiographs (X-rays) are commonly used for routine knee OA
examinations. An X-ray of a joint with osteoarthritis typically shows a narrowing of the
space between the bones of the knee joint where the cartilage has worn away. However,
symptoms of knee OA may arise before the damage can be seen in standard X-rays. For
example, Roemer et al. [10] described how X-rays are unable to show certain structural
phenotypes of OA and cannot detect some detrimental findings which can indicate risk of
disease that would progress rapidly.

The advent of magnetic resonance imaging (MRI) offers the promise of addressing
the critical technology gap by allowing quantification of structural damage in joints. For
this reason, radiologists at hospitals often use the more sensitive magnetic resonance
imaging (MRI) for OA early detection. Juras et al. [11] pointed out that OA needs early
detection, and MRI is a noninvasive way for detecting early biomarkers. To promote
the evaluation of OA MRI biomarkers, the National Institutes of Health (NIH) launched
the Osteoarthritis Initiative (OAI) cohort study, which includes four clinical centers that
recruited approximately 4800 men and women (ages 45–79 years) with or at risk for knee
OA. The OAI collected a wealth of data on its participants over an eight-year span. The
study included annual knee MRIs for the first four years and then biannual knee MRIs for
the subsequent 4 years [12]. One of the goals of creating the OAI dataset was to discover
the objective, measurable standards of disease diagnosis and progression, and to determine
the predictive role of MRI changes for subsequent radiographic and clinical changes related
to the development of knee OA.

The 3-dimensional (3D) MR images allow for both viewing the knee as a “whole organ”
and depicting all of the tissues of the joint [13]. While cartilage degradation and other
biomarkers can be manually detected, it is time-consuming to process the volume of 3D MR
images. Thus, there is a need to automate these processes with machine learning techniques.

Convolutional neural networks (CNNs) are a class of deep learning techniques that
are designed to work with images and can remove the need for handcrafted feature
extractors [14]. CNNs have been used for various image classification tasks, with recent
studies developing CNN models for medical image analysis. The early work of using
CNNs to classify knee OA was mainly applied to radiographic (X-ray) images [15–18].

Anthony et al. employed the classical VGG-16 CNN architecture and transferred
learning with X-ray images to determine the OA severity level [15]. These images were
preprocessed using an SVM and Sobel edge detector in order to locate the knee joint
area. Their study used X-ray images from the OAI. A set of 4446 X-rays were used in this
study, representing a total of 8892 knees. When classifying the five Kellgren and Lawrence
(KL) grades, they achieved an accuracy of 59.6%. Later, in another work, the same group
updated the preprocessing step to use a fully convolutional neural network (FCN) to
determine the bounding box of the knee joint. The FCN method was found to be highly
accurate in determining regions of interest (ROI), and when combined with a CNN for
classification, the method achieved an accuracy of 61.9% [16].

Unlike the two-stage frameworks developed in [15,16], a recent work [17] proposed
an end-to-end CNN architecture for knee OA severity assessment without using a neural
network for preprocessing. This method used branches in its CNN that are referred to as
“attention modules”, which provide an unsupervised determination of the ROI of X-ray
images. Another recent work added a long short-term memory (LSTM) classifying step
following the CNN layers in their network [18]. Given the nature of LSTM for processing
sequential data, additional images were generated in a preprocessing step by cropping
a fixed ROI and rotating the cropped image by 5, 10, −5, and −10 degrees. The original
image and augmented images were stacked, giving about 4600 images used for training
and about 480 for testing. Their work also used images from the OAI and achieved an
accuracy of 75.28% for the 5-category classification.
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It can be seen that 3D CNNs have developed quickly and are attracting interest as
a method for analyzing sequences of images or other volumetric data. In a recent study,
a 3D CNN was used for classifying real-world objects [19]. Depth information was used
to create a 3D shape that was converted into a volumetric representation (voxels) to be
classified by the 3D CNN. In addition, 3D CNNs have shown to be useful in medical image
processing. When classifying lung nodules, working with 3D volumetric data in a 3D
CNN outperformed 2D CNNs [20]. Wang et al. applied a 3D CNN model to calculate the
probability of needing a total knee replacement (TKR) within the next nine years [21]. Their
work demonstrated that the automated discovery of OA biomarkers from turbo spin echo
(TSE) and double-echo steady-state (DESS) images could outperform models that use only
demographic and clinical data. Another work explored this area using the popular 2D
U-Net architecture for the segmentation of cartilage and meniscus in the knee, which were
fed into a 3D CNN for classifying the severity of the cartilage and meniscus lesions [22].
Given the large amount of volumetric data, another recent work for classifying knee lesions
used cropping of 3 ROIs from knee MRI to reduce the dimensionality before processing by
multiple 3D CNN [23]. Aside from these applications, 3D CNNs have also been applied to
segmentation problems including knee cartilage segmentation [24] and segmentation of
brain lesions [25].

For knee OA severity classification, while previous methods used 2D CNNs to analyze
X-ray images, in this work we propose a method using a 3D CNN and MR images. The
details of the proposed method is introduced in the next section.

2. Materials and Methods
2.1. Method Overview

Knee MR imaging produces a 3D representation of the knee joint, utilizing a sequence
of 2D images taken laterally across the knee. Given the 3D nature of MR images, 3D CNN
can be advantageous in evaluating the whole sequence of images as one unit. Through the
implementation of 3D kernels, information from adjacent slices could be integrated. There-
fore, 3D features that may not be detectable using 2D CNN could be potentially captured.

For this study, we built a machine-learning model capable of analyzing sequences of
MR images for each knee as input, with output given as one of the five KL grades. We
further trained another model by relabeling the samples into OA and non-OA categories
according to the clinical standard, i.e., patients with KL ≤ 1 are diagnosed as non-OA cases
while patients with KL ≥ 2 are considered as OA. An overview of the proposed models is
described in Figure 1.
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Figure 1. Overview of the models proposed in this study. The input data for each patient are a
sequence of MR images. Each sequence is preprocessed by cropping and then removing slices. This
reduced data are fed into a 3D CNN. The second pipeline applies the same 3D CNN architecture but
is trained separately for the binary OA/non-OA classification.
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In addition to MRI, we also studied traditional X-ray images, with an interest of
finding out which imaging modality coupled with the modern CNNs can achieve better
accuracy for knee OA diagnosis. We employed several state-of-the-art 2D CNN models,
including VGG 16, ResNet50, DenseNet, etc. These models were trained to classify X-ray
images into five KL categories. The one with the best accuracy was selected and further
applied for the binary OA/non-OA classification. The pipelines for X-ray images are
similar to those illustrated in Figure 1, except the 3D CNN is replaced by a 2D CNN and
the preprocessing step for X-ray is to cut each pair of knees into individual ones. The X-ray
images and MR images were obtained from the same group of patients, and the separation
of training, validation, and testing sets were kept the same at the patient level for all the
models trained and compared in this work.

2.2. Dataset

The dataset used in this study was from the public database Osteoarthritis Initiative
(OAI). Most of the patient samples in the OAI dataset include an X-ray image; however,
many do not have an accompanying MRI sequence. For this study, we used a subset of
the OAI data with 1100 knees, with each knee having both MRI and X-ray available. The
3D DESS MRI data for each knee contain a sequence of 160 2D images, while there is
one X-ray image containing both knees from a patient. The dataset was selected with an
equal distribution among different OA severity levels (0–4) measured by the Kellgren and
Lawrence (KL) grades.

A common practice in machine learning is to split the available dataset into three
subsets known as the training set, validation set, and testing set [26]. Machine learning
models learn from the training set with the validation set being used during the training
process to tune parameters [27]. The testing set is not seen during the training process but
rather is held back until the end of the study. The available dataset was randomized and
then split into groups balanced by the KL grade with 800 training samples, 200 validation
samples, and 100 testing samples. Each set contains a balanced number of samples from
each of the five KL categories. Table 1 shows the distribution of the data.

Table 1. Distribution of 5 KL grade categories into training, validation, and testing sets.

Set KL = 0 KL = 1 KL = 2 KL = 3 KL = 4 Total

Training 160 160 160 160 160 800
Validation 40 40 40 40 40 200

Testing 20 20 20 20 20 100
Total 220 220 220 220 220 1100

2.3. Preprocessing: Subregion Selection

Unlike natural images where useful information could appear anywhere, in medical
images, features are usually located in fixed locations. As an example, the knee MR
image shown in Figure 2 contains large bone areas and many other tissues. The important
indicators for knee OA are often observed near the cartilage and joint region of femur and
tibia bones. Therefore, we can reduce the input dimensionality by cropping a subregion of
the images.

We cropped each image as a preprocessing step that helps to keep the cartilage region
while removing regions that are less informative for knee OA classification. We cropped
the image (original size 384 × 384) from the center using both square and rectangular
regions. An example of cropping a knee MR image to various sizes is provided in Figure 3.
Through various tests we discovered that the window size of 160 × 160 achieved the
highest F-measure.
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Figure 3. A full 384 × 384 image and the results of cropping to various window sizes.

2.4. Preprocessing: Slice Removal

Each sample in the database contains a sequence of 160 MR images. After cropping,
the input dimensions of 160 × 160 × 160 were still very high. To further reduce the input
data dimensionality, we removed some of the outer and center slices. The reason for
removing a few beginning and ending slices is that they do not contain bone or cartilage
information. Therefore, they are not likely to contain information related to OA. The reason
for removing the middle range slices is that they have ill-defined cartilage regions and
blurry bone boundaries due to the transition of medial and lateral bone happening in
this range. Example slices are provided in Figure 4. Slice #20 has a small bone region
starting, while slice #40 and #60 have larger bones with clearly defined bone boundaries
and cartilage. Slice #80 is in the transition range, and therefore the cartilage and bone
boundaries are unclear. For each sequence, we excluded the first 10 slices (1–10), middle
20 slices (71–90) and final 10 slices (151–160). The remaining 120 slices (11–70, 91–150)
from the 160 slices were fed into the 3D CNN model. This is about 13% of the original
384 × 384 × 160 volume.
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2.5. 3D CNN Model for MRI

The architecture of the 3D CNN model proposed in this study is shown in Figure 5.
The structure was inspired by the work performed by Wang et al. [21]. The most important
difference between 3D CNNs and 2D CNNs is that 3D CNNs use 3D convolutional kernels
to process a volumetric patch of a scan, while 2D CNNs process a single anatomical plane.
The 3D convolutional kernels incorporate information from adjacent slices and are therefore
able to extract 3D features, which are not detectable from 2D CNNs. As shown in Figure 5,
three stages are included in the proposed 3D CNN model before the final softmax layer.
The details of the model are discussed below.
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Stage 1 of the model began with a convolutional layer containing 32 kernels of size
7 × 7 × 7 with a stride of 2 × 2 × 2. This was followed by batch normalization and an
activation layer using the ReLU function. A max-pooling layer was added with a window
size of 2 × 2 × 2 and a stride of 2 × 2 × 2. Finally, a dropout layer was placed before the
start of the residual blocks. We used dropout layers in each stage of our 3D CNN model to
help reduce overfitting. Each dropout layer used a rate of 0.5, which gives each node a 50%
chance of being set to 0.

The second stage of the model contained a sequence of six residual blocks [28]. Each
residual block featured a shortcut connection from the input to the output. There were
two types of blocks used in this model as shown in Figure 6. The convolutional block
features a convolutional layer in the shortcut path. This layer was used when the input
dimensions were changed. The identity block did not have any layers in the shortcut path
and was used when the input and output dimensions matched. This stage also ended with
a dropout layer.

The final stage of the model used global max pooling, followed by a fully connected
layer of size 1024 and a dropout layer. The last layer of the model uses the softmax function,
which outputs the possibilities of the sample belonging to each category.

The model was implemented in Python using the Keras library with TensorFlow as
a backend. The model was trained using a batch size of 15 with early stopping based
on validation loss. The Adam optimization function was used with a learning rate 0.001.
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The training was performed on a high-performance computer with a NVIDIA Tesla V100
32 G GPU.

2.6. Classic 2D CNN Architectures for X-ray

When building our dataset, we selected patients which had an MRI volume as well as
an X-ray image of the same knees. To develop the model for X-ray, we employed a variety
of state-of-the-art 2D CNN architectures. VGG16 [29] was one of the earlier deep learning
models, and it showed superior performance in many applications. ResNet50 [28] used the
concept of residual blocks in which a shortcut connection is added after a series of layers.
Our proposed 3D model utilizes a 3D variation of the ResNet50 convolutional and residual
blocks as well. Inception-v3 [30] is the representation of the deep learning networks
with inception modules and one of the first models to make use of batch normalization.
Inception-ResNet [31] is a hybrid of Inception-v3 with residual connections. DenseNet [32]
implements dense blocks in which convolutional layers of the same size are connected to
every other layer in front of them.

While an MRI volume contains just one knee, an X-ray image contains both. These
X-ray images were split in half, and all the left knees were flipped so the right and left
knees are aligned. The pretrained ImageNet weights were used for transfer learning. The
last softmax layer was retrained using the X-ray data while the previous layers were not
changed. Input images were scaled to a size of 224 × 224 or 299 × 299, depending on the
architectures of different models. Since the pretrained networks were trained with RGB
images, we duplicated each gray level X-ray image three times to feed it into the three
input channels.

3. Results
3.1. 3D CNN Using MRI Data

Table 2 shows the performance of our 3D CNN model in a confusion matrix of actual
vs. predicted level for the 5-category classification. It should be noted that results presented
in this subsection and the following two subsections are based on the validation set. The
testing set was used once as a final evaluation step in Section 3.4 only. Observing the results
in Table 2, we found that the two boundary categories, i.e., KL = 0 and KL = 4, are relatively
easier to classify with a high accuracy of 70% and 90%, respectively. The middle categories
are more difficult to classify. For category KL = 1, the accuracy is only 45%. However, most
misclassified cases (15 out of 22 misclassified ones) were for KL = 0, which is less severe
than those misclassified into higher KL grades, since clinically, both KL = 0 and KL = 1
are considered as non-OA. Category KL = 2 had the lowest accuracy 37.5%, and most of
these misclassified cases went to KL = 0 and KL = 1. It is worth further examining why this
category was considered more similar to non-OA class by the model when clinically this
category is considered as an OA class.

Table 2. Confusion matrix for the 5-category KL classification by the 3D CNN model on the validation
set. A0 denotes samples that are actually with KL = 0 and P0 denotes samples that are predicted as
KL = 0 by the model.

Act.\Pred. P0 P1 P2 P3 P4 Total Acc.

A0 28 7 5 0 0 40 70.0%
A1 15 18 2 5 0 40 45.0%
A2 7 10 15 7 1 40 37.5%
A3 0 2 2 24 12 40 60.0%
A4 0 0 0 4 36 40 90.0%

Total 50 37 24 40 49 200 60.5%

Using the same 3D CNN architecture, we trained another model with the input da-ta
labeled as non-OA (KL ≤ 1) and OA (KL ≥ 2). Table 3 shows the confusion matrix of the
2-category model.
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Table 3. Confusion matrix for the 2-category OA/non-OA classification by the 3D CNN model on
the validation set.

Act.\Pred. Non-OA OA Total Acc.

Non-OA 71 9 80 88.8%
OA 18 102 120 85.0%

Total 89 111 200 86.5%

3.2. Ablation Study

The accuracy of our 3D CNN model is based on the preprocessing steps as well as
the architecture. Table 4 demonstrates the effects of removing individual aspects of our
model. The first row shows the accuracy of the model with all strategies used. While our
final model used a cropped size of 160 × 160, for this ablation study we used a larger size
of 224 × 224, which was the largest that could be used—given memory constraints—to
generate the performance without cropping (second row in Table 4). It is worth noting that
when we provided more information (larger crop), the accuracy dropped by 5%. To test the
effect of slice removal, we removed the slice selection step and used all 160 slices. Similar
to cropping, providing more information caused worse performance. Dropout layers are
a common method to avoid overfitting, and in this study, it can be seen that removing
these layers caused a drop in performance. Finally, we experimented with halving the
number of our final residual layers. This caused the most significant drop in accuracy and
demonstrates the need of a deep model for working with the 3D MR image data.

Table 4. Effects on accuracy for preprocessing steps and architecture of the 3D CNN model.

Crop Slice Removal Dropout Res Layers Acc
√ √ √ √

86.5%
X

√ √ √
81.5%√

X
√ √

82.0%√ √
X

√
80.0%√ √ √

X 73.0%
Note: “

√
” indicates the feature is included; “X” indicates the feature was removed.

3.3. 2D CNN Using X-ray Data

For the same group of patients, we compared the performance of various 2D CNN
architectures that use X-rays. Table 5 compares the performance of each architecture for
the 5-category classification and the 2-category OA/non-OA classification.

Table 5. Performance of 2D CNN architectures using X-ray data.

Architecture 5-Category Accuracy 2-Category Accuracy

VGG16 20.0% 60.0%
VGG19 28.0% 60.0%

ResNet50V2 49.5% 69.0%
ResNet101V2 42.5% 77.5%
ResNet152V2 20.0% 60.5%
InceptionV3 54.0% 80.5%

InceptionResNetV2 55.5% 80.0%
DenseNet121 55.0% 70.0%
DenseNet169 45.0% 78.0%
DenseNet201 45.0% 81.0%

Based on the above experiments, we selected InceptionResNetV2, given its best
performance for the averages of the 5-category and 2-category accuracy percentages.
Tables 6 and 7 show the confusion matrix for InceptionResNetV2 for the 5-category classifi-
cation and the 2-category classification, respectively.
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Table 6. Confusion matrix for the 5-category KL classification using InceptionResNetV2 and X-ray.

Act.\Pred. P0 P1 P2 P3 P4 Total Acc. Acc. of MRI

A0 26 3 11 0 0 40 65.0% 70.0%
A1 22 3 14 1 0 40 7.5% 45.0%
A2 7 1 26 5 1 40 65.0% 37.5%
A3 1 1 11 18 9 40 45.5% 60.0%
A4 0 0 0 2 38 40 95.0% 90.0%

Total 56 8 62 26 48 200 55.5% 60.5%

Table 7. Confusion matrix for the 2-category OA/non-OA classification using InceptionResNetV2
and X-ray.

Act.\Pred. Non-OA OA Total Acc. Acc. of MRI

Non-OA 56 24 80 70.0% 88.8%
OA 16 104 120 86.7% 85.0%

Total 72 128 200 80.0% 86.5%

The last columns of Tables 6 and 7 are the results of MR images with 3D CNN models
copied from Tables 2 and 3 in order to make it easier to compare the two imaging modalities.
Overall, MRI outperformed X-ray in both the 5-category (60.5% vs. 55.5%) and 2-category
(86.5% vs. 80.0%) classifications. From Table 6, we can see that MRI has higher accuracy
in classifying the categories of KL = 0, 1, and 3, but lower in the KL = 2 and 4 categories.
Correspondingly, in Table 7, the accuracy of MRI is much higher than X-ray in classifying
the non-OA category (88.8% vs. 70.0%) while a little lower in classifying the OA category
(85.0% vs. 86.7%).

3.4. Comparison and Further Evaluation with Testing Set

The results presented in the above subsections are from the validation set. We set
aside a testing set of 100 samples that has not been seen by any model yet. This testing
set was balanced between the 5 KL grades. Table 8 shows the performance of our 3D
model with MRI data as well as the best 2D CNN model (InceptionResNetV2) for X-ray,
against both the validation set and the testing set. We can see that the 3D CNN model
with MRI outperformed the 2D CNN model with X-ray significantly for the 5-category and
2-category classifications on both the validation and testing sets. Table 9 further shows a
group of different measures to evaluate OA and non-OA classification using the testing set.
Our 3D CNN model with MRI achieved a much higher specificity (0.850 vs. 0.650), F1 score
(0.831 vs. 0.767), and AUC (area under ROC curve; 0.911 vs 0.867), while the sensitivity is
lower than that of the X-ray model (0.817 vs. 0.850). Figure 7 plots the ROC curves for the
two models in the OA/non-OA classification.

Table 8. Accuracy for the 5-category and 2-category classifications for the 3D CNN model and 2D
CNN model against the validation and testing sets.

Validation Set Testing Set

5-Category 2-Category 5-Category 2-Category

2D CNN with X-ray 55.5% 80.0% 50.0% 77.0%
3D CNN with MRI 60.5% 86.5% 54.0% 83.0%

Table 9. More evaluation metrics for the 2-category non-OA/OA classification on the testing set.

Sensitivity Specificity F1 AUC

2D CNN with X-ray 0.850 0.650 0.767 0.867
3D CNN with MRI 0.817 0.850 0.831 0.911
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4. Discussion

Currently, X-ray is the basic routine imaging modality for examining a patient with
OA potentials clinically. While X-ray is more cost-efficient than MRI, it is not as sensitive as
MRI, which can show much more structure and tissue details. Therefore, MRI is considered
as an alternative imaging tool, especially for detecting early osteoarthritis with slight
structure change.

In the 5-category results of this study we found that MRI had higher accuracy in
classifying KL = 0 and KL = 1 (Table 6). This aligns with the previous studies that found
MRI to be better at capturing detailed and small structure change and therefore more
sensitive to early signs of OA development. When classifying the category KL = 4, X-rays
have higher accuracy than MRI, indicating that X-rays are better at detecting OA in a more
severe situation. The 2-category results in this study were consistent with those in the
5-category, in that X-ray has higher accuracy for detecting severe OA cases while MRI
is more sensitive to small structure changes and early indicators of OA (Table 7). The
complementary performance of the two imaging modalities is interesting and indicates the
possibility that they could be combined to develop a comprehensive and more accurate
diagnosis system than using each individual imaging modality alone.

A limitation of this study is that we have a limited number of samples. This is because
we have to include patients with both MRI and X-ray scanned on the same knee. Another
limitation is that MRI is not widely used in clinical diagnosis due to the cost. However,
MRI is a new trend of imaging to study the pathology of knee OA in many clinical trials
since MRI can offer a better view of soft tissues such as cartilage, bone marrow lesions,
and effusions.

Future work includes further examination of the KL categories with lower accuracy,
e.g., the KL = 2 category, which was often misclassified into KL = 1 (non-OA) by the
model. This may be solved with a weighting system during training. Additionally, our
current preprocessing uses a fixed offset for cropping as well as a fixed range for slice
removing. This could be updated as a dynamic setting for each sequence, which may
retrieve more accurate information and therefore generate better classification performance.
Combining the two imaging modalities for a comprehensive and more accurate model is
also a promising direction.

5. Conclusions

In this study, we proposed a novel 3D CNN model coupled with 3D MRI for knee
OA classification. Guided by clinical knowledge, we reduced the input dimensionality of
each image sequence by using subregions of MR images and removing less informative
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slices. Our model achieved an 83.0% accuracy in the OA/non-OA classification and a 54.0%
accuracy in the 5-category KL grade classification. In addition, the F1 score and AUC for
OA/non-OA classification are 0.831 and 0.911, respectively. Compared with using X-ray
images coupled with classic 2D CNN architectures to classify knee OA for the same group
of patients, the accuracy of both a 5-category KL grade classification and the 2-category
OA/non-OA classification greatly improved. This indicates that more accurate knee OA
diagnosis can be achieved using MR images coupled with 3D CNN models than using the
traditional X-ray images and 2D CNN models.
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