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Featured Application: The outcomes of this work can be applied to B2B discrete demand forecast-
ing in the automotive industry and probably generalized to other demand forecasting domains.

Abstract: Demand forecasting is a crucial component of demand management, directly impacting
manufacturing companies’ planning, revenues, and actors through the supply chain. We evaluate
21 baseline, statistical, and machine learning algorithms to forecast smooth and erratic demand on a
real-world use case scenario. The products’ data were obtained from a European original equipment
manufacturer targeting the global automotive industry market. Our research shows that global
machine learning models achieve superior performance than local models. We show that forecast
errors from global models can be constrained by pooling product data based on the past demand
magnitude. We also propose a set of metrics and criteria for a comprehensive understanding of
demand forecasting models’ performance.

Keywords: demand forecasting; smart manufacturing; artificial intelligence; supply chain agility;
digital twin

1. Introduction

Supply (the “amount of something ready to be used” [1]) and demand (“the fact of customers
buying goods... and the amount that they buy” [1] at a given point in time) are two key elements
continually interacting in the market. The ability to accurately forecast future demand
enables manufacturers to make operational and strategic decisions on resources (allocation
and scheduling of raw material and tooling), workers (scheduling, training, promotions, or
hiring), manufactured products (market share increase and production diversification), and
logistics for deliveries [2]. Accurate demand forecasts reduce inefficiencies, such as high
stocks or stock shortages, which have a direct impact on the supply chain (e.g., reducing
the bullwhip effect [3,4]), and prevent a loss of reputation [5].

There is consensus that greater transparency between related parties helps to mitigate
the issues mentioned above [6,7]. Such transparency can be achieved through automation
and digitalization (e.g., implementing Electronic Data Interchange software), by sharing
manufacturing processes’ data, and making it timely available to internal stakeholders and
relevant external parties where appropriate [8]. In addition, the ability to apply intelligence
to multiple stages across the supply chain can improve its performance [9]. Such ability
and the capability to get up-to-date information regarding any aspect of the manufac-
turing plant enable the creation of up-to-date forecasts and provide valuable insights for
decision-making.

Multiple authors found that machine learning outperforms statistical methods for
demand forecasting [10,11]. Machine learning methods can be used to train a single model
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per target demand or a global model to address them all. When designing the models, it
is crucial to consider which data is potentially relevant to such forecasts. Multiple factors
may affect the product’s demand. First, it is necessary to understand if the products can be
considered inelastic (their demand is not sensitive to price fluctuations), complementary,
or be substituted for alternative products. Second, intrinsic product qualities, such as
being a perishable or luxury item, or their expected lifetime, may be relevant to demand.
Finally, the manufacturer must also consider the kind of market it operates on and the
customer expectations. When dealing with demand forecasting in the automotive industry,
most authors do not use only demand data but also incorporate data regarding exogenous
factors that influence demand.

Demand forecasting has direct consequences on decision-making. As such, forecasts
are expected to be accurate so that they can be relied upon. When training machine
learning models, more significant amounts of good quality data can help the model better
learn patterns and provide more accurate forecasts. This intuition is considered when
building global models. On the other side, while for local models, the forecast error is
constrained to past data of a single time series, in global models, the forecasting error is
influenced by patterns and values observed in other time series, which can lead to greater
errors as well. In this work, we explore a strategy to constrain such forecasting errors in
global models. Furthermore, providing a greater amount of data should be considered
regarding products’ demand and its context. To that end, we enrich the demand data with
data from complementary data sources, such as world Gross Domestic Product (GDP),
unemployment rates, and fuel prices.

This work compares 21 statistical and machine learning algorithms, building local
and global forecasting models. We propose two data pooling strategies to develop global
time series models. One of them successfully constrains the global time series models’
forecasting errors. We also propose a set of metrics and criteria for the evaluation of
demand forecasts for smooth and erratic demands [12]. The error bounding data pooling
strategy enables us to gain the benefits of training machine learning models on larger
amounts of data (increased forecast accuracy) while avoiding anomalous forecasts by
constraining the magnitude of maximum forecasting errors. The metrics and evaluation
criteria aim to characterize the given forecasts and provide better insight when deciding
on the best-performing model. We expect the outcomes of this work to provide valuable
insights for the development and assessment of demand forecasting models related to the
automotive industry, introducing forecasting models and evaluation strategies previously
not found in the scientific literature.

To evaluate the performance of our models, we consider the mean absolute scaled
error (MASE) [13] and the R2-adjusted (R2adj) metrics. We compute the uncertainty ranges
for each forecast and compare if differences between forecasts are statistically significant by
performing a Wilcoxon paired rank test [14]. Finally, we analyze the proportion of products
with forecasting errors below certain thresholds and the proportion of forecasts that result
in under-estimates.

The rest of this paper is structured as follows. Section 2 presents related work.
Section 3 describes the methodology we followed to gather and prepare data, create
features, and build and evaluate the demand forecasting models. Section 4 details the
experiments performed and the results obtained. Finally, Section 5 presents the conclusions
and an outline of future work.

2. Related Work

Products’ demand forecasting is a broad topic addressed by many authors in the
scientific literature. Different demand patterns require specific approaches to address their
characteristics. Multiple authors proposed demand classification schemas to understand
which techniques are appropriate for a particular demand type. For example, the work
in [15] focused on demand variance during lead times, while the work in [16] introduced
the concept of average demand interval (ADI), which was later widely adopted.
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ADI =
Total Periods

Total Demand Buckets
(1)

The work in [12] complemented this view of demand introducing the coefficient of
variation (CV). Both concepts allow us to divide demand types into quadrants, classifying
them as intermittent, lumpy, smooth, and erratic demands (see Figure 1). Smooth and
intermittent demand have little variability in demand quantities. Smooth demand has little
variability regarding demand intervals over time, while intermittent demand displays a
higher demand interval variability. Erratic and lumpy demands have higher variability in
demand quantities, which comprehends an additional forecasting model challenge. Erratic
demand has little variability regarding demand intervals over time. In lumpy ones, this
is an essential factor to be considered. Following demand types proposed in [12], in this
work, we focus on smooth and erratic demands.

CV =
Demand Standard Deviation

Demand Mean
(2)

Figure 1. Demand types classification by Syntetos et al. [12]. Quadrants correspond to (I) intermittent,
(II) lumpy, (III) smooth, and (IV) erratic demand types.

Planners, who regularly create demand forecasts, must understand the products they
sell, the market they target, the economic context, and customer expectations. Over time
they learn how buyers behave, the vast array of factors that can influence product demand,
and create their estimates. Each planner can weigh different factors and have distinct ways
to ponder them. Most of this information can be collected and fed to machine learning (ML)
models, which learn how demand behaves over time to provide a forecast. In the scientific
literature addressing demand forecasting in the automotive industry, most authors do not
use only demand data, but also incorporate data regarding exogenous factors that influence
demand, such as the effect of personal income on car ownership [17,18], or the effect of the
GDP [5,17,19,20], inflation rate [18,19], unemployment rate [5], population density[20], and
fuel prices [5,18,20–22] on vehicles demand.
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Demand distributions can also be considered as another source of information for
demand forecasting: research performed by many authors confirmed a relationship exists
between demand types and demand distributions [23–26].

A wide range of models was explored in the literature addressing car, and car compo-
nents demand forecasting. Ref. [5] developed a custom additive forecasting model with
seasonal, trend, and calendar components. The authors used a phase average to compute
the seasonal component, experimented with Multiple Linear Regression (MLR) and Sup-
port Vector Machine (SVM) for trend estimation, and used a Linear Regression to estimate
the number of working days within a single forecasting period (calendar component).
The models were built with car sales data from Germany, obtaining the best results when
estimating trends with an SVM model and providing forecasts quarterly. Models’ perfor-
mance was measured using Mean Absolute Error (MAE) and Mean Absolute Percentage
Error (MAPE) metrics. Ref. [18] compared three models: an adaptive network-based fuzzy
inference system (ANFIS), an autoregressive integrated moving average model (ARIMA),
and an artificial neural network (ANN). The forecasting models were built considering
new automobile monthly sales in Taiwan, obtaining the best results with the ANFIS model.
Ref. [21] developed an ANN model considering the inflation rate, pricing changes in crude
oil, and past sales. They trained and evaluated the model on data from the Maruti Suzuki
Ltd. company from India, measuring the models’ performance with the Mean Squared
Error (MSE) metric. Ref. [27] compared three models: ANFIS, ANN, and a Linear Re-
gression. They are trained on car sales data from the Maruti car Industry in India and
compared with the root mean squared error (RMSE) metric. The authors report that the
best performance was obtained with the ANFIS model. Ref. [28] compared the ARIMA
and the Holt–Winters models using demand data regarding remanufactured alternators
and starters manufactured by an independent auto parts remanufacturer. They measured
performance using the MAPE and average cumulative absolute percentage errors (CAPE)
metrics, obtaining the best results for the Holt–Winters models. Ref. [29] developed three
models (ANN, Linear Regression, and Exponential Regression) based on data from the
Kia and Hyundai corporations in the US and Canada. Results were measured with the
MSE metric, obtaining the best one with the ANN model. Ref. [19] analyzed the usage of
genetic algorithms to tune the parameters from ANFIS models built with data from the
Saipa group, a leading automobile manufacturer from Iran. Measuring RMSE and R2, they
achieved the best results with ANFIS models tuned with genetic algorithms compared to
ANFIS and ANN models without any tuning. Ref. [30] compared custom deep learning
models trained on real-world products’ data provided by a worldwide automotive original
equipment manufacturer (OEM). Ref. [31] developed an long short-term memory (LSTM)
model based on car parts sales data in Norway and compared it against Simple Exponential
Smoothing, Croston, Syntetos-Boylan Approximation (SBA), Teunter-Syntetos-Babai, and
Modified SBA. Best results were obtained with the LSTM model when comparing models’
mean error (ME) and MSE. Ref. [22] developed tree models (autoregressive moving aver-
age (ARMA), Vector Autoregression (VAR) model, and the Vector Error Correction Model
(VECM)) to forecast automobile sales in China. The models were compared based on their
performance measured with RMSE and MAPE metrics, finding the best results with the
VECM model. The VECM model was also applied by [20], when forecasting cars demand
for the state of Sarawak in Malaysia. Finally, Ref. [32] compared forecasts obtained from
different moving average (MA) algorithms (simple MA, weighted MA, and exponential
MA) when applied to production and sales data from the Gabungan Industri Kendaraan
Bermotor Indonesia. Considering the Mean Absolute Deviation, the best forecasts were
obtained with the Exponential Moving Average.

Additional insights regarding demand forecasting can be found in research related
to time series forecasting in other domains. Refs. [33,34] described the importance of
time series preprocessing regarding trend and seasonality, though [35,36] found the ANN
models could learn seasonality. The use of local and global forecasting models for time
series forecasting was researched in detail by [35]. Local forecasting models model each
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time series individually as separate regression problems. In contrast, global forecasting
models assume there is enough similarity across the time series to build a single model
to forecast them all. Researchers explored the use of global models either clustering time
series [36,37], or creating a single model for time series that cannot be considered related to
each other [38]. They achieved good performance in both cases.

3. Methodology

To address the demand forecasting problem, we followed a hybrid of the agile and
cross-industry standard process for data mining (CRISP-DM) methodologies [39]. From
the CRISP-DM methodology, we took the proposed steps: focus first on understanding the
business and the available data, later tackle the data preparation and modeling, and, finally,
evaluate the results. We did not follow these steps sequentially, but rather moved several
times through them forward and backward, based on our understanding and feedback
from end users, as is done in agile methodologies. We describe the work performed in each
phase in the following subsections.

3.1. Business Understanding

The automotive industry accounts for one of the largest economies in the world, by
revenue [40]. It is also considered a strong employment multiplier, a characteristic that
is expected to grow stronger with the incorporation of complex digital technologies and
the fusion with the digital industry [41]. Environmental concerns have prompted multiple
policies and agreements, which foster the development of more environment friendly
vehicles and rethinking of current mobility paradigms [42–44]. Nevertheless, global vehicle
sales and automotive revenue are expected to continue to grow in the future [45,46].

Demand forecasting is a critical component to supply chain management as its out-
comes directly affect the supply chain and manufacturing plant organization. In our
specific case, demand forecasts for the automotive industry engine components worldwide
were required on a monthly level, six weeks in advance. In Section 2, we highlighted
related work, data, and techniques used by authors in the automotive industry. On top
of data sources suggested in the literature for deriving machine learning features (past
demand data, GDP, unemployment rates, and oil price), we incorporated three additional
data sources based on experts’ experience: Purchasing Managers’ Index (PMI), copper
prices, and sales plans.

PMI is a diffusion index obtained from monthly surveys sent to purchasing managers
from multiple manufacturing companies. It summarizes expectations regarding whether
the market will expand, contract, or stay the same and how strong the growth or contraction
will be.

Prices of the products we forecast are tied to copper price variations used to manufac-
ture them. Therefore, we consider the price of this metal and create derivative features to
capture how it influences the products’ price and how it may influence it in the future.

The strategic sales department creates sales plans on a yearly and quarterly basis.
Experts consider projected sales to be a good proxy of future demand as they inform buyers’
purchase intentions. We found research that backs their claim (see, e.g., in [47]), showing
that purchase intentions contribute to the forecast’s accuracy. The research done in [48]
shows that purchase intentions are good predictors of future demand for durable products
and that this accuracy is higher for short time horizons. Research also shows that the
purchase intention bias can be adjusted with past sales data.

Much research was performed on the effect of aggregation on time series [34,49–51],
showing that a higher aggregation improves forecast results. Though research shows
optimal demand aggregation levels exist [52], we considered forecasts at a monthly level to
reflect business requirements specific to our use case.

To understand demand forecasting models’ desired behavior and performance, we
consulted industry experts. They agreed that one-third of demand forecasts produced by
planners have up to 30% error, and up to 20% forecasts may have more than 90% error.
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They also pointed out that 40% of all forecasts result in under-estimates. When issuing
a forecast, it is more desirable to have over-estimates than under-estimates. We consider
these facts to assess the forecast results.

We address demand analysis in detail in Section 3.2.

3.2. Data Understanding

We make use of several data sources when forming features for machine learning,
described in Table 1. We distinguish between internal data sources (non publicly available
data regarding a manufacturing company provided by that same company) and external
data sources used for the data enrichment process.

Table 1. Data sources. In the first and second columns, we indicate the kind of data we retrieve and its source. The third
column provides information on how frequently new data is available. In contrast, the last column describes the aggregation
level at which the data is published. Periodicity and aggregation levels can be at a yearly, quarterly, monthly, or daily level
and are denoted by “Y”, “Q”, “M”, or “D”, respectively. The London Metal Exchange published copper prices for weekdays.

Data Source Periodicity Aggregation Level

History of deliveries Internal D D

Sales Plan Internal Y,Q M

Gross Domestic Product (GDP) World Bank Y Y

Unemployment rate World Bank Y Y

Crude Oil price World Bank M M

Purchasing Managers’ Index (PMI) Institute of Supply Chain Management M M

Copper price London Metal Exchange D D

Car sales International Organization of Y Y

Motor Vehicle Manufacturers

When performing preliminary data analysis over the seven years of data, we found
that GDP, crude oil prices, PMI values, and demand (see Figure 2) show a different pattern
before and after the year 4 of our dataset. When searching for possible root causes, we
observed that in year 4 some significant economic and political events took place affecting
the economy worldwide. Among them, we found a stock market crash of a relevant
country, a decrease in crude oil production, and several political events that affected the
market prospects.

We consider demand quantity as the executed orders of a given product leaving the
manufacturing plant on a specific date. Even though demand data is available daily, we
aggregate them monthly, satisfying business requirements and providing smoother curves
and ease of forecasting. We also consider that months have different working days (due to
weekdays and holidays). Thus, we computed the average demand per working day for
each month. Future demand can be estimated using the average demand per working day,
multiplying by the number of working days in the target month.

Based on the demand classification in [12], we analyzed how many products corre-
spond to erratic and smooth demands. We create features to capture this behavior. We
present the products demand segmentation in Table 2. From the works in [23,24,26,53], we
understand that demands of a given type follow a certain distribution. Thus, most manu-
facturing companies’ products may have a slightly different demand behavior but share
enough characteristics that would reflect common patterns. We observed that demand
values for each product follow a geometric distribution.
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Figure 2. Median values for (a) crude oil price, (b) GDP, (c) unemployment rate worldwide, (d) PMI, (e) copper price (last
three months average), and (f) demand.

Table 2. Demand segmentations, by demand type as per [12], and by demand magnitude, considering demanded quantities
per month.

By Demand Type By Demand Magnitude

Years Smooth Erratic 10 100 1 K 10 K 100 K

All years 13 43 13 2 5 26 10

Last 3 years 19 37 10 1 4 28 13

To discover potential patterns, we made use of different visualizations.
Demand seasonality was assessed with correlograms (see Figure 3), which show

what lags in time most frequently display a statistically significant correlation (with a
p-value = 0.05). Considering all data available, we found the strongest correlations for
products at three, four, five, eight, and eleven months before the target month. However,
we observed a different pattern in the last three years of data: the strongest correlations
occurred at eight, ten, and eleven months before the target. Therefore, we choose only
those statistically significant when analyzing correlation values, considering a confidence
interval of 95%.

Plotting products’ monthly demand for every year, as shown in Figure 4, we found
that most products were likely to behave similarly over the years for a given month.

When assessing demand data sparsity, we analyzed how many non-zero demand data
points we have for each product and the demand magnitudes we observe in each case. We
present the data in Table 2. Higher aggregation levels regarding the time dimension allow
reducing variability in time. However, aggregate data at a higher than monthly level are
not applicable in our case.

3.3. Data Preparation

The first step we followed for data preparation was to remove records that would
fall into the black period for any given point in time and thus avoid provide our models
any indication about the future (except for the target we aim to predict). In our case, we
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consider a forecasting horizon of six weeks until the beginning of the target month, as
depicted in Figure 5.

Figure 3. Sample demand correlograms, indicating seasonality patterns. The correlogram in panel (a) is computed over the
seven years of data, while correlogram in (b) is computed over last three years.
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Figure 4. Monthly demand over the years of selected products. We compare the last three years of data.

Figure 5. Relevant points in time we considered for forecasting purposes. There is a six-week
slot between the moment we issue the forecast and the month we predict. The day of the month
considered issuing the prediction is fixed.

For sales plans, we performed data fusion, merging annual and quarterly plans into a
single one. In each case, we considered black periods, dates on which each plan becomes
available, and the granularity level at which those estimates are provided.

PMI values are informed by the Institute of Supply Chain Management at the begin-
ning of each month, based on the previous month’s survey results. For crude oil prices, we
considered the ones provided by the World Bank on a monthly level. We considered the
same source for worldwide unemployment rates and GDP values, published yearly and
available from March onwards. Every year in early March, the International Organization
of Motor Vehicle Manufacturers publishes statistics regarding yearly worldwide car sales,
which we used as well. Statistics regarding vehicle production worldwide are incomplete,
and thus we did not consider them in this research. For copper prices, we took the London
Metal Exchange value for each weekday of the year. We then computed the average price
over the last three months. Finally, we computed features based on price adjustments
applied to final products based on copper price fluctuations.

All sources of data are merged into a single dataset and aggregated at a product and
monthly level.
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3.3.1. Feature Creation

We can characterize demand data as a time series per product, each of which may
present some level, trend, and seasonality. Therefore, we require a proper assessment
of these aspects to create good statistical and ML models. While statistical models use
only data regarding past demand to predict the future, ML models can leverage a more
extensive set of features. These features provide insights into different factors affecting
product demand and are taken into account to make predictions. We created a total of
708 features, some of which we describe below.

We computed rolling summary statistics such as average, maximum, and minimum
demand over the last three months to address the time series level. In addition, we
computed the same features for a weighted average and minimum and maximum values
regarding the target month’s past demand.

Trends help us understand demand growth or contraction and must be considered in
forecasting models. However, different approaches may be helpful for statistical and ML
models. The statistical models assume that the forecasted time series is stationary. To fulfill
this assumption, we applied first-level differencing, which is suitable to address stochastic
trends. For ML models, we created features to describe trends and capture monthly or
interannual growth or contraction of GDP, unemployment rates, car sales, crude oil, copper
prices, and demand. We also created features such as relations between observed demand
and sales plans to capture common distortions that may take place on sales plans. Finally,
we created derivative features that indicate growth or contraction for given months and
more extended periods and detect and tag time series peaks from trend data.

We assessed seasonality using correlograms (see Figure 3). In addition, we incorpo-
rated demand at the lag values described before as proxies of potential demand.

We created naïve features to capture time characteristics to represent the month, a
quarter, and workdays for given months. We used information regarding weekdays,
national and collective holidays to compute the average demand per workday.

Values such as lagged demands, average, maximum, or minimum value of the last n
observed months, and values from sales plans for target month, the weighted average of
past demands for target month, and given product could act as reasonable approximations
of demand values. Average demand per workday can be used to project expected demand
on the target month, multiplying it by the number of workdays in the manufacturing
plants. These demand approximations can be further adjusted using trend information.

We created two features to signal demand event occurrence: one based on product
data sales plan, and the second one considering values from a probability density function
on lagged demand values.

When building a single model for multiple products, it can be helpful to have some
features convey information regarding demand similarity. Among others, we provide one-
hot encoded features indicating demand-type as described in [12], considering demand
behavior ever since we have data about the product and the last twelve and six months of
the point in time we consider. To identify a similar context in which demand occurs, we
binned GDP, unemployment rate, crude oil prices, car sales, and demand data into four
bins of equal length for each case. Such features may also help identify specific cases, such
as year 4, when context differs from most observed history.

3.3.2. Feature Selection

Feature selection reduces the number of features used to build a model, producing a
succinct one that is quick to train, analyze, and understand.

We performed feature selection by combining the manual addition of common sense
features with those suggested by a Gradient Boosted Regression Trees (GBRT) model,
which is not sensitive to data distribution and allows us to rank features based on how
much they reduce variance concerning target values. We only use the data that is later used
to train the models and ensure that the test data remains unseen. We performed feature
selection to extract the most relevant features in all experiments, considering all products
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rather than for each product separately. In every case, we selected K features, obtaining K
from

√
N, where N is the number of instances in the training subset, as suggested in [54],

and empirically verified these features within our setting. Some of the best features are
presented in Table 3.

Table 3. Top 15 features selected by the GBRT model considering the last three years of data. We did not remove correlated
features in this case.

Feature Brief Description

wdp3m
Estimate of target demand based on average demand per working day on
third month before predicted month, and amount of working days on target month.

sp · demandpastwavg
sppastwavg

Planned sales for target month adjusted with ratio of weighted averages of
past demand and past planned sales for given month.

demandlag4m · UE3m
UE15m

Lagged demand (4 months before target month), adjusted by the ratio of unemployment
rates three, and fifteen months before the month we aim to predict.

splag12m Planned sales for last year, same month we aim to predict.

sp · UE3m
UE15m

Planned sales, adjusted by the ratio of unemployment rates three and fifteen
months before the month we aim to predict.

sp Planned sales for target month

demandlag3m · GDP3m
GDP15m

Lagged demand (3 months before target month), adjusted by the ratio of GDP
three and fifteen months before the month we aim to predict.

sp · GDP3m
GDP15m

Planned sales for target month, adjusted by the ratio of GDP three and fifteen months
before the month we aim to predict.

demandlag3m Lagged demand (3 months before target month)

wdp12 ·
sp

sppastwavg

Estimate of target demand based on average demand per working day a year before
the predicted month and amount of working days on target month. Adjusted by the
the ratio between planned sales for target month and the weighted average of
planned sales for the same month over past years.

wdp8m
Estimate of target demand based on average demand per working day on eighth month
before predicted month and amount of working days on target month.

wdp5m · UE3m
UE15m

An estimate of target demand based on average demand per working day on the fifth month
before predicted month and amount of working days on target month. Adjusted by the
ratio of unemployment rates three and fifteen months
before the month we aim to predict.

wdp12m · PMI13m
PMI14m

An estimate of target demand based on average demand per working day a year before
predicted month and the amount of working days on target month. Adjusted by
the ratio between PMI values 13, and 14 months beforethe target month.

demandlag3mscaled

Lagged demand (3 months before target month) - scaled between 0–1,
considering products past demand values.

wdp3m · GDP3m
GDP15m

Estimate of target demand based on average demand per working day on third month
before predicted month, and amount of working days on target month. Adjusted
by the ratio of GDP three and fifteen months before the month we aim to predict.

3.4. Modeling
3.4.1. Feature Analysis and Prediction Techniques

ML algorithms may have different requirements regarding data preprocessing in order
to ensure the best learning conditions. We thus analyzed data distributions and identified
which steps were required in each case to satisfy those requirements.

For ML algorithms, we standardized (3) the features so that they would have zero
mean and unit variance Equation (3), except for the case of the Multiple Linear Perceptron
Regressor (MLPR), where we scaled the values of the features between zero and one
Equation (4). Standardization enhances the model’s numerical stability, makes some
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algorithms consider all features equally important, and shortens ML models’ training
times [55].

xscaled =
X− X

σ
(3)

xscaled =
X−min(X)

max(X)−min(X)
(4)

We took into account 21 forecasting techniques. We considered the naïve forecast (last
observed value as prediction) as the baseline method. We train twelve different batch ML
models: on top of MLR, support vector regressor (SVR) [56], and multilayer perceptron
regressor (MLPR) [57], which we found were used in automotive demand forecasting
literature, we also evaluate Ridge [58]; Lasso [59]; Elastic Net [60]; K-nearest-neighbor
regressor (KNNR) [61]; tree-based regressors (decision tree regressor (DTR), random forest
regressor (RFR), and GBRT); a voting ensemble created using the most promising and
diverse algorithms (KNNR, SVR, and RFR); as well as a stacked regression [62] considering
KNNR, SVR, and RidgeCV as underlying estimators; and a GBRT model as final regres-
sor. We also take into account four streaming ML algorithms: Adaptive Random Forest
Regressor (ARFR) [63], Hoeffding Tree Regressor (HTR) [64], and Hoeffding Adaptive Tree
Regressor (HATR) [65]. Additionally, we also consider forecasts obtained as the average
demand for the last three months (MA(3)) and the ones obtained from statistical forecasting
methods (exponential smoothing, random walk, ARIMA(1,1,0), and ARIMA(2,1,0)). We
did not create deep learning models since we consider that not enough data was available
to train them.

When training the models, we used MSE as the loss function where possible. We
choose MSE because it has the desired property of penalizing higher errors more, thus
reducing substantial discrepancies in predicted values.

3.5. Evaluation

From the literature review in Section 2 we observed that authors mostly used ME,
MSE, RMSE, CAPE, MAPE, and R2 metrics to measure the performance of the demand
forecasting models related to the automotive industry. While ME, MSE, and RMSE are
widely adopted, they all depend on the magnitude of the predicted and observed demands
and thus cannot be used to compare groups of products with a different demand magnitude.
This issue can be overcome with MAPE or CAPE metrics, though MAPE puts a heavier
penalty on negative errors, preferring low forecasts—an undesired property in demand
forecasting. Though R2 is magnitude agnostic, it has been noticed that its value can increase
when new features are added to the model [66].

To evaluate the performance of our models, we consider two metrics: MASE and
R2adj. MASE informs the ratio between the MAE of the forecast values against the MAE of
the naïve forecast, is magnitude agnostic, and not prone to distortions. R2adj, informs how
well predictions adjust to target values. In addition, it weights the number of features used
to make the prediction, preferring succinct models that use fewer features for the same
forecasting performance.

We compute an uncertainty range for each forecast, which illustrates possible bounds
in which future demand values may be found. We also perform the Wilcoxon paired rank
test [14] to assess if forecasts of a given model are significantly better than others.

Summary metrics may not be enough to understand the goodness of fit of a particular
model [67,68]. Therefore, based on experts’ opinions described in Section 3, and available
demand characterizations, we analyzed the proportion of products with forecasting errors
below certain thresholds (5%, 10%, 20%, and 30%), and the proportion of forecasts that
resulted in under-estimates.

Though some research highlighted the importance of measuring forecast utility related
to inventory performance (see, e.g., in [69,70]), this remains out of the scope of this work.
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4. Experiments and Results

In this section, we describe the experiments we conducted (summarized in Table 4) and
assess their results with metrics and criteria we described in Section 3.5. We summarize the
outcomes in Table 5, to understand if a particular model performs significantly better than
others. To evaluate the models, we used nested cross-validation [71], which is frequently
used to evaluate time series models. To ensure conditions on ML streaming models were
comparable to ML batch models, we implemented the nested cross-validation evaluation
strategy. By doing so, we ensured the streaming model did not see new events until the
required month was predicted. In order to test the models, we set apart the last six months
of data. We published the nested cross-validation implementation for streaming models
it in the following repository: https://github.com/JozefStefanInstitute/scikit-multiflow
(accessed date 21 July 2021).

Table 4. Description of experiments performed. Regarding the feature selection procedure, we consider two cases: (I) top
features ranked by a GBRT model and curated by a researcher, and (II) top features ranked by a GBRT model, removing
those with strong collinearity, curated by a researcher as well. N in the “Number of features" column refers to the number of
instances in a given dataset.

Years of Data Experiment Feature Selection Number of Features

All years available Experiment 1 I 6
Experiment 2 II 6

Last three years

Experiment 3 I 6
Experiment 4 II 6
Experiment 5 II 6
Experiment 6 II 6
Experiment 7 II

√
N

Experiment 8 II
√

N
Experiment 9 II

√
N

Experiment 10 II
√

N
Experiment 11 Only past demand 1

Table 5. Median of results obtained for each ML experiment. We abbreviate under-estimates as UE. In Experiments 9–10,
streaming models based on Hoeffding bound show poor performance, resulting in negative R2adj values. We highlight the
best results in bold.

Experiment R2adj MASE 5% Error 10% Error 20% error 30% Error UE 90%+ Error

Experiment 1 0.8584 1.1450 0.0670 0.1086 0.2039 0.3051 0.3854 0.4077
Experiment 2 0.8447 1.1450 0.0655 0.1101 0.1920 0.2887 0.4182 0.3928
Experiment 3 0.9067 0.9150 0.0655 0.1280 0.2351 0.3095 0.4256 0.3928
Experiment 4 0.8998 0.9750 0.0655 0.1176 0.2143 0.3051 0.4152 0.4018
Experiment 5 0.8757 0.3900 0.0536 0.1116 0.2173 0.3140 0.4762 0.3497
Experiment 6 0.8679 0.3350 0.0565 0.1012 0.1875 0.2768 0.4851 0.3601
Experiment 7 0.8903 0.3550 0.0521 0.1131 0.2247 0.3155 0.4851 0.3408
Experiment 8 0.8786 0.3100 0.0506 0.0938 0.1890 0.2813 0.4658 0.3497
Experiment 9 −0.1611 0.8100 0.0357 0.0714 0.1428 0.2143 0.7321 0.3601
Experiment 10 −1.5344 0.5300 0.0178 0.0536 0.1250 0.2143 0.7143 0.4613

In Experiments 1–4, we assessed how events in year 4 affected model learning and
if they significantly degraded forecasts. We also compared two different sets of features,
resulting from two different procedures to obtain them. We obtained the best performance
with local models trained over the last three years of data. Removing features with high
collinearity did not enhance the median of R2adj and MASE. Therefore, we consider
Experiment 3 performed best, having the best MASE and R2adj values. In contrast, the rest
of the evaluation criteria values were acceptable.

https://github.com/JozefStefanInstitute/scikit-multiflow
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Next, we analyzed if grouping products by specific criteria would enhance the quality
of the predictions. We trained these global models over the last three years of data,
considering insights obtained from Experiments 1–4. Following the ceteris paribus principle,
we considered the same features as for Experiment 3. We experimented with grouping
products based on the median magnitude of past demand (Experiment 5) and demand-type
(Experiment 6). We observed that even though the median of R2adj was lower, and the
under-estimates ratio higher, compared to results in previous experiments, the median
MASE values decreased by more than 40%. Models based on the median of past demand
had the best results in most aspects, including the proportion of forecasts with more than
90% error. Encouraged by these results, we conducted Experiments 7–8, preserving the
grouping criteria but adapting the number of features considered according to the amount
of data available in each sub-group. In Experiment 7, we grouped them based on the
magnitude of the median of past demand. In contrast, in Experiment 8, we grouped
products based on demand type. In both cases, we observed that R2adj values and under-
estimates ratios improved, and MASE values remained low. We consider the best results
were obtained in Experiment 7, which achieved the best values in all evaluation criteria,
except for MASE. We ranked models of these two experiments by R2adj, and took the top
three. We obtained SVR, voting, and stacking models for Experiment 7 and SVR, voting,
and RFR models for Experiment 8. The models from Experiment 8 exhibited lower MASE
in all cases, a better ratio of under-estimates, and a better proportion of forecasts with
an error ratio higher than 90%. Top 3 models from Experiment 8 remained competitive
regarding R2adj and proportion of forecasts with error ratio bounded to 30% or less error.

We assessed the statistical significance of both groups’ models in all the performance
aspects mentioned above, at a p-value = 0.05. The models had no significant difference in the
same group regarding R2adj and MASE. However, the difference was significant between
voting models in both groups for these two metrics. The difference was also significant
between the voting model from Experiment 7 and the RFR model from Experiment 8 for
the MASE metric. Considering the proportion of forecasts with errors lower than 30%,
we observed no differences between both groups’ models. However, differences between
SVR and voting models in Experiment 8 were significant. Finally, differences regarding
the number of under-estimates were statistically significant between all top three models
from Experiment 7 against SVR and RFR models of Experiment 8. For this particular
performance aspect, the stacking model from Experiment 7 only achieves significance
against the voting model from Experiment 8.

Having explored a wide range of batch ML models, we conducted Experiments 9–10
with streaming ML models, following the same conditions as Experiment 7–8, but creating
a global streaming model for each magnitude of the median of past demand demand-
type. This experiment aimed to understand the performance of streaming ML models
against the widely used ML batch models and confirm if they behaved the same regarding
error bounds as models in Experiments 7–8. We found that streaming models based on
Hoeffding inequality did not learn well. On the other side, the Adaptive Random Forest
Regressor displayed a better performance. While its R2adj was lower than the top 3 models
from Experiment 8, it achieved the best MASE in Experiment 10. It also had among best
proportion predictions with less than 5%, 10%, 20%, and 30% error or more than 90% error.
However, the proportion of under-estimates, a parameter of crucial importance in our use
case, hindered these performance results. ML streaming models had among the highest
proportions of under-estimates of all created forecasting models. The highest proportion of
under-estimates was obtained in ML streaming models based on the Hoeffding inequality,
reaching a median of underestimates above 70%.

In Experiments 5–10, we consistently observed global models created considering the
magnitude of the median of past demand outperformed those created based on demand-
type when considering the proportion of forecasts with an error higher to 90%. On the
other side, global models based on demand-type scored better on MASE. However, these
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differences did not prove statistically significant in most cases when comparing top-ranking
models of both groups.

Having explored different ML models, we then trained statistical models for each
product considering demand data available for the last three years (Experiment 11) and
contrasted results obtained with the top three models from Experiment 8 (see Table 6).
When preparing demand data for the statistical models, we applied differencing to remove
stochastic trends. We observed that the ML models outperformed the statistical ones in
almost every aspect. R2adj was consistently low for statistical models, and though their
MASE was better compared to the baseline models, ML models performed better. When
assessing the ratio of forecasts with less than 30% error, ML models displayed a better
performance. We observed the same when analyzing the under-estimates ratio. Even
though the random walk had a low under-estimates ratio, the rest of the metrics indicate
the random walk model provides poor forecasts. We consider the best overall perform-
ers are the SVR, RFR, and GBRT models, which achieved near-human performance in
almost every aspect considered in this research. Even though differences regarding R2adj,
MASE, and the ratio of forecasts with less than 30% error are not statistically significant be-
tween them in most cases, they display statistically significant differences when analyzing
under-estimates.

Table 6. Results we obtained for the top 3 performing models from Experiment 8 (ML batch models), best result for
experiments 9–10 (ML streaming models), and baseline and statistical models. We abbreviate under-estimates as UE.

Algorithm Type Algorithm R2adj MASE 5% Error 10% Error 20% Error 30% Error UE 90+% Error

ML batch
SVR 0.9212 0.2600 0.0774 0.1101 0.2321 0.3333 0.4077 0.3304

Voting 0.9059 0.2800 0.0625 0.0923 0.1786 0.2798 0.4792 0.3393

RFR 0.8953 0.2900 0.0417 0.1012 0.2173 0.3244 0.3423 0.3482

ML streaming ARFR (Experiment 9) 0.8728 0.3300 0.0744 0.1339 0.2500 0.3274 0.5387 0.3452

ARFR (Experiment 10) 0.8205 0.2200 0.0744 0.1280 0.2232 0.3274 0.5268 0.3423

Baseline MA(3) 0.8938 0.8800 0.1190 0.1667 0.2530 0.3482 0.3571 0.3065

Naïve 0.8519 1.0000 0.2024 0.2411 0.3423 0.4137 0.4137 0.3214

Statistical

ARIMA(2.1.0) 0.3846 0.4500 0.0476 0.0774 0.1429 0.1875 0.5536 0.5208

Exponential smoothing 0.3258 0.3600 0.0506 0.1161 0.1905 0.2738 0.5923 0.4434

ARIMA(1.1.0) 0.2840 0.5200 0.0387 0.0744 0.1012 0.1726 0.5119 0.6071

Random walk −0.6705 0.9000 0.0327 0.0387 0.0655 0.0923 0.3780 0.7678

5. Conclusions

This research compares 21 forecasting techniques (baseline, statistical, and ML algo-
rithms) to provide future demand estimates for an automotive OEM company located in
Europe. We use various internal and external data sources that describe the economic con-
text and provide insights on future demand. We considered multiple metrics and criteria to
assess forecasting models’ performance (R2adj, MASE, the ratio of forecasts with less than
30% error, and the ratio of forecasts with under-estimates)—all of them magnitude-agnostic.
These metrics and criteria allow us to characterize results to be comparable regardless of
the underlying data. We also assess the statistical significance of results, something we
missed in most related literature.

The obtained results show that grouping products according to their demand patterns
or past demand magnitude enhances the performance of ML models. We observed that the
best MASE performance was obtained on models created for a group of products with the
same demand type. Furthermore, when training global models based on the median of
past demand, models usually achieved a better R2adj and a better bound on high forecast
errors. However, these values were not always statistically significant.
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Our experimental evaluation indicates that the best performing models are SVR,
voting ensemble, and RFR trained over product data of the same demand type. The SVR
and RFR models achieved near-human performance for the ratio of forecasts under 30%
error, and the RFR model scored close to human performance regarding under-estimates.
However, none of the models achieved close to human performance on the proportion
of forecasts with a high error (more than 90%). How to efficiently detect and bound such
cases remains a subject of future research.

When comparing batch and streaming ML models’ performance, we observed that
ML batch models displayed a more robust performance. From the streaming algorithms,
the ARFR achieved competitive results, except for a high ratio of under-estimates. This
critical aspect must not be overlooked. Models based on the Hoeffding inequality did not
learn well and had poor performance, and further research is required to understand the
reasons hindering these models’ learning process.

Building a single demand forecasting model for multiple products not only drives
better performance, but has engineering implications: fewer models need to be trained
and deployed into production. The need for regular deployments can be further reduced
by using ML streaming models. This advantage gains importance when considering ever
shorter forecasting horizons as it avoids the overhead regular model re-trainings and
model deployments. We consider timely access to real data and the ability to regularly
update machine learning models as factors that enable digital twins’ creation. Such digital
twins not only provide accurate forecasts but allow estimating different what-if scenarios
of interest.

We envision at least two directions for future work. First, further research is required
to develop effective error bounding strategies for demand forecasts. We want to explore
the usage of ML anomaly detection methods to identify anomalous forecasts issued by
global models and develop strategies to address such anomalies. Second, research is
required to provide explanations that inform the context considered by the ML model
and models’ forecasted values and uncertainty. We understand that accurate forecasts are
a precondition to building users’ trust in a demand forecasting software. Nevertheless,
accurate forecasts alone are not enough. ML models explainability is required to help the
user understand the reasons behind a forecast, decide if it can be trusted, and gain more
profound domain knowledge.

Author Contributions: Conceptualization, J.M.R., B.K., M.Š., B.F. and D.M.; methodology, J.M.R.,
B.K., M.Š., B.F. and D.M.; software, J.M.R. and B.K.; validation, J.R., B.K., M.Š. and B.F.; formal
analysis, J.M.R., B.K., M.Š. and B.F.; investigation, J.M.R., M.Š. and B.F.; resources, J.M.R., B.K.,
M.Š. and B.F.; data curation, J.M.R., B.K., M.Š. and B.F.; writing—original draft preparation, J.M.R.;
writing—review and editing, J.M.R., M.Š., B.F. and D.M.; visualization, J.M.R.; supervision, B.F. and
D.M.; project administration, M.Š., B.F. and D.M.; funding acquisition, B.F. and D.M. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the Slovenian Research Agency and European Union’s
Horizon 2020 program project FACTLOG under grant agreement number H2020-869951.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ADI Average Demand Interval
ANFIS Adaptive Network-based Fuzzy Inference System
ANN Artificial Neural Network
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ARFR Adaptive Random Forest Regressor
ARIMA autoregressive integrated moving average model
ARMA Autoregressive Moving Average
CAPE Cumulative Absolute Percentage Errors
CRISP-DM CRoss-Industry Standard Process for Data Mining
CV Coefficient of Variation
DTR Decision Tree Regressor
GBTR Gradient Boosted Regression Trees
GDP Gross Domestic Product
HATR Hoeffding Adaptive Tree Regressor
HTR Hoeffding Tree Regressor
KNNR K-Nearest-Neighbor Regressor
MA Moving Average
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MASE Mean Absolute Scaled Error
ME Mean Error
ML Machine Learning
MLPR Multiple Linear Perceptron Regressor
MLR Multiple Linear Regression
MSE Mean Squared Error
OEM Original Equipment Manufacturer
PMI Purchasing Managers’ Index
R2 Coefficient of determination
R2adj Coefficient of determination - adjusted
RFR Random Forest Regressor
RMSE Root Mean Squared Error
SBA Syntetos–Boylan Approximation
SVM Support Vector Machine
SVR Support Vector Regressor
UE Under-estimates
VAR Vector Autoregression
VECM Vector Error Correction Model
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