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Abstract: In dynamic virtual reality, visual cues and motor actions aid auditory perception. With
multimodal integration and auditory adaptation effects, generic head-related transfer functions
(HRTFs) may yield no significant disadvantage to individual HRTFs regarding accurate auditory
perception. This study compares two individual HRTF sets against a generic HRTF set by way of
objective analysis and two subjective experiments. First, auditory-model-based predictions examine
the objective deviations in localization cues between the sets. Next, the HRTFs are compared in a
static subjective (N = 8) localization experiment. Finally, the localization accuracy, timbre, and overall
quality of the HRTF sets are evaluated subjectively (N = 12) in a six-degrees-of-freedom audio-visual
virtual environment. The results show statistically significant objective deviations between the sets,
but no perceived localization or overall quality differences in the dynamic virtual reality.

Keywords: head-related transfer function (HRTF); spatial audio; virtual reality; binaural rendering;
audio-visual integration; 6-degrees-of-freedom

1. Introduction

Virtual sounds, rendered to headphones, often fail to localize in space or externalize
from within the listener’s head. Sound localization in a 3-dimensional space relies on
acoustic cues described by the head-related transfer functions (HRTFs) [1]. Using the
listener’s own HRTFs results in the best localization performance in static listening, but
measuring or modeling individual HRTFs remains a challenging process. With head
tracking and multimodal environments, such as in virtual and augmented reality (VR, AR),
generic, non-individual HRTFs may still enable accurate auditory perception comparable
to individual sets. This paper presents an objective analysis and two subjective experiments
to compare two different individual HRTF sets with a generic set in 6-degrees-of-freedom
(6-DoF) VR, where rotational movement around the x, y, and z axes (pitch, yaw, and roll),
and translational movement along the axes (surge, strafe, and elevation) are possible.

Static, non-head-tracked listening with generic HRTFs results, most evidently, in
localization errors in elevation and in front-back or quadrant confusions when compared
to free-field listening in an anechoic chamber or with individual HRTFs [2–4]. Similar
findings of increased elevation and quadrant errors with generic HRTFs during static
reproduction have also been recently reported [5]. Additionally, externalization may be
degraded when listening with generic HRTFs compared to individual HRTFs, as noted in a
recent review [6]. However, the results regarding modified spectral cues are mixed, and
other cues, such as reverberation, movement, and vision, may be more critical factors for
robust externalization.

Studies going beyond static scenarios have found a reduction in front-back confusions
when head movements are allowed [7–9] both with and without headphones. Significant
decreases in elevation errors have also been identified when moderate head motions are
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permitted in free-field listening [10]. Few studies investigate auditory perception during
full-body 6-DoF movement. Although the listener is in translational motion, the minimum
audible angle has been found to increase compared to static listening [11]. This finding
hints towards an increase in localization blur during full-body motion. Such phenomena
may mask any potential localization benefits granted when using individualized over
generic HRTF sets.

Directly comparing individual and generic HRTFs in dynamic localization tasks
showed mixed results. In some papers, no effect on localization accuracy between individ-
ual and generic HRTFs is found when head-tracked rendering is used [5,8]. At the same
time, some studies show significant improvements in localization accuracy or preference
for individual over generic HRTFs, even in dynamic conditions [12,13]. However, local-
ization is only one attribute of quality in a VR environment. One study compared the
evaluation of overall audio quality either using generic or individual HRTFs in the context
of 6-DoF VR critical listening via a multistimulus method. Apart from a small effect in
the participants’ sensitivity to elevation errors in favor of individual HRTFs, all HRTF sets
yielded similar quality scores [14]. No perceptual differences were found between realistic
binaural auralizations of a classroom scenario when rendered with either individual or
generic HRTFs [15]. Finally, an experiment conducted using spatialized music content
found a general preference of generic HRTFs over individual HRTFs [16].

Instead of arduously measuring individual HRTFs, different strategies have been
developed to select the anthropometrically closest matching HRTF set from an existing
HRTF database [17]. Based on an auditory model, the estimated localization accuracy has
been shown to objectively increase when using anthropometric parameters to select the
most suitable HRTF set [18]. However, anthropometry-based HRTF matching has been per-
ceptually investigated in VR, where no effect on questionnaire results was found between
the best match HRTFs and generic HRTFs for a free exploration task [19]. Comparing best
and worst match HRTFs in a VR shooter game found a minimal impact of the HRTFs on
participant performance for the most elevated target regions. Still, the benefit was limited
to the early stages of the game, signaling a potential adaptation to the HRTFs as the game
progressed [20].

Multiple sensory modalities help us to construct a mental representation of our
surroundings [21]. In VR, audio-visual cross-modal training quickly improves source
localization accuracy after short training periods [22–24]. Active tasks, such as head
movements [25] or interaction with a sound source [26], are found to further increase the
adaptation from our biological set to altered localization cues. A many-to-one mapping
mechanism in sound localization has been suggested, where the plasticity in the auditory
cortex allows us to learn multiple HRTF sets that lead to the same percept [27].

The emerging picture from prior literature indicates mixed results for the need of
individual HRTFs in 6-DoF VR. On the one hand, static localization is more accurate with
individual HRTFs than with generic HRTFs. On the other hand, VR experiences are head-
tracked and multimodal, allowing the listener to use different modalities and motor actions
to support auditory localization and ultimately adapt the auditory perception. From an
objective perspective, the use of individual HRTFs provides more accurate localization cues
tailored for each listener, but the perceptual evidence gathered so far in VR environments
does not show uniform support for the need of individual audio delivery. This study
compares two individual HRTF sets, attained using measurements or computational
modeling, and a generic HRTF set, first objectively using auditory models, then followed
by two subjective experiments addressing: (I) static localization; and (II) dynamic audio-
visual localization, timbre, and overall quality in a 6-DoF VR. Additionally, another generic
HRTF set, containing only horizontal plane measurement points, is included in the dynamic
audio-visual localization experiment.

Hypothesis 1. The two sets of individual HRTFs are objectively different from the generic HRTF
on average.
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Hypothesis 2. The individual HRTF sets are objectively similar to each other on average.

Hypothesis 3. Static localization accuracy is higher with individual HRTFs compared to generic HRTFs.

Hypothesis 4. The HRTF sets are equally preferred in localization, timbre, and overall quality in
6-DoF VR.

2. HRTF Sets and Analysis
2.1. HRTF Sets

Three different HRTF sets were obtained for the experiment: a measured, modeled, and
a generic set. The measured and modeled HRTFs were produced for the same group of
people (N = 12), who also participated in the subjective experiments. A fourth HRTF set
was derived from the generic HRTF set by keeping only the measurement points located in
the horizontal plane and utilized in the second subjective listening experiment.

Individual HRTFs were measured in a semi-anechoic chamber at 1.2 m distance with a
procedure described in [28]. The measurement setup comprised an array of 64 loudspeakers
mounted on a semi-circle in elevation direction. A multiple exponential sweep was used
to allow overlapping signal playback from multiple loudspeakers in parallel. The spatial
resolution was 5◦ in azimuth and 2.5◦ in elevation covering the full azimuth circle and
elevations from +90◦ to −70◦ resulting in Q = 4608 measurement positions with a filter
length of 386 samples. The measurements were made at the entrance to the blocked ear
canal. The floor reflection was cut out from the measurements in post-processing, and a
low-frequency boost was applied to compensate for the non-flat magnitude response of
the small drivers in the measurement setup.

The modeled HRTFs were based on high-precision 3D scans of the participants’ pin-
nae and a set of anthropometric measurements of the head size and ear position. The
measurements were used to scale the shape and dimensions of a scanned generic head-and-
torso model, onto which the individual pinna models were stitched. A boundary element
method numerical simulation then produced the modeled HRTFs [29]. Each modeled
HRTF set had the same distribution and distance of measurement points and the same
filter length as the measured HRTF set.

The generic binaural head (Neumann KU100) HRTFs were obtained from the spatial
audio for domestic interactive entertainment (SADIE) database (https://www.york.ac.
uk/sadie-project/index.html (accessed on 29 May 2019)). These measurements comprise
Q = 1550 measurement positions at 1.5 m distance with azimuthal increments of 5◦ and
elevation increments of 10◦ with added measurement points to satisfy specific Ambisonics
reproduction setups. The head-related impulse response length is 256 samples. Notably,
the KU100 binaural head does not include a torso, removing the shoulder reflection effect
from the generic HRTFs. The measured, modeled, and generic HRTF set signal processing
chains were level aligned to 68 dBA sound pressure level at 1 m distance using pink noise
and a binaural head with a virtual sound source rendered directly in front.

Following [4,30], we employed a decoupled equalization technique using a reference
sound field, in our case the diffuse field, to equalize the measured HRTFs and the head-
phones. This technique is opposed to a non-decoupled equalization, where a headphone
transfer function (HPTF) is measured with the same measurement setup (including the
head and microphones) as for the recording of the HRTFs. The decoupled equalization
technique is found to offer the same degree of fidelity as using the HPTF approach, but
with the added flexibility of equalizing the recording system and reproduction system in
independent sessions using different equipment. The HRTFs were diffuse-field equalized
for this experiment by calculating the average magnitude over all directions, inverting it,
and creating a minimum-phase filter, which was then convolved with the HRTFs. The
KU100 binaural head readily produces diffuse-field equalized measurements.

https://www.york.ac.uk/sadie-project/index.html
https://www.york.ac.uk/sadie-project/index.html
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2.2. Objective Analysis

The objective analysis used two different auditory models, both implemented in the
Auditory Modeling Toolbox [31], to gain objective metrics on the deviations in azimuth and
elevation localization cues between the measured, modeled, and generic HRTF sets. We
used a binaural azimuth estimation model [32] to obtain interaural time and level difference
(ITD; ILD) estimates for each participant (N = 12) and the KU100 generic binaural head.
The equivalent rectangular bandwidth (ERB) center frequency was set to 1000 Hz for ITD
modeling and 4300 Hz for ILD modeling.

Figure 1 displays the auditory-model-based estimates for the ITD (upper panel) and
ILD (lower panel). Focusing on the maximum ITDs, the φ = 90◦ azimuth horizontal plane
mean ITD for the set of measured HRTFs is 723 µs (SD = 27 µs) and for the modeled HRTFs
669 µs (SD = 26 µs). For the KU100 generic head, the modeled ITD at 1 kHz is 786 µs.
The difference in mean ITDs between the individual sets and compared to the generic set
are above the just noticeable difference value of 20 µs found in previous literature [33].
Additionally, a paired sample Wilcoxon signed rank test showed that there is a statistically
significant difference between the ITD populations (p = 0.002) and one-sample Wilcoxon
signed rank tests showed significant median differences compared to the generic head ITD
(measured p < 0.001, modeled p < 0.001).
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Figure 1. ITD in the ERB band centered at 1.0 kHz (bandwidth 133 Hz) and the ILD in the ERB band
centered at 4.3 kHz (bandwidth 489 Hz) based on an auditory model by Dietz et al. [32]. The boxplots
show the sample median and the first and third quartiles, any data within 1.5 times the interquartile
range, and any outliers outside the range. Azimuth φ = 0◦ corresponds to the direction in front of
the listener and positive angles are clockwise towards behind the head.

The deviations in ILD are more difficult to summarize. Still, a consistent ILD discrep-
ancy can be observed in the azimuth range φ = {30, ..., 70}◦, where the measured and
generic HRTFs yield larger ILD values compared to the modeled HRTFs. Further to the
side the ILD predictions become more varied between the HRTF sets, before converging to
similar values beyond φ = 160◦ behind the head.

For localization estimates in elevation, we used a sagittal-plane sound localization
model [34]. This model assumes the human brain holds an internal template set of learned
HRTFs, which can be compared with an incoming sound filtered with a target HRTF that
can either be the person’s own HRTF or a generic HRTF with some degree of deviation
from the template. The model predicts the percentage of quadrant errors (θ > 90◦) and the
root-mean-square (RMS) local elevation errors in degrees (θ ≤ 90◦) based on a comparison
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process between the target representation and template HRTFs. Here, the prediction was
conducted for the elevation angles from −70◦ to +250◦ in 2.5◦ increments in the 0◦ azimuth
sagittal plane.

Table 1 displays the prediction results averaged over all elevation angles for the cases:
(I) template and target are the modeled HRTFs; (II) template and target are the measured
HRTFs; (III) template are the measured HRTFs, target the modeled HRTFs; (IV) template
are the modeled HRTFs, target generic HRTFs; and (V) template are the measured HRTFs,
target generic HRTFs. The results are further depicted graphically in Figure 2. The RMS
local elevation errors for matching template and target HRTFs are significantly lower than
the RMS elevation error averages when combining measured templates with modeled
target HRTFs. Similar large elevation error values are observed when combining generic
target HRTFs with the modeled or measured HRTF templates.

Table 1. Auditory-model-based predicted mean unsigned elevation errors and quadrant errors with
the bootstrapped 95% confidence intervals.

Template Target Unsigned Elevation Error Quadrant Errors

Modeled Modeled 31.0◦ (CI 29.8◦ to 32.2◦) 16.0% (CI 13.5% to 18.6%)
Measured Measured 37.5◦ (CI 34.9◦ to 40.3◦) 20.3% (CI 15.9% to 25.1%)
Measured Modeled 50.3◦ (CI 49.0◦ to 51.7◦) 41.7% (CI 38.4% to 45.7%)
Modeled Generic 48.7◦ (CI 46.8◦ to 50.7◦) 41.9% (CI 38.7% to 44.8%)
Measured Generic 46.6◦ (CI 45.0◦ to 48.2◦) 39.6% (CI 37.3% to 41.9%)
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Figure 2. Auditory-model-based predictions of the (a) local (θ ≤ 90◦) elevation RMS error and (b)
quadrant errors (θ > 90◦). The error bars denote the bootstrapped 95% confidence intervals of the
mean. The applied model is the Baumgartner et al. [34].

Comparable trends are observed with the predicted quadrant errors percentages,
where the matching modeled HRTFs show the least quadrant errors followed by the match-
ing measured HRTFs. Mixing measured template HRTFs with modeled target HRTFs yields
a significantly higher errors percentage. A similar range of quadrant errors is observed for
the generic target HRTFs combined with modeled or measured template HRTFs.

3. Subjective Experiments Overview

There were two sessions of subjective experiments: static localization (Section 4) and
dynamic 6-DoF virtual reality (Section 5). The experiments were conducted starting with
the dynamic VR experiment followed by the static localization experiment, but reported
here in reversed order for readability. There was a gap of more than 12 months between
the respective experiments. The dynamic VR experiment was further divided into a main
experiment and a follow-up, where two additional scenes focusing on localization in
elevation were evaluated a month after the main experiment. The following paragraph
provides an overview of the participants in each of the subjective sessions.
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The sample size for the subjective experiments was 12 participants, limited only
due to the difficulties in ascertaining high fidelity measured and modeled individual
HRTF sets. Subgroups of the subject pool with slight variations in numbers participated
in the two experiment due to availability. For the static localization experiment, 8 people
took part (1 female). Their average age is 37.4 years (SD = 11.7). In total, 12 people
(2 female) took part in the main dynamic 6-DoF VR experiment. Their average age is 38.6 years
(SD = 9.8). In the follow-up dynamic 6-DoF VR experiment, the two scenes focusing on
localization in elevation, Above and Below, were evaluated on a separate day, where a subset
of 8 participants (1 female) from the full pool did the test. This group had an average age
of 37.5 years (SD = 9.3).

The participants were employees of Fraunhofer IIS or the International Audio Labo-
ratories Erlangen at the time of the experiments, and can be considered expert listeners
in audio quality evaluations [35]. However, they were not trained in VR-specific listening
tests, and they were naive about the specific conditions under examination here. All of the
participants reported no hearing impairments and had a normal or corrected-to-normal
vision by self-report. All participants provided written informed consent to participate in
each session of the experiment.

4. Experiment I: Static Localization
4.1. Stimuli

The experiment was constructed using an audio-visual virtual environment created
in Max 8. Head-tracking, visual display, and user interaction system were provided by
the HTC Vive Pro head-mounted display (HMD), using the SteamVR Version 2.0 tracking
system. A visual interface in VR showed an aiming cross-hair and three concentric guide
circles around the head, denoting the median, frontal, and horizontal planes. The cross-hair
was coupled to the head direction. A starting location marker for each trial was drawn in VR
as a circle with 2◦ radius as seen from the central viewpoint at (0, 0) degrees. The stimulus
sound was pulsed pink noise with a total duration of 3 s, a pulse length of 400 ms with
pauses of 100 ms. The pulsed noise was used to provide onset and offset cues for auditory
localization [36]. For each trial, the pulse train was convolved with HRTFs from either the
measured or modeled HRTF database, matching the participant’s own HRTFs, or using the
generic HRTFs. Room acoustic cues were not modeled in this localization experiment, to
focus only on the localization cues provided by the HRTFs. Target locations were selected
as follows for the azimuth angles: φ = {0, 15, 75, 90, 105, 165, 180}◦; and elevation angles:
θ = {−40,−20, 0, 20, 40}◦. All combinations of the target azimuths and elevations were
presented to the participants once in random order with random assignment to either
the left or right hemisphere, assuming a left–right symmetry in auditory localization.
The HRTFs were randomly interleaved from the three databases, i.e., the participant was
unaware of the HRTF condition in each trial. The audio was played back at 68 dBA sound
pressure level through an RME Fireface UCX audio interface and Beyerdynamic DT770 Pro
headphones, diffuse-field equalized by the manufacturer.

4.2. Procedure

The starting location marker turned from red to green when the participant’s head
orientation was within the circle to indicate the next stimulus could be started. The partici-
pant was required to press a button on a hand-held controller to start the stimulus playback
and keep their head static during the 3 s stimulus. Once the sound stopped, they should
rotate their head orientation, thus the aiming cross-hair towards the perceived location of
the sound event. Dynamic audio rendering was disabled during the stimulus presentation
to ensure only static cues were available. Another button press by the participant was used
to signal the perceived location of the sound event as indicated by head orientation. At the
end of the trial, the participant was required to resume facing the starting marker. Four
familiarization trials were included where a visual cue was spatially matching the sound
event location. The practice targets were located in the horizontal plane at ±20◦ and ±90◦
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azimuth. After the familiarization session, there were 105 trials (7 azimuths × 5 elevations
× 3 HRTF sets).

4.3. Results

Figure 3 collects the local azimuth and elevation unsigned errors (panels a to d) and
quadrant errors percentage (panel e). The quadrant errors percentages display a tendency
for lower errors for the modeled and measured HRTFs compared to the generic HRTFs, but
the effect is not significant (Friedman test: χ2

(2,N=8) = 4.96, p = 0.084, Kendall’s W = 0.31
(moderate effect size)). The local azimuth and elevation error angles are calculated after
the quadrant errors (>90◦) are filtered from the data. The azimuth errors are collected
across all elevation angles and elevation errors across all azimuth angles. In the front,
for azimuth errors, no large differences can be observed apart from the modeled HRTFs
yielding lower errors at the φ = 15◦ angle compared to the two other HRTFs. On the
side, the measured HRTFs result in lower azimuth errors than the modeled or generic
HRTFs, while at the back orientations, no differences are observed. The average azimuth
angular errors collated across all azimuth angles are observed to be 17◦ (Measured), 21◦

(Modeled), and 20◦ (Generic), with a non-significant main effect of the HRTF set (Friedman
test: χ2

(2,N=8) = 4.00, p = 0.135, Kendall’s W = 0.25 (small effect size)).
For elevation errors, negative elevation angles below the horizontal plane tend to yield

greater unsigned localization errors than positive elevations. A tendency for the modeled
HRTFs to yield larger errors than the other HRTF sets in the horizontal plane and below
can be observed. The average elevation angular errors collated across all elevation angles
are observed to be 21◦ (Measured), 26◦ (Modeled), and 21◦ (Generic), with a non-significant
main effect of the HRTF set (Friedman test: χ2

(2,N=8) = 4.00, p = 0.135, Kendall’s W = 0.25
(small effect size)). Average duration to indicate a target was found after the stimulus
playback was 5.9 s (SD = 2.0 s).
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Figure 3. Subjective scores from the static localization experiment for (a) local unsigned azimuth
error, (b) local elevation unsigned error, (c) average local azimuth unsigned error, (d) average local
elevation unsigned error, and (e) quadrant errors percentage. The error bars denote the bootstrapped
95% confidence intervals of the mean.
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5. Experiment II: Dynamic 6-DoF Virtual Reality
5.1. Virtual Reality Environment

A platform for real-time evaluation of binaural renderers has been developed, allowing
participants to switch between conditions with no interruption to audio-visual sensory
input. The basic structure is presented in this section; for a thorough walk-through, please
see [37]. The platform may be broken into three components: (1) VR device, (2) graphical
rendering engine, and (3) audio rendering engine. For Component 1, the HTC Vive Pro
HMD and SteamVR Version 2.0 tracking system were used for positional tracking, visual
presentation, and control interface. For Component 2, the game engine Unity was used
for the graphical rendering, and hosted positional information for all audio objects and
participant’s position and orientation using the SteamVR asset. All relevant positional
and rotational data were then sent (via an Open Sound Control (OSC) data package at a
10 ms interval) to Max 8. In Component 3, binaural renderers, each equipped with a unique
HRTF set, were hosted in Max 8 and were fed, in parallel, the positional and rotational
information received from Unity.

The interface was designed such that it could be instantiated anywhere in the VR
scene. A semi-transparent panel appeared at eye level in the participants’ field of view
by pressing a button on a hand-held controller. Pressing the button again hid the panel,
allowing the user to explore the environment fully. A virtual laser pointer was used to
switch between renderers, assign ratings, and move on to the next scene.

5.2. Stimuli and Conditions

Five conditions were created for each of the 6-DoF VR scenes based on the HRTF sets:
Measured, Modeled, Generic, Generic horizontal, and No HRTF. The first three conditions were
the same as in Experiment II. The Generic horizontal condition was created by retaining
only the measurement points on the horizontal plane from the generic HRTF set. Lastly,
condition No HRTF was created by disabling the binaural rendering and playing back a
mono-downmix of the scene audio that did not react to listener movements.

There were four scenes focusing on different aspects of localization accuracy (In scene,
Handheld, Above, and Below), two scenes focusing on timbre (Cello and Castanets), and two
scenes focusing on overall audio quality (Park and Fountain). The scenes, task in the scene,
and audio content are summarized in Table 2. Visually, all of the scenes presented the
participants with a large empty space where a white sphere (r = 10 cm) denoted the
location of the audio object. The environment was purposefully minimalistic in appearance
to provide only the necessary cues to support audio-visual sensory integration, and not
distract the participants with too much visual information.

The audio object was either placed in the scene (In scene) at 1.5 m height from the floor
level or attached to the hand-held controller (Handheld), allowing the participant to move it
around their head freely. In the scene Above, the audio object was placed 3 m above the
floor level, as opposed to being on the floor in the scene Below. In these four scenes the
audio content was pink noise. In the two scenes focusing on timbre, the audio object was
placed at 1.5 m height, and the participant was instructed to stand on a marker 1 m in front
of the audio object. These scenes featured anechoic recordings of a cello or castanets.

The overall quality scenes were composed of two spheres denoting two audio objects
placed 3 m from each other at 1.5 m height. In Park, the two audio objects were a field
recording of ducks and another field recording of shrub pruning with scissor clipping
sounds and the rustling of leaves. In the Fountain scene, the audio objects were a dry studio
recording of piano performance and a field recording of a water fountain.

In all of the scenes, the participant’s movement was tracked in 6-DoF, and the audio
rendering was updated dynamically to reflect the audio object’s position in relation to
the listener. The update was performed by choosing the nearest HRTF pair without
interpolation. The source signals were convolved with each of the HRTF sets under study
in parallel in real-time. To enable accurate comparison of the HRTFs, the acoustics of the
virtual space were not modeled. The omitted early reflections and reverberation remove
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any supporting localization cues apart from the directional information in the actual HRTFs
under test. Due to the lack of virtual acoustics, the direct-to-reverberant ratio cue was not
modeled. Thus, distance rendering relied only on the intensity cue realized by applying the
inverse square law with a maximum level reached at 0.1 m from the sound object. Auditory
near-field effects were not modeled. Similar to the static localization experiment, the audio
was played back through an RME Fireface UCX audio interface and Beyerdynamic DT770
Pro headphones.

Table 2. Scenes, task in the scene, and audio content.

Scene Task Content

In Scene Localization accuracy One audio object: Pink noise
Handheld Localization accuracy One audio object: Pink noise
Above Localization accuracy One audio object: Pink noise
Below Localization accuracy One audio object: Pink noise
Cello Timbral fidelity One audio object: Anechoic cello
Castanets Timbral fidelity One audio object: Anechoic castanets
Park Overall audio quality Two audio objects: Ducks and tree clipping
Fountain Overall audio quality Two audio objects: Piano and fountain

5.3. Procedure

The scenes Above and Below were evaluated on a separate day in a follow-up exper-
iment by a subset of 8 participants. The rest of the scenes were evaluated in one main
experiment, one after the other by all of the 12 participants. The presentation order was
fixed to start with localization, followed by timbre, and finishing with overall quality. The
participant was presented with a multiple stimuli quality scaling task in VR, where the
localization accuracy, timbral fidelity, and overall audio quality were to be rated on a
100-point continuous scale, depending on the task. There were verbal labels marking the
regions of the scale as bad, poor, fair, good, and excellent in 20-point intervals. The five
HRTF conditions were presented side-by-side in the VR user interface, and the participant
was allowed to switch between them. The HRTF conditions and interface buttons were
randomized for each scene. The interface is displayed together with the sphere denoting
audio object location in Figure 4.

Figure 4. User interface in VR for the localization task. The white sphere denotes visually the location
of the audio object.
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For the localization and overall quality tasks, the participants were instructed to freely
move and teleport around in the 6-DoF scene and focus on either the localizability or general
audio aspects of the experience. In these scenes, there was no audio reference to compare
against; instead, the participants were assumed to possess an internal reference obtained
from the day-to-day experience of listening in the real world. The internal reference should
inform the participant how self-movement in relation to visual cues should be reflected in
the audio reproduction. In the timbre scenes, the participant was instructed to stand on a
marker 1 m away from the audio object and face towards the sound. In these scenes, the
No HRTF condition was defined as the timbre reference, and all the ratings are relative to
this condition. The No HRTF was included in the set of conditions as a hidden reference.

5.4. Results

The data from the subjective experiments are analyzed by non-parametric Friedman
tests, with the participant defined as a random effect repeated across measurements. The
effect sizes are calculated using the Kendall’s W metric, which describes the level of
agreement among the participants. To interpret the effect size, we refer to the guidelines
laid out by Cohen [38]: 0.1 ≤W < 0.3 (small effect), 0.3 ≤W < 0.5 (moderate effect), and
W ≥ 0.5 (large effect).

The localization accuracy was found significantly different for the different HRTF
sets, when the audio object was placed in the scene, χ2

(4,N=12) = 29.6, p < 0.001, or the

audio object was hand-held χ2
(4,N=12) = 37.6, p < 0.001. The corresponding effect sizes

are W = 0.62 and W = 0.78, respectively. Similarly, the localization accuracy was found
significantly different for the different HRTF sets, when the audio object was above the
listener, χ2

(4,N=8) = 24.8, p < 0.001, or when the audio object was below the listener

χ2
(4,N=8) = 22.5, p < 0.001. The corresponding effect sizes are W = 0.77 and W = 0.70,

respectively. Post-hoc pairwise permutation tests revealed no significant differences be-
tween the measured, modeled, and generic HRTFs in any of these scenes. These results are
displayed graphically in the first four panels a, b, c, and d, in Figure 5.

The timbral fidelity was found significantly different for the different HRTF sets, when
listening to an anechoic cello sample, χ2

(4,N=12) = 29.8, p < 0.001, or when listening to an

anechoic castanets sample χ2
(4,N=12) = 35.4, p < 0.001. The corresponding effect sizes are

W = 0.62 and W = 0.74, respectively. These results are shown in Figure 5 panels e and
f. Post-hoc tests revealed all the other conditions to be rated significantly lower than the
hidden reference No HRTF in both scenes. In the Cello scene, the generic HRTFs were rated
significantly higher than the measured or modeled HRTFs. In Castanets, the measured
HRTFs were rated significantly lower than all the other conditions.

The overall audio quality was found significantly different for the different HRTF
sets, when experiencing the park scene, χ2

(4,N=12) = 27.3, p < 0.001, or the fountain music

scene χ2
(4,N=12) = 29.6, p < 0.001. The corresponding effect sizes are W = 0.57 and

W = 0.62, respectively. The last panels g and h, in Figure 5 display these results. In Park,
all of the HRTF sets, even the Generic horizontal, were rated equally and above the No
HRTF condition according to post-hoc tests. In Fountain, no difference was found between
measured, modeled, and generic HRTFs, but the Generic horizontal was significantly lower
than Generic.
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Figure 5. Subjective scores from the 6-DoF VR experiment. Panels (a–d) display results from the
localization scenes, panels (e,f) timbre scenes, and panels (g,h) overall quality scenes. The error bars
denote the bootstrapped 95% confidence intervals of the mean and the letters denote the significant
differences (p ≤ 0.05) between conditions calculated by pairwise permutation tests. Conditions with
the same letter are not significantly different from each other.

6. Discussion
6.1. Objective Deviations

From the analysis in Section 2, the generic HRTFs were found statistically different
from either of the individual sets based on the auditory model predictions, which supports
our first hypothesis. However, the measured and modeled HRTF sets were found to be
objectively significantly different also from each other. If the spectral cues in measured
and modeled HRTF sets were similar, we would assume the elevation error predictions,
in Figure 2, for the measured template and modeled target HRTF case to be close to the
matching template and target errors, as shown in [34] for the own versus other HRTF
cases. This, however, is not the case; the local elevation error and quadrant errors for this
mixed prediction are closer to the cases with generic HRTFs. Similarly, the ITD and ILD
analysis in Figure 1 showed significant differences between all three sets. Therefore, we
reject our second hypothesis about the similarity of these sets. Recent work has found
corresponding results regarding deviations between simulated and measured HRTFs,
where significant differences were found in perceived coloration and localization between
the sets [39]. There, Brinkmann et al. [39] suspected the absorbing effect of hair and clothing,
missing from the modeled HRTFs, to at least partially explain the differences. However,
the absorbing effect does not explain the relatively large deviation found in ITD values at
lateral positions in our analysis. Here, the anthropometric measurement process may be a
source of error.

6.2. Static Localization

In Experiment I, no clear improvement was found in static localization accuracy
when using individual HRTFs. Our third hypothesis receives partial support from the
non-significant (p = 0.083), but moderate effect size, of reduced quadrant errors percentage
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with individual HRTFs (measured 19%, modeled 18%) compared to the generic HRTFs
(22%). In previous literature, using static localization tasks, Middlebrooks [4] showed a
reduction in quadrant errors from 21% to 8% when switching from generic to individual
HRTFs, Wightman and Kistler [40] a reduction from 11% to 6% when switching from
individual HRTFs to free field, and finally Wenzel et al. [2], moving from generic HRTFs
to free field conditions, a change from 31% to 19% of front-back confusion percentage.
However, some studies show no effect in quadrant errors rate between individual and
generic HRTFs, for example, Begault et al. [8] 59% and Bronkhorst [3] 28% for both HRTF
types. There, especially the level of participant training in localization tasks has been
suspected to mask the differences in HRTF cues. Considering a commercial scenario, most
users are likely to be untrained, non-expert listeners, which might further minimize the
localization benefits of individual HRTFs. Although not showing a significant reduction in
quadrant errors percentage, our results appear to be in line with what may be expected to be
the range of quadrant errors in static localization tasks using individual or generic HRTFs.

After cleaning the data from quadrant errors, the azimuth error angles should be
approximately the same between HRTFs and free-field listening based on previous re-
search [2,3,40]. For headphone localization tasks using either generic or individual HRTFs,
the values found in previous research range from 15◦ to 22◦ [4,8]. These values may be con-
trasted with free field localization results, which yielded azimuth errors of 11◦ on average
in [4]. The results for average local azimuth errors in our static localization experiment
varied between 17◦ and 21◦ depending on the HRTF set, which is in line with previous
results. Similar to previous work, we found no statistically significant difference between
the HRTF sets in the average azimuth error.

However, previous studies on static localization comparing individual and generic
HRTFs have found significant differences in elevation localization accuracy in favor of
the individual HRTFs [3,4], but also a lack of an effect is reported [8], where an average
elevation error value of 18◦ was found for both individual and generic HRTFs. In our
static localization experiment, no significant reduction in unsigned elevation errors was
observed when switching from generic HRTFs to either of the individual sets, which is in
contrast with the majority of previous results. The values we found for average unsigned
elevation errors ranged from 21◦ to 26◦ for the different HRTF sets. Some exemplary
elevation error values found in the literature for static localization are 10◦ or 21◦ in the
free field [4,9], 11◦, 29◦, or 37◦ using individual HRTFs [4,9,41], and 42◦ using generic
HRTFs [4]. Comparing absolute localization accuracy results between studies is challenging
due to different stimulus signals, target locations, pointing methods, visual settings, and
participant training. Despite the lack of reduction in relative unsigned elevation errors
between the HRTF sets, the values found in our study are in line with the previously
found error values and more closely match the results found in free field or individual
HRTF listening. One potential reason for the lack of significant results here could be an
adaptation to the generic HRTFs since the static localization experiment was conducted
after the dynamic 6-DoF VR experiment, although there was a lengthy gap between the
experiments (12 months).

6.3. Dynamic Results

The lack of significant differences between the individual and generic HRTFs in
dynamic localization accuracy and overall audio quality in the 6-DoF VR experiment
supports our fourth hypothesis regarding the similarity of the HRTFs in this setting. This
finding is corroborated by previous research in dynamic localization, where there are often
no differences found between individual and generic HRTFs [5,8].

However, a few recent studies also show the contrary. Ben-Hur et al. [12] utilized a
constricted movement range where head rotations were allowed, but the sound playback
would stop outside of the range. The audio targets were placed beyond the allowed
movement range so that dynamic cues could be incorporated in the localization process,
but the localization accuracy could be tested for source directions other than only in front.
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Ben-Hur et al. [12] found a significant localization improvement with individual HRTFs
over generic HRTFs, which is in contrast to the findings of our study. Their experimental
setup did not provide visual cues or motor cues beyond the limited movement range,
possibly explaining part of the differences.

Another study using audio-visual VR showed that individual HRTFs were preferred
in localizability and realism over a generic HRTF set when a target object was a drone flying
overhead along the sagittal plane in a pre-programmed animation [13]. This finding is in
contrast to our dynamic experiment results. One reason for the contrasting results could
be the dynamic audio object and seated participant employed by Jenny and Reuter [13]
in contrast to emphasizing the movement of the listener. A dynamically moving audio-
visual object has been found to reduce listener movement in 6-DoF VR audio quality
evaluations [42], which might lessen the adaptation to generic HRTF cues, but this assertion
will require further studies.

The lack of perceptual differences in dynamic localization accuracy is surprising, keep-
ing in mind the different number of measurement points in the individual sets (Q = 4608)
compared to the generic set (Q = 1550). The difference stems from the elevation resolution
since the azimuth resolution was the same for all sets (5◦). In the localization scene with the
audio object in the scene at 1.5 m height, even the Generic Horizontal condition with Q = 72
measurement points could not be statistically differentiated from the Generic set or the
Modeled set, further highlighting the strength of visual influence on auditory localization.
On another note, in dynamic localization without visual cues, a sparse HRTF set with just
Q = 36 measurement points covering the whole sphere combined with linear interpolation
for intermediate locations was shown to yield comparable localization accuracy with a
high-resolution HRTF set with Q = 612 [12]. Our experiments did not employ an interpola-
tion strategy, which might reduce possible differences between the HRTF sets with different
numbers of measurement points. Using the 100-point localization accuracy scale with
intermediate quality labels, the individual and spherical generic HRTF sets were evaluated
in the good (60–80 points) and excellent (80–100 points) localizability range. Although the
HRTF sets are to some extent affecting each others’ relative scores in the absence of an
auditory reference, it may be assumed that the visual and motor cues provided sufficient
reference conditions for an absolute judgment of the localization accuracy for the experi-
enced listeners in our experiments. This result adds confidence that the sound delivery
chain comprising the diffuse-field equalization of the HRTFs and headphones, can convey
a convincing spatial impression.

The lowest static and dynamic localization errors for virtual sounds in recent studies
have resulted from experiments conducted with floating headphones, where in-ear head-
phones are mounted in front of the open ear canal entrance and individual headphone
calibration is performed at the beginning of each experiment [9,12], using a procedure
originally described in [43]. This procedure is different from the diffuse-field calibration
performed in the present experiments and suggested in the previous literature [4,30].
Although yielding accurate localization results in the absence of visuals, the individual
calibration procedure is laborious and unfeasible with current headphone technology for
the general public. The lack of differences between generic and individual HRTFs in this
study in a 6-DoF VR context add evidence to the cross-modal integration and adaptation
effects on sound localization, possibly circumventing the need for high fidelity individual
spatial cues delivery.

The preference in timbre in favor of the generic set is in agreement with previous
research [16], where the effect of higher quality microphones in the generic binaural head
was suspected to be one reason for the higher perceived timbre fidelity. In the study at hand,
defining the No HRTF condition as the timbre reference may cause potential confusion in
the participants since any of the HRTF conditions is spatially different from the reference.
Moreover, the HRTFs cause timbre coloration by definition, making the comparison to a
non-filtered stimulus unfair. It might be argued that the stronger localization cues the HRTF
can convey, the more different the timbre will be from a non-spatial stimulus. In informal
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discussions with the participants, all of them had understood the goal of comparing the non-
spatial timbre with a spatialized version, requiring a certain degree of mental simulation
of how a real sound source should sound like if placed in front of the listener. The timbre
results should only be viewed together with the localization and overall quality results to
attain an accurate picture of the quality of the HRTF sets.

The overall quality results support our findings in localization and timbre: the in-
dividual and generic HRTF sets are perceived to be highly similar in quality. Here, the
participants were allowed to focus on any aspect of the auditory experience while keeping
in mind the boundary conditions set by the visuals and motor actions. The scenes were
also more complicated than the previously presented scenes in this experiment, both in
the number of audio objects and their content. Still, it may be argued that the employed
scenes were far from a scene that might be experienced in the real world. In a real scene
or a more realistic virtual scene, there would most likely be multiple competing audio
objects active simultaneously and blending into a holistic perception of a soundscape. Then,
given a visual scene to match the soundscape, the contribution of any individual audio
object’s auditory localizability to the overall experience would most likely be small. The
experiments in this study were conducted in anechoic conditions to highlight the impact
of HRTF fidelity on localizability and overall audio quality, representing the worst-case
scenario for virtual audio. Based on previous literature, we may assume that adding
early reflections and reverberation would further reduce the prominence of differences
between individual and generic HRTF sets since these cues affect the spatial impression
and externalization [8,44]. Furthermore, more realistic acoustic conditions would ease
the integration of visual and auditory environments by reducing the room divergence
effect [45], potentially reinforcing the adaptation to generic localization cues.

In summary, our results showed significant objective differences between three HRTF
sets, but minimal perceptual differences in dynamic 6-DoF VR scenes. In future, instead of
focusing on individualizing the HRTFs, we see potential in systematically adapting the
user to listen with generic HRTFs and to listen to spatial audio in general. Recent evidence
shows using audio-visual-motor cross-modal training to further improve the adaptation
effectiveness compared to audio-visual training [26]. Such a scenario is applicable in virtual
reality, where the hands are tracked in addition to the head.

7. Conclusions

This study compared measured and modeled individual HRTF sets with a generic
HRTF set and found significant objective differences based on auditory model predictions
between all three sets. A static localization experiment showed minor differences in
favor of the individual HRTFs over the generic HRTFs in quadrant errors percentage,
but a localization and overall quality experiment in 6-DoF audio-visual VR revealed no
difference between the HRTF sets. The experimental results suggest there is no need to
employ individual HRTFs when applied in a multimodal and dynamic environment.
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