
applied  
sciences

Article

Evaluation of Reinforcement and Deep Learning Algorithms in
Controlling Unmanned Aerial Vehicles

Yalew Zelalem Jembre 1, Yuniarto Wimbo Nugroho 1, Muhammad Toaha Raza Khan 2, Muhammad Attique 3,
Rajib Paul 4, Syed Hassan Ahmed Shah 5 and Beomjoon Kim 1,*

����������
�������

Citation: Jembre, Y.Z.; Nugroho,

Y.W.; Khan, M.T.R.; Attique, M.; Paul,

R.; Ahmed, S.H.S.; Kim, B. Evaluation

of Reinforcement and Deep Learning

Algorithms in Controlling Unmanned

Aerial Vehicles. Appl. Sci. 2021, 11,

7240. https://doi.org/10.3390/

app11167240

Academic Editor: Yosoon Choi

Received: 15 July 2021

Accepted: 3 August 2021

Published: 6 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electronic Engineering, Keimyung University, Daegu 42601, Korea; zizutg@kmu.ac.kr (Y.Z.J.);
wimboyt@kmu.ac.kr (Y.W.N.)

2 School of Computer Science & Engineering, Kyungpook National University, Daegu 41566, Korea;
toaha@knu.ac.kr

3 Department of Software, Sejong University, Seoul 05006, Korea; attique@sejong.ac.kr
4 Department of Software and Computer Engineering, Ajou University, Suwon 16499, Korea; rajib@ajou.ac.kr
5 JMA Wireless, Corona, CA 92881, USA; sh.ahmed@ieee.org
* Correspondence: bkim@kmu.ac.kr

Abstract: Unmanned Aerial Vehicles (UAVs) are abundantly becoming a part of society, which is
a trend that is expected to grow even further. The quadrotor is one of the drone technologies that
is applicable in many sectors and in both military and civilian activities, with some applications
requiring autonomous flight. However, stability, path planning, and control remain significant
challenges in autonomous quadrotor flights. Traditional control algorithms, such as proportional-
integral-derivative (PID), have deficiencies, especially in tuning. Recently, machine learning has
received great attention in flying UAVs to desired positions autonomously. In this work, we configure
the quadrotor to fly autonomously by using agents (the machine learning schemes being used to fly
the quadrotor autonomously) to learn about the virtual physical environment. The quadrotor will
fly from an initial to a desired position. When the agent brings the quadrotor closer to the desired
position, it is rewarded; otherwise, it is punished. Two reinforcement learning models, Q-learning
and SARSA, and a deep learning deep Q-network network are used as agents. The simulation is
conducted by integrating the robot operating system (ROS) and Gazebo, which allowed for the
implementation of the learning algorithms and the physical environment, respectively. The result
has shown that the Deep Q-network network with Adadelta optimizer is the best setting to fly the
quadrotor from the initial to desired position.

Keywords: reinforcement learning; UAV; quadrotor; flight control; intelligent control

1. Introduction

In recent times, drone or unmanned aerial vehicle (UAV) technology has advanced
significantly, and it can be applied not only in the military sector but also in civilian areas,
such as in search and rescue (SAR) and package shipment, due to its high mobility and large
overload maneuver [1]. Many researchers worldwide are now working to address issues
related to UAVs. Herein, we focus on the application, performance, and implementation of
machine learning algorithms for controlling UAVs. Even though there are several types of
UAVs, such as fixed wings, quadrotors, blimps, helicopters, and ducted fan [2], due to its
small size, low inertia, maneuverability, and cheap price, the quadrotor had become an
industry favorite [3]. There are several applications of the quadrotor in industries such as
film, agriculture, delivery, infrastructure inspection, etc. [3,4]. A quadrotor or quadcopter
(henceforth, the terms UAV, drone, quadcopter, and quadrotor are used interchangeably)
is a type of UAV with four rotors designed in a cross configuration with two pairs of
opposite rotors rotating in the clockwise direction, whereas the other rotor pair rotates
in a counter-clockwise direction to balance the torque [5]. Figure 1 shows the famous
arrangements of the rotors of a quadcopter for flight mode.
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Figure 1. Configuration of rotors in quadcopter.

Configuration “A” shows how the rotors of the drone work when rotors 1 and 3 rotate
in the clockwise direction, and rotors 2 and 4 rotate in the same counter-clockwise direction.
Configuration “B” depicts the drone in hovering mode. In this case, all rotors have the
same torques. Configuration “C” shows how the drone performs a yaw flight, where the
strength torques of rotors 1 and 3 exceed those of rotors 2 and 4, or the strength torques of
rotors 2 and 4 exceed those of rotors 1 and 3. Both scenarios are dependent on the direction
of the drone flight with reference to the Z-axis. Configuration “D” represents the pitch up
and pitch down. Here, one rotor has greater torque strength than the rest of the rotors. The
rotor that can produce greater torque strength depends on the movements, which provides
better flexibility.

Traditionally, a closed-loop proportional integral derivative (PID) controller is used to
fly the quadrotor from the initial to the desired position. The PID controller flies the UAV
by tuning values such as Kp, Ki, Kd. However, tuning these values is a challenging and
cumbersome task. In contrast, recent reinforcement learning-based controllers have shown
a more promising way than the conventional method to fly a quadrotor accurately [6,7].

In this paper, to study this phenomenon further, we integrated learning algorithms
with a simulation environment and tested their performance under different conditions, op-
timization, and reward functions. We use the robot operating system (ROS) framework [8],
together with Gazebo [9], for simulation, and OpenAI Gym to load the agents (machine
learning algorithms) [10]. The drones will be flown from the initial to the desired position
autonomously via one of the agents. The agent flying the quadrotor will take one step from
the initial to the desired position. Then, for the remaining distance, if the current distance
is closer than the previous, the agent will be rewarded; otherwise, it will be punished. This
process allows the agent to learn its physical environment.

Q-learning and State–action–reward–state–action (SARSA) reinforcement learning as
well as Deep Q-network (DQN) deep learning agents are selected as agents. Since the DQN
algorithm can be optimized to improve the performance, Adadelta [11], RMSProp [12],
Stochastic Gradient Descent (SGD) [13], and ADAM [14] optimizers are used in this work.
On the other hand, two reward functions are used to evaluate the actions taken by an agent,
Euclidean distance and mean square error (MSE) of distance. For agents, handling even the
simplest task is difficult. Hence, we choose to conduct our simulation using data-position
(X, Y, and Z) to specify initial and desired positions. Our work shows that autonomous
flight, without the involvement of other additional sensors such as light detection and
ranging (LiDAR) or vision, is possible, which saves the power of the UAV and reduces
the cost. In addition, we have shown that the learning process is highly dependent on the
optimizer and reward function, rather than the learning steps.

The rest of this paper is organized as follows: in Section 2, issues related to this work
are discussed. In Section 3, preliminary concepts are presented, while in Section 4, the
agents used in this work are explained. The simulation environment and performance
evaluation are in Sections 5 and 6, respectively. Finally, a conclusion to our work is given
in Section 7.
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2. Related Work

Although machine learning-based autonomous flights have been the main focus of
current researchers, conventional UAV control algorithms are still in play. In this section,
a literature review from both directions is presented. Thus far, the most widely used
algorithms for UAV control are traditional control concepts, which do not involve any type
of intelligence. Numerous techniques and algorithms can be used in UAV control systems.
Among them are the proportional integral derivative (PID), linear quadratic regulators
(LQR), sliding mode control (SMC), model predictive control (MPC), integrator backstep-
ping, adaptive control, robust control, optimal control, and feedback control [15]. PID is the
most widely used controller with a feedback mechanism and is an industry favorite [16].
The PID controller has achieved better performances for controlling pitch angles, etc. [17].
Generally, the PID controller has been successfully applied in the quadcopter, although
with several limitations.

Batikan et al. [18] proposed a technique with the application of a self-tuning fuzzy PID
in real-time trajectory tracking of UAVs. The work focused on stabilizing the altitude and
trajectory. Meanwhile, Eresen et al. [19] presented the vision for the detection of obstacles.
The work demonstrated flying autonomously in urban areas while avoiding obstacles.
Goodarzi et al. [20] proposed a full six degree of freedom dynamic model of a quadrotor.
The controller was developed to avoid singularities of the minimal altitude representation.
Lwin et al. [21] proposed a method that combines a Kalman filter for separating true signal
from noise and a PID controller to calculate the error. For the stability of the flight control
system, the UAV was adjusted by the PID parameters. Salih et al. [22] presented a new
method for autonomous flight control for a quadrotor with a model vertical take-off and
landing (VTOL). The work by Zang et al. [23] focused on controlling the UAV height
during drone operation. The algorithm in this work uses active disturbance rejection
control (ADRC) and Kalman filtering to process controlling the height as well as to enable
autonomous flight of the UAV. The authors of [24], Siti et al., use a hierarchical strategy
to improve the PID controller to dive the UAV in a predetermined trajectory using only
system orientation. First, a reference model (RM) is used to synthesize the PID in the inner
loop, and then genetic algorithm is applied to optimize the outer loop. In [25], Hermans et
al. proposed a solution to control the UAV in a geofencing application, which is a virtual
boundary of a specific geographical area. An explicit reference governor (ERG) that first
stabilizes the UAV and then uses the Lyapunov theory to control the UAV is presented in
this paper.

Nevertheless, the PID has several limitations, such as complicated and challenging
tuning. Furthermore, the PID or classic controller still lacks complete handling and solving
the control problem of an autonomous flight of the quadrotor. Due to the strides made
in artificial intelligence, specifically machine learning, researchers both in academia and
industry are now turning their attention to this matter to solve autonomous flight control
in UAVs. Supervised learning is one of the most used methods in attempting UAV control,
but the training dataset has been problematic in this regard. Hence, the focus has now been
shifted to reinforcement learning (RL), which is also the case in our work. Reinforcement
learning entails learning what to do and how the agent resolves some challenges by taking
actions in the environment such that the agent maximizes reward [26]. The reinforcement
learning algorithm can reduce learning times and increase stability [27]. Currently, deep
RL is a powerful approach for controlling complex systems and situations [28].

W Koch et al. [5] used reinforcement learning to improve the accuracy and preci-
sion of altitude control of UAVs to replace classic control algorithms, such as the PID.
Zhao et al. [29] presented their research on the use of RL to learn a path while avoiding
obstacles. At first, the Q-learning algorithm was used to allow UAVs to learn the envi-
ronment, and then the adaptive and random exploration (ARE) approach was used to
accomplish both task navigation and obstacle avoidance. Kim et al. [30,31] proposed a
path planning and obstacle avoiding strategy for UAVs through RL. The Q-learning and
deep double dueling deep Q-network (DD-DQN) [32] learning algorithms are used to
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navigate the simulation environment. On the other hand, Cheng et al. [33] presented a
method focused on enemy avoidance based on an RL, where a UAV is expected to avoid
another UAV coming its way. The authors have shown that the learned policy achieved a
higher possibility of reaching the goal compared with the random and fixed-rule policies.
Kahn et al. [34] argued that even RL can be unsafe for the robot during training. The aim
of the research was to develop an algorithm that takes uncertainty into consideration. On
the other hand, Hwangbo et al. [35] proposed a method to control the quadrotor actuators
via the RL technique. The drone was able to produce accurate responses, achieving high
stability even under poor conditions.

The impact of reinforcement learning on UAV control and path planning has been
demonstrated in several dimensions. However, more research output is expected to
further verify and solidify the usage of RL in UAV operation than that of conventional
PID techniques. Furthermore, researchers focus on the single machine learning technique
with a single reward function for improving and testing autonomous flight in UAVs. Our
goal is to demonstrate the difference between the widely used machine learning agents for
autonomous UAV flight under multiple reward conditions and optimization functions.

3. Preliminaries

Three popular toolkits have been used in our research, namely (i) ROS, (ii) Gazebo
simulator, and OpenAI Gym. First, ROS is used to determine the speed, direction, and
destination of the drone. The parameters are then used to produce actions that are sent to
the Gazebo simulator to visualize the movement of the drone. Following this, ROS uses the
reinforcement learning algorithms available in OpenAI Gym to determine the next action.
In this section, a brief introduction to these three toolkits is provided.

3.1. ROS

ROS is an open-source and flexible middleware framework for writing robot soft-
ware [8]. Despite including an operating system in its name, this toolkit is not one. It is
more similar to a motherboard where chips and other modules are mounted on, to create a
computer. The ROS is a framework that allows developers to collaborate on developing
software and firmware for robots. However, it provides services such as a hardware abstrac-
tion layer, low-level device control, sending a message in-process, and packet management,
which are characteristics of a typical operating system.

Enabling robots to complete a simple task, which could easily be handled by humans,
involves several components and complex systems. However, several components written
by different people can be assembled using ROS bottom-up architecture, so as to contribute
to the collaborative development of the robotic software.

3.2. Gazebo Simulator

Unlike typical software, which is limited to the virtual world, the software for robots
and UAVs takes action in the physical world. Hence, visualizing the steps taken and
the decisions made by the robots is part of the experiment. For this, we employed the
Gazebo Simulator, which is an open-source 3D robotics simulator, to see the simulation
and action [9].

In addition to being open-source, there are several advantages to using Gazebo. It
has a range of robots that are highly accurate, efficient, and have great visualization.
Furthermore, the integration with ROS is simple, and testing as well as training it with AI
algorithms in realistic scenarios is possible. A comparison of robotic simulation tools is
available in [36].

Drone model: In this work, a drone model, which has been developed by the Technical
University of Munich (TUM), is used, which represents most off-the-shelf quadrotors on
the market. This package is based on TU Darmstadt ROS PKG and the simulator Ardrone.
The simulator can simulate AR.Drone 1.0 and 2.0. This simulator can connect to sticks
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and other devices, and Figure 2 from [37] shows how a joystick or a mouse can be used to
control the drone in the simulator.

The TUM drone simulator has been forked by Shanghai Jiao Tong University for de-
velopment to test the SLAM algorithm with different sensors such as inertial measurement
unit (IMU), range finder, and laser range. This simulator will work on Ubuntu 16.04 and
18.4 and Gazebo 7.

ROS

OpenAI Gym

Gazebo

Figure 2. Simulation configuration.

3.3. OpenAI Gym

To develop and compare multiple reinforcement learning algorithms, we use the
Python-based gym toolkit [10]. All three learning agents used here are from this toolkit.
The goal of this work is to enhance productivity in the AI sector by providing an easy-to-set
and flexible environment.

4. Agents

In this section, we discuss three popular reinforcement learning algorithms, which are
to be used by the agent/learner, the quadrotor in our case. Whenever the agent chooses
the best action or policy, it will receive a reward or point. However, the agent will be left
with its current state and reward instead of using the information from the environment
for future feedback. Usually, to optimize its reward, the agent is forced to decide between
choosing a new action to enter a new state or an old action to be in a known state, which is
referred to as “exploration versus exploitation trade-off”. The agent then considers whether
the environment is known or unknown and takes the next action [38]. Table 1 summarizes
all three agents used in this study.

Table 1. Type of agent algorithm.

Algorithm Description Model Policy Action Space State Space Operator

Q-Learning State-action-reward-state Model-Free Off-Policy Discrete Discrete Q-Value
SARSA State-action-reward-state Model-Free On-Policy Discrete Discrete Q-Value
DQN State-action-reward-state Model-Free Off-Policy Discrete Continuous Q-Value

4.1. Q-Learning

Q-learning is a special case of a temporal difference (TD) learning process, where an
agent iteratively takes all actions in all states to obtain the optimal reward. In Q-learning,
the next action is taken such that the state will maximize the reward. The goal of this
learning process is to find the optimal estimation of the optimal state-action value function
Q* in the case of an unknown model [38]. The Q-learning algorithm samples a new state
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s’ and takes a new action a’, which are used to update the policy value according to the
following equation:

Q∗(s, a)← Q(s, a) + (1− a)[r(s, a) + γ
max
a′εA

Q,
(
s′, a′

)
(1)

The aim is to find the optimal policy Q*, which can be represented as follows:

π∗(s) = argmax Q∗(s, a) : a ∈ A (2)

4.2. SARSA

SARSA is another reinforcement learning algorithm used to train an agent in an
unknown environment. The name is derived from the quintuples s, a, r′, s′, a′ that are used
to update the Q function, which is given as follows [39]:

Q(s, a)← Q(s, a) + αt(s, a)
[
r′ + γ×Q

(
s′, a′

)
−Q(s, a)

]
(3)

SARSA not only depends on the reward to be obtained from the current state and
action, but it also takes the state and action it will be in.

4.3. DQN

The Deep Q network (DQN) is one of the popular algorithms in reinforcement learning,
also called deep reinforcement learning (DRL). As the name suggests, DQN is a combination
of Q-learning with the neural network (NN) and many-layered or deep NN specialization
for a spatial processing array of data [26]. This means that the DQN is a multi-layered
neural network for a given state ‘s’ that outputs a vector of actions value Q(s, a; θ), where
θ is the trainable weights of the network parameter. Since Q(s, a; θ) is approximately
Q(s, a) [40], the target function used in the DQN is written as:

Q(s, a)← r + γ
max

a′
Q
(
s′, a′

)
(4)

The DQN model was coded by using the Keras and Tensorflow backend framework.
We used three hidden layers. The layer of the parameters is shown in Table 2.

Table 2. Layer purpose.

Layer Output X Activation

Dense 1 None, 300 RELU
Dense 2 None, 300 RELU
Dense 3 None, 300 RELU

4.4. Optimizers

All the algorithms examined in this work are variants of first-order optimization.
However, it is impossible to pick the best one among them provided that the performance
depends on the problem environment and dataset.

4.4.1. SGD

One of the most usual methods is SGD, which is used to train a neural network. SGD
uses a small collection of data (mini-batch) in comparison to BGD, which uses the entire
set of data (batch) [13].

4.4.2. RMSProp

SGD requires many steps, which makes it slower in comparison. Interestingly, RM-
SProp targets resolving the diminishing learning rate of Adagrad. In RMSProp, the learning
is adjusted automatically by using a moving average of the squared gradient [12].
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4.4.3. Adadelta

Similarly, an extension of Adagrad is Adadelta, and it accumulates a fixed size past
gradient rather than all past squared gradients. At any given time t, the running average
depends only on the previous average and the current gradient [11].

4.4.4. ADAM

Instead of a single gradient, Adam adapts multiple gradients, along with an adaptive
learning rate according to the magnitude of the gradient [14].

4.5. Reward Computation

In this study, agents are rewarded based on the distance measures between the initial
and desired position. Two reward functions are used in our work. First, a simple Euclidean
distance is used as a reward function to compare the three agents. Then the agent that
showed a better performance is examined with a mean square error computed using
training and predicted distance data.

The Euclidean distance is the ordinary straight-line distance between two points in
Euclidean space [41]. In this case, we use three-dimensional Euclidean space as shown in
Equation (5):

di
(p,q) =

√(
qi

1 − pi
1
)2

+
(
qi

2 − pi
2
)2

+
(
qi

3 − pi
3
)2 (5)

where i ∈ {0, 1, 2, ..., N}, p is the position the UAV is at the ith step, q is the desired position,
and N is the number of steps taken from the initial to desired position. We assume that
at least one step is taken from the initial point towards the desired position. The reward
points are given in Table 3.

To compute the MSE [42] using Equation (6), we used the data obtained during a
training session that resulted in the fastest path from the initial to desired position. After
each step, the MSE is calculated and compared to the MSE computed from the previous
step to generate the reward. The MSE-based reward points are also shown in Table 3.

MSEi =
1
n

n

∑
i=1

(
di
(p,q) − di

(p,q)

)2
(6)

where di
(p,q) is the Euclidean distance at step i, whereas di

(p,q) is the distance after step i
during training for the fastest path. The agent uses the Euclidean function to shorten the
distance between the UAV and destination, whereas the MSE is used to find the fastest path.

Table 3. Rewards condition.

Condition Rewards

di
(p,q) = 0 +100, desired position

di−1
(p,q) − di

(p,q) > 0 +100, getting closer

di−1
(p,q) − di

(p,q) < 0 −100, moving away

di−1
(p,q) − di

(p,q) = 0 0, no movement
MSEi < MSEi−1 +100, shortens path
MSEi > MSEi−1 −100, elongate path
MSEi = MSEi−1 0, no movement
Current Altitude > Z position −100
Pitch Bad −100
Roll Bad −100

5. Environment

Here, the simulation environment is discussed. The first subsection entails the exper-
iment setup and general overview of the system, while the next subsection presents the
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building of the drone environment in the experiment, including an action command for the
drone, collection of the data sensor, and reward function.

5.1. Experimental Setup

For visualization, interface, and its highly dynamic physics engine, Gazebo is chosen.
The first step is to start it. Then the ROS is used to control the drone. Here, OpenAI Gym,
which provides the learning agents, is implemented inside the ROS to control the drone.
The drone simulator in Gazebo creates the environment and sends several data sensors to
give feedback to the agent, and the agent must send actions (Figure 3).

First, the drone is trained with a certain number of episodes. The training is expected
to move the drone from one location to a predetermined desired destination. Data from
the drone simulator contain the positions X, Y, and Z that will be sent to the ROS, and the
reinforcement learning algorithm was trained in controlling the drone to fly directly to the
desired position. The agent will send one of the ten commands (actions) in Table 4.

The final goal is to fly the drone autonomously. In the training process of the drone, rein-
forcement learning algorithms are used, which involves several parts, agents, and environments.

Drone Simulation Environment 
(Gazebo)

 Q-Learning  SARSA  DQN 

Agents

 s  r a

r'

 s' 

Figure 3. State, reward, agent, and environment interaction.

Table 4. Velocity commands.

Action Velocity Linear X Velocity Linear Y Velocity Linear Z Velocity Angular Z

0 = Forward = Speed Value - - 0.0
1 = Turn Left 0.05 - - = Speed Value
2 = Turn Right 0.05 - - = Speed Value
3 = Up 0.05 - - = − Speed Value
4 = Down - - = − Speed Value 0.0
5 = Backward = − Speed Value - - 0.0
6 = Fly To Left - = Speed Value - 0.0
7 = Fly To Right - = − Speed Value - 0.0

The first condition from the drone is on the floor, Initial Drone Position (IDP), where
the coordinated ground truth is X = 0.0, Y = 0.0, Z = 0.0, as shown in Figure 4. The goal
is then to move it to the Desired Drone Position (DDP), such as X = 9.0, Y = 0.0, Z = 1.0
(Figure 4).

The training starts with the agent sending the take-off command. The drone environ-
ment must take off with an altitude of 1 m from the floor and send a message to the agent,
“take-off success.” Then every 0.3 s, the agent sends action and receives a reward feed point
as feedback from the environment.

The training session is divided into episodes, each containing 100 steps to arrive from
the initial to the desired location. The agent accumulates each reward it receives per step



Appl. Sci. 2021, 11, 7240 9 of 14

and calculates the average reward at the end of the episode, which it then uses to learn
and adopt.

X

Y

Z

(0, 0, 0) - Initial Drone Position (IDP)

(9, 0, 1) - Desired Drone Position (DDP)

Figure 4. Drone movement from initial to the desired position.

5.2. Drone Environment

One of the main parts of reinforcement learning is a physical environment, and this
environment has been developed for the AR drone. Following the OpenAI decisions, the
environment only provides the abstraction, not the agent. This means that the environment
is independent of the agent, which resides in the ROS.

Directed by the OpenAI Gym rule, the environment must contain registration, steps,
and rewards. This will make sure that the interaction between the simulation and OpenAI
is smooth. The following tasks are executed to achieve this [10].

1. Registration: registers the training environment in the gym as an available one.
2. Init: in this stage, several parameters such as take-off and landing commands, as

well as training parameters such as the value of the speed, desired position, running
steps (new command sending time, 0.3 s), the maximum inclination of the drone, and
the maximum altitude of the drone, are set. Simulation stabilization is also done at
this stage.

3. Reset: this task allows one to reset simulation, pause/resume simulation, reset the
robot to initial conditions, and take observation of the state of the drone.

4. Step: for a given action selected by the reinforcement learning algorithm, the quadro-
tor performs corresponding movements after determining the velocity values as
shown in Table 4. The speed value in our simulation is 1 m/s.

5. Observe data: is a function block to obtain data from the drone sensor and also data
about position and IMU.

6. Process data: based on the data from the environment and IMU, a reward function
is used to compute the progress of the quadrotor to the desired position, such that
the quadrotor is given a reward or penalized. Then, the next action will be sent to the
drone. Roll, pitch, and altitude movements are also penalized or rewarded.

6. Evaluation

In this section, we first explain the parameters used for the simulation and follow with
the result obtained from the experiment.

Since our goal is to understand the behavior of the learning algorithms in flying the
drones autonomously, most of the ROS and Gazebo parameters are kept to default settings.
The three most influential parameters for our simulation are:

1. Learning Rate (α): when set to 0, robots will not learn; the ideal value is always greater
than 0.
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2. Discount Factor (γ): setting it to 0 means that agents consider only the current reward;
the best value is to arrange it in such a way that the rewards will increase to a higher
value for the long-term.

3. Exploration Constant (ε): is used to randomize decisions; setting it to a number
approaching 1 (such as 0.9) will make 90% of the actions stochastic.

A summary of these and other parameters is shown in Table 5. The simulation is run
from 500 to 1000 episodes, each of which is 100 steps. At the end of each episode, the drone
will start again in the initial condition and receive feedback and the called observation. In
every episode, the drone tries to take a maximum number of steps, learning every step to
obtain a high reward point. There are one initial and three desired positions (Table 6).

Table 5. Simulation hyperparameters.

Parameter Q-Learning and SARSA DQN

Episode 500–1000 500–1000
Steps 50–100 50–100
α 0.1 0.00025
γ 0.9 0.99
ε 0.9 1
Memory Size - 1,000,000
Network Input - 3
Network Output - 8
Network Structure - 300,300
Update Target Network - 10,000
Mini Batch Size - 128
Learn Start - 128

Table 6. Initial and desired positions.

Coordinates
Description

X Y Z

0.0 0.0 0.0 IDP
9.0 0.0 1.0 X-DDP
0.0 9.0 1.0 Y-DDP
0.0 0.0 10.0 Z-DDP

6.1. Result and Discussion

Here, we discuss the results obtained from all three learning algorithms discussed
above. For DQN, we use the RMSProp optimizer [12]. Figure 5 shows the moving average
of the rewards that the agent received after completing an episode. The Euclidean distance
reward function is used during this run. All three learning algorithms gained rewards as
the number of episodes increased, in all directions.

However, DQN showed significant improvement and had no negative moving average
reward in any direction. Compared to SARSA, Q-learning has better performance in X-
DDP and Y-DDP (Figure 5a,b, respectively). Nevertheless, both algorithms have a negative
reward in Z-DDP (Figure 5c). This indicates that DQN has no problem in flying horizontally
or vertically, while SARSA and Q-learning are able to fly horizontally but not vertically. As
can be seen from the results, the change in reward after the 500th episode is small. Hence,
the rest of the evaluations are tested for 500 episodes only, whereas the reward function
remains the Euclidean distance.
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Figure 5. Learning algorithms with 100 steps/episode for a total of 1000 episodes using the Euclidean distance reward function.
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Figure 6. DQN and different optimizers with 100 steps/episode for a total of 500 episodes using the Euclidean distance
reward function.

Since DQN with RMSProp optimizer has better rewards, we analyzed the performance
of DQN under other optimizers such as Adadelta [11], SGD [13], and ADAM [14]. Here,
the agent is expected to reach the desired position in only 500 steps. In X-DDP and Z-
DDP, the Adadelta optimizer has a better reward (Figure 6a,c). Even though the SGD
optimizer showed a good reward in X-DDP, the result in Figure 6b,c shows that SGD has a
negative reward. When the agent uses the RMSProp optimizer, it never outperforms other
optimizers in any of the directions, whereas the agent shows good performance with the
ADAM optimizer in all directions (Figure 6). In Figure 5, there are six results that obtained
negative rewards; by dropping Q-learning and SARSA and adopting other optimizers,
we reduced that number to three (Figure 6). Then, we replaced the reward function with
MSE, which further reduced the negative reward results to two (Figure 7). Although all
optimizers show a good sign in flying the quadrotor autonomously, Adam and Adadelta
are the best optimizers in both horizontal and vertical desired positions. In addition, we
can see from Figures 6 and 7 that the agent is always improving towards a positive reward
when with the Adadelta optimizer. This shows the significant role that the optimizers and
the reward functions play in flying the drone autonomously.

Therefore, using the Adadelta optimizer and MSE reward function, we evaluated the
performance of the DQN agent under different steps, that is, the maximum number of steps
an agent can take between the initial and desired position. The results in Figure 8 indicate
that by limiting the number of steps, the reward increases, which means that the agent
performs better. This is due to the fact that the agent is not taking unnecessary actions that
might lead to negative rewards. However, reducing the number of steps just to improve
reward does not result in better performance, as there are small differences between 50 and
75 steps. In addition, realistic scenarios are not as simple as the simulation cases which can
be reached in a few steps.
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The results obtained in this evaluation showed that learning algorithms can be used to
fly drones autonomously. In addition to the learning algorithms, the choice of reward func-
tion and optimizer also impacts the performance of autonomous drone flight. Overall, the
DQN agent using either the Adadelta or ADAM optimizer and applying the MSE reward
function with the number of steps set to 50 shows the best performance in our assessment.
In the future, we plan to add more obstacles, use multiple reward functions, and select
different learning schemes depending on the next step, such as up, down, or horizontal.
We hope that this will reveal more interesting characteristics of the learning schemes.
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(b) Y-DDP
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Figure 7. DQN and different optimizers with 100 steps/episode for a total of 500 episodes using MSE reward function.
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Figure 8. DQN and Adadelta optimizer with steps/episode varying for a total of 500 episodes using MSE reward function.

7. Conclusions

Autonomously flying UAVs can no longer continue to use traditional controllers such
as PID due to tuning, stability, and flexibility issues. However, new reinforcement and
deep learning methods are currently showing better control and movement strategies in
autonomous UAV flights.

In this work, the simulation and performance evaluation of learning algorithms such
as Q-learning, SARSA, and DQN was presented. These algorithms have been evaluated
under a combination of positions (X, Y, and Z direction desired positions), optimizers
(RMSProp, Adadelta, SGD, and ADAM), and reward functions (Euclidean distance and its
MSE). From the evaluation, DQN with the Adadelta optimizer using MSE has shown the
best performance in flying drones from the initial to the desired position.

In the future, we plan to investigate the performance of other deep network and neural
network learning algorithms under environments that involve obstacles and complicated
destinations and to introduce a complex reward function that is more suitable for the
autonomous UAV flight.
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