
applied
sciences

Article

Petri Net Modeling for Ising Model Formulation in
Quantum Annealing

Morikazu Nakamura * , Kohei Kaneshima and Takeo Yoshida

����������
�������

Citation: Nakamura, M.;

Kaneshima, K.; Yoshida, T. Petri Net

Modeling for Ising Model

Formulation in Quantum Annealing.

Appl. Sci. 2021, 11, 7574. https://

doi.org/10.3390/app11167574

Academic Editors: Luis Gomes and

João Paulo Barros

Received: 3 July 2021

Accepted: 16 August 2021

Published: 18 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Computer Science & Intelligent Systems Group, Faculty of Engineering, University of the Ryukyus,
Okinawa 903-0213, Japan; k208580@ie.u-ryukyu.ac.jp (K.K.); tyoshida@ie.u-ryukyu.ac.jp (T.Y.)
* Correspondence: morikazu@ie.u-ryukyu.ac.jp

Abstract: Quantum annealing is an emerging new platform for combinatorial optimization, requiring
an Ising model formulation for optimization problems. The formulation can be an essential obstacle
to the permeation of this innovation into broad areas of everyday life. Our research is aimed
at the proposal of a Petri net modeling approach for an Ising model formulation. Although the
proposed method requires users to model their optimization problems with Petri nets, this process
can be carried out in a relatively straightforward manner if we know the target problem and the
simple Petri net modeling rules. With our method, the constraints and objective functions in the
target optimization problems are represented as fundamental characteristics of Petri net models,
extracted systematically from Petri net models, and then converted into binary quadratic nets,
equivalent to Ising models. The proposed method can drastically reduce the difficulty of the Ising
model formulation.

Keywords: quantum annealing; adiabatic quantum optimization; Ising model; quadratic uncon-
strained binary optimization; Petri nets; binary quadratic net; model-based engineering; model-based
optimization

1. Introduction

Quantum annealing is a metaheuristic for combinatorial optimization in quantum
mechanics research [1,2]. This new approach solves unconstrained optimization problems
formulated as a Hamiltonian by evolving the time-dependent Schrödinger equation from
a quantum mechanical superposition of all possible states to its ground state in physical
systems [3]. A quantum annealing machine is a special-purpose quantum computer that
solves combinatorial optimization problems. D-wave is the first commercial quantum
annealing machine [4].

Combinatorial optimization contributes to a more effective and reasonable life by
minimizing the total costs or maximizing the benefits under certain constraints. Although
sophisticated solvers can efficiently solve small problems, many practical problems are
computationally intractable. Such problems are formally characterized as NP-hard; that
is, there are no polynomial-time algorithms to solve the problems. Many researchers
in computer science and operations research believe that there are no polynomial-time
algorithms for NP-hard problems and continue to develop efficient heuristic algorithms to
solve larger problems [5].

Quantum annealing is a metaheuristic that does not restrict the target problems. Thus
far, some combinatorial optimization problems, but not many, have been formulated
as Ising or Quadratic Unconstrained Binary Optimization (QUBO) models and solved
using annealing machines [6–9]. Theoretical and experimental studies have contributed to
improving the performance of annealing processes [10–13]. Useful software tools have been
developed to utilize quantum annealing machines [14]. Digital implementations of the
quantum annealing process have also emerged because this new optimization technique has
the potential to outperform traditional meta-heuristic algorithms. A graphics processing

Appl. Sci. 2021, 11, 7574. https://doi.org/10.3390/app11167574 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1583-2523
https://doi.org/10.3390/app11167574
https://doi.org/10.3390/app11167574
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11167574
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11167574?type=check_update&version=2

Appl. Sci. 2021, 11, 7574 2 of 19

unit (GPU) based quantum annealing simulator has shown high-performance optimization
by utilizing spatial and temporal parallelism during the annealing process [15]. Therefore,
we have high hopes for this new innovative optimizer.

However, obstacles to quantum annealing usability include the hardness of the pa-
rameter tuning and formulation of the target problems as Ising or QUBO models. The
constraints of the original problem and objective functions are represented as a penalty
function, minimized as an unconstrained optimization problem. Search processes can
reach infeasible solutions, and to avoid such situations, it is necessary to carefully tune
the parameters in pre-performing annealing process. The difficulty of the Ising model
formulation is also an essential obstacle to the usability of quantum annealing. The new
annealer requires users to create quadratic penalty functions, Ising, or QUBO models, for
target optimization problems.

This study focuses solely on the latter problem, which is the difficulty of formulat-
ing the Ising and QUBO models. To overcome this problem, we propose a method for
generating Ising or QUBO models from Petri net models representing the target opti-
mization problems. Our proposal is a Petri net modeling approach in which, once we
model the optimization problem with Petri nets, we can systematically obtain the Ising or
QUBO formulation.

A Petri net is a mathematical and graphical modeling language for various systems,
such as computer networks, manufacturing systems, transportation networks, biological
systems, agricultural production processes, and other applications [16,17]. We only need the
domain knowledge of the target systems for modeling because the rules and components
of Petri nets are simple and intuitive. Petri net modeling is quite efficient for representing
integer linear programming problems because Petri nets have mathematical forms, denoted
as linear expressions [18]. The authors proposed an algorithm for generating mixed-integer
linear programming (MILP) based on Petri net models for practical scheduling and optimal
resource assignment problems [19,20]. Our algorithm realizes the automatic formulation of
MILPs for given combinatorial optimization problems.

This study extends our MILP version to quantum annealing models, where quadratic
functions of binary variables need to be formulated. As far as we know, this is the first study
to apply Petri net modeling to the quantum annealing. In this paper, we introduce a new
notation called binary quadratic nets, which denote Ising or QUBO models, respectively.
Our method incrementally targets binary quadratic nets from problem-domain Petri net
models that represent target optimization problems.

This paper is organized as follows: Section 2 summarizes the basic knowledge on
combinatorial optimization problems, quantum annealing, Ising models, and Petri nets.
Section 3 introduces a new class of Petri nets, binary quadratic nets, for representing Ising
or QUBO models. Section 4 proposes a method for formulating Ising or QUBO models from
problem-domain Petri nets and presents some examples. Finally, in Section 5, we present
some concluding remarks and areas of future tasks.

2. Preliminaries

This section provides the basic concepts and definitions to understand the subsequent
sections; containing combinatorial optimization, quantum annealing, Ising models, and
Petri net fundamentals.

2.1. Combinatorial Optimization Problems

Combinatorial optimization is a branch of operations research and computer science; it
is utilized frequently in a wide range of areas, such as artificial intelligence, bioinformatics,
and VLSI circuit design [21,22].

A combinatorial optimization problem can be denoted by CP = (X, Σ, Cstr, f), where
X = {x1, x2, . . . , xn} is a set of variables, Σ = {Σ1, Σ2, . . . , Σn} is a set of types for each
variable, Cstr is a set of constraints, and f : Σ1 × Σ2 . . .× Σn → R is an objective function
such that Σ includes discrete types, such as integers, binary numbers, and Boolean values.

Appl. Sci. 2021, 11, 7574 3 of 19

Here, R is the set of real numbers. The combinatorial optimization problem requires the
optimum solution to be obtained with respect to f , out of all the feasible solutions, where
feasibility means that the values assigned to the variables satisfy all of the constraints
in Cstr.

Many combinatorial optimization problems are NP-hard; that is, no polynomial-time
deterministic algorithms are known, to date, to solve such problems [5]. Sophisticated
solvers, based on the branch-and-bound and branch-and-cut methods, can efficiently search
for feasible solutions; however, they are still computationally insufficient for large-size
instances of NP-hard problems.

Related to a given combinatorial optimization problem, we sometimes consider corre-
sponding decision problemsin quantum annealing, for which rather than requiring just a
yes or no for the existence of a feasible solution, we also need to obtain a feasible solution
for the decision problem. This type of decision problem is called the search variant as
compared to the yes–no type decision variant [5]. For example, we solve a search variant
decision problem to obtain a viable schedule to complete all tasks by a given deadline in
scheduling problems.

It should be noted that NP-hard decision problems, both search and decision variants,
are equally difficult to solve for the corresponding optimization problem from the view-
point of computational complexity. However, a search variant can be implemented more
easily than an optimization problem for quantum annealing. Iterative solving of search
variants of the decision problem leads to the optimum solution by varying the parameter
related to the optimization, that is, the deadline for the scheduling problem. We use this
technique in the job shop scheduling example in Section 4.

In the following sections, we treat four NP-hard combinatorial optimization problems:
minimum vertex cover, graph partitioning, traveling salesman, and job-shop scheduling
problems to enable readers to comprehensively understand our method and to show the
usefulness of our Petri net modeling-based approach for quantum annealing.

2.2. Quantum Annealing and Ising Models

Quantum annealing is a metaheuristic for solving combinatorial optimization prob-
lems, where it tries to find a value +1 or−1 for each of the Ising variables s = (s1, s2, . . . , sN)
such that the following Hamiltonian of the Ising models gives the lowest energy state:

HP(s) =
N

∑
i=1

hisi + ∑
i<j

Ji,jsisj, (1)

where hi is the magnetic field coefficient at site si, and Ji,j is the interaction coefficient
between si and sj. Ising variables correspond to discrete variables in the metaheuristic.
The lowest energy state, called the ground state of HP, provides the optimal solution.
Figure 1 depicts a two-dimensional array Ising model. A circle represents a spin and is
connected to four neighbor spins. The arrows ↑ and ↓ represent the up spin (+1) and down
spin (−1), respectively.

Up

Down

Figure 1. 2D Array Ising Model.

Appl. Sci. 2021, 11, 7574 4 of 19

A Hamiltonian may include an objective function, where the lower energy in the
terms of the function contributes to a smaller objective value in minimization problems.
For maximization problems, we reverse the sign of the Ising model parameters for the
objective function and then minimize it. Constraints in optimization problems should also
be composed of sets of terms in the Hamiltonian. The lowest energy state of the terms leads
to the satisfaction of the corresponding constraints. Therefore, the annealing process needs
to obtain feasible solutions that satisfy all constraints with a good quality of the objective
value by exploring the lowest energy state of the total Hamiltonian. Note that we can easily
replace the type of decision variables from {+1,−1} to {0, 1}, and vice versa.

The mechanism of the quantum annealing process is explained well in [2,4,13]. The
following paragraph gives only a brief introduction to the optimization process based on
quantum annealing.

An Ising model Hamiltonian, whose ground state encodes the solution of the target
optimization problem, can be solved using adiabatic quantum optimization. First, we
prepare the following time-dependent Hamiltonian:

H(t) = (1− t
T
)H0 +

t
T

HP, (2)

where HP is the Hamiltonian corresponding to the target optimization problem as shown
in Equation (1); H0 is another Hamiltonian whose ground state is easily set up in the
computing platform. The Hamiltonian varies from H(0) = H0 to H(T) = HP according
to the time progress from t = 0 to t = T. The adiabatic theorem states that if H(0) is the
ground state, then H(T) is also the state under a sufficiently slow change of parameters
in the Hamiltonian during the time progress. That is, the solution of the combinatorial
optimization is obtained at H(T).

2.3. Petri Net Fundamentals

A Petri net PN = (P, T, F, M0) is a directed bipartite graph N = (P, T, F) with ini-
tial marking M0 [16]. The bipartite graph has two types of vertex sets: a set of places
P = {P1, P2, . . . , P|P|} and a set of transitions T = {T1, T2, . . . , T|T|}. The arc function
F : (P× T)∪ (T× P)→ N defines the connection from places to transitions, and vice versa,
where N is the set of natural numbers. The returned values of F indicate the number of
removed tokens from the starting place when (P× T) → N or the number of generated
tokens to the ending place when (T × P)→ N upon the firing of the transition.

Instead of an arc function, a matrix representation is often used for the connection.
Here, Pre and Post show the incident matrix of size |P| × |T| to indicate the connection
from places to transitions and from transitions to places, respectively. It should be noted
that Pre(Pi, Tj) = F((Pi, Tj)) and Post(Pi, Tj) = F((Tj, Pi)).

Tokens are located in places such that the token distribution on P represents the status
of the modeled system. The vector Mk of size |P| represents the number of tokens in each
place Pi ∈ P at step k. In addition, M0, called the initial marking, is the marking at step 0,
which corresponds to the initial status of the system. Therefore, the Petri net PN = (N, M0)
represents the structure and initial states of the modeled system.

The transition Tj ∈ T is enabled at step k only when Mk(Pi) ≥ Pre(Pi, Tj) for each
Pi in •Tj, where •Tj and T•j denote the set of input and output places of Tj, respectively.
Similarly, •Pi and P•i are the sets of input and output transitions of Pi, respectively. An
enabled transition Tj can fire. Firing implies the occurrence of an event in the system. The
firing of transition Tj removes Pre(Pi, Tj) tokens from each Pi ∈ •Tj and adds Post(Pi, Tj)
tokens to each Pi ∈ T•j . Firing changes the token distribution, which indicates the change in
status of the system by the corresponding event. The following mathematical form shows
the change in status caused by the firing of transitions at step k:

Mk+1 = Mk − Pre · Xk + Post · Xk

= Mk + (Post− Pre) · Xk, (3)

Appl. Sci. 2021, 11, 7574 5 of 19

where Xk is a vector of size |T| showing the number of times each Tj fires at step k, and Xk
is called the firing count vector at step k.

For a quantitative analysis of the dynamical behavior of a system, time was introduced
to Petri nets [23]. The timing methods can be categorized into three types: firing duration
(FD), holding duration (HD), and enabling duration (ED) [23]. The FD assigns time to
transitions to represent the firing duration. The HD is referred to as place time Petri nets,
where tokens are unavailable for firing for a particular period after being located in the
place. In the last method, i.e., the ED, a transition cannot be fired for a given period after
being enabled. Although other types can be allowed with our method, this paper focuses
on timed Petri nets with the FD.

A timed Petri net is a six-tuple TPN = (P, T, F, TS, FD, M0), where TS is the set
of time values, and FD : T → TS is a function that returns the firing duration time of
transition Tj ∈ T. In this study, we assume that TS = N and is a set of natural numbers. A
timestamp is also attached to tokens to record the token generation time. In the timed Petri
net, the transition Tj is enabled at time k when each input place Pi of Tj has more than or
equal to F(Pi, Tj) tokens, and its time stamp is no more than k. By firing Tj at time k, the
marking is changed according to the same rule as the Petri net described above, except that
we attach the time stamp k + FD[Tj] to each output token.

A colored Petri net is an extension of Petri nets, where we can introduce values (colors)
to tokens, guard functions to transitions for their firing conditions, and arc functions to
output arcs of transitions to calculate the colors of the output tokens [24]. Therefore, tokens
become much more informative and allow us flexible and efficient modeling.

This extended Petri net is denoted by CPN = (Σ, P, T, F, V, C, G, E, M0), where P, T,
and F represent a set of places, transitions, and arcs, respectively. Σ shows a set of color
types, and C : P→ Σ is a color function for the places. Only tokens with colors specified
by C(Pi) are located in place Pi. In addition, V is a set of arc variables, where Type(v) ∈ Σ
for v ∈ V. Moreover, Type(v) is the type of variable v. Here, E denotes an arc function
where E((Tj, Pi)) returns tokens on C(Pi) for each output place Pi based on the binding
values to each of the arc variables. The term G represents a guard function that returns a
Boolean value to determine whether the corresponding transition is enabled. A marking
Mk at step k is a mapping of multiple sets of C(Pi) to each place. Transition Tj is enabled at
marking Mk with binding b when for each input place Pi of Tj,

Mk(Pi) ≥ E((Pi, Tj))(b) (4)

where E((Pi, Tj))(b) denotes the result of the arc function for arc (Pi, Tj) when we bind
b(v) for each variable v in E((Pi, Tj)). At marking Mk, Mk+1 is generated by firing Tj with
binding b:

Mk+1(Pi) = Mk(Pi)− E((Pi, Tj))(b) + E((Tj, Pi))(b). (5)

Colored and timed Petri nets are extremely powerful in the sense that complicated sys-
tems can be easily modeled. This fact contributes tremendously to modeling combinatorial
optimization problems in our research.

Another essential benefit of using Petri net modeling is the well-systematized for-
mulation of behavioral and structural properties. These have been studied in Petri net
research [16,17,23]. The behavioral properties includes reachability, boundedness, coverability,
liveness, and persistence. The structural properties, such as precedence relation, structural
boundedness and conservative, are initial-marking independent and can be derived from the
structure of the bipartite graph. These fundamental properties can be used for Ising model
formulation from Petri net models.

3. Binary Quadratic Nets

This section introduces a new Petri net class called binary quadratic nets to represent
the Ising and QUBO models. The Ising model is a mathematical model in statistical
mechanics. The model is a graph in which the vertices correspond to spins, and the edges

Appl. Sci. 2021, 11, 7574 6 of 19

interact between spins. Petri nets are also suitable for expressing Ising models because
their fundamental components, places, and transitions can naturally represent the states of
the spins and their interactions. A token in a place can show the corresponding spin state
when we introduce colors {−1,+1} to tokens. For QUBO models, the color type of tokens
becomes {0, 1}.

In our Petri net modeling-based Ising model formulation, Petri net models represent-
ing target optimization problems were converted into the corresponding binary quadratic
nets. In other words, our proposed method is a net transformation from problem-domain
Petri nets into binary quadratic nets. Binary quadratic nets are entirely equivalent to Ising
or QUBO models.

3.1. Formal Definition

Definition 1. (Binary Quadratic Net) A binary quadratic net is a colored Petri net denoted by
BQN = (Σ̂, P̂, T̂, F̂, Ĉ, ŵ):

Σ̂ ∈ {{−1,+1}, {0, 1}} (6)

P̂ = { p̂1, p̂2, ..., p̂n} (7)

T̂ = {t̂i,j | p̂i, p̂j ∈ P̂, { p̂i, p̂j} = t̂•i,j =
•t̂i,j, i < j} (8)

F̂ : (P̂× T̂) ∪ (T̂ × P̂)→
{

1 if (p̂i, t̂i,j) and (t̂i,j, p̂j), t̂i,j ∈ T̂
0 otherwise

(9)

Ĉ(p̂) ∈ Σ̂, ∀ p̂ ∈ P̂ (10)

ŵ : P̂ ∪ T̂ → R (11)

There is one token in each place, where a place corresponds to a spin variable in the
Ising models and a binary variable in the QUBO models, respectively. For simplicity, we
denote the value of a variable associated with place p̂i by M(p̂i), that is, M(p̂i) ∈ {−1,+1}
in the Ising models or M(p̂i) ∈ {0, 1} in the QUBO models. Note that in the QUBO model,
M(p̂i) = 0 indicates that the place p̂i includes a token with color 0.

Current quantum annealing platforms have various physical topologies, chimera
graphs for D-waves, and three-dimensional lattices for CMOS annealers [25]. Thus, we
need to embed the logical Ising model to a specific graph topology to run the annealing
process. However, we do not treat the embedding process in this study because we can
use existing embedding algorithms for each platform. Moreover, Fujitsu Digital Annealer
allows fully connected topologies. For reference, Figure 2 depicts the binary quadratic net
model for the 2D array Ising model shown in Figure 1.

-1

-1 -1 -1

-1-1-1

-1 -1

-1

-1 -1

-1 -1 -1

-1

-1 -1 -1-1

-1-1 -1-1 -1-1 -1 -1-1
-1-1

-1-1

+1

+1 +1

+1

+1

+1

+1 +1+1+1

+1+1

Figure 2. Binary Quadratic Net for 2D-Array Ising Model shown in Figure 1.

Appl. Sci. 2021, 11, 7574 7 of 19

To combine binary quadratic nets and Ising models, we introduce a measure to
represent the state of binary quadratic nets with a marking M. We define this as an energy
function of binary quadratic nets corresponding to the Hamiltonian in the Ising models.

Definition 2. (Energy Function of Binary Quadratic Net) For a binary quadratic net
BQN = (Σ̂, P̂, T̂, F̂, Ĉ, ŵ) with a marking M, the energy function is defined as follows:

HBQN(M) = ∑
p̂i∈P̂

w(p̂i)M(p̂i) + ∑
t̂i,j∈T̂

w(t̂i,j)M(p̂i)M(p̂j). (12)

The first summed terms show the energy derived from token existence at each place.
The second summed term represents the energy from the interaction between tokens on
both sides of each transition. The weight parameters w(p̂i) and w(t̂i,j) are defined for p̂i
and t̂i,j, respectively. The energy function in Definition 2 is equivalent to the Ising model
shown in Equation (1), and the energy function is uniquely defined from the corresponding
binary quadratic net. Although it is straightforward, we simply summarize this fact as a
proposition for the readability of the remaining parts.

Proposition 1. For an Ising model, we have an equivalent binary quadratic net BQN in the sense
that the energy function HBQN(M) is equivalent to the Hamiltonian of the Ising model.

In our binary quadratic nets, transitions represent interactive relations between tokens
on both sides. There may be numerous interaction types. We choose interaction types
carefully depending on the target optimization problems. In the Appendix, we summarize
the primitive interaction for QUBO and the Ising model, respectively. Table A1 shows
the interaction primitives Iqubo

i , i = 0, 1, . . . , 15, for two binary variables in {0, 1}, where
(0, 0), (0, 1), (1, 0), and (1, 1) express all possible combinations of the two binary variables.
In addition, Iqubo

1 , Iqubo
7 , Iqubo

8 , Iqubo
9 correspond to the well-known logical functions AND,

XOR, OR, and NOR, respectively. Moreover, Iqubo
0 , Iqubo

15 indicate inconsistency and a
tautology, respectively. Table A2 lists the interactions for the Ising model converted from
those in Table A1 by applying the following relation.

M(p̂i)
ising = 2M(p̂i)

qubo − 1, (13)

M(p̂i)
qubo = (M(p̂i)

ising + 1)/2, (14)

where M(p̂i)
ising and M(p̂i)

qubo denote the marking in the Ising and QUBO models, respectively.

3.2. Binary Quadratic Net Examples

As we describe in Proposition 1, binary quadratic net models are equivalent to the
Ising models. We show the binary quadratic net models for well-known graph partitioning
and minimum vertex cover problems. These problems are straightforwardly modeled with
binary quadratic nets and formulated as marking problems in such nets.

Example 1. Minimum Vertex Cover: For a given undirected graph G = (V, E), with vertex set V
and edge set E, a vertex cover set satisfies the condition such that every edge in E is incident on a
vertex in the cover set. The problem is to find the minimum vertex cover set. The problem is known
as NP-hard [5].

We choose the QUBO model for the problem, where we generate the place set and transition
set of the binary quadratic net under the one-to-one correspondence with the vertex set and the edge
set, respectively. We express a vertex cover by a marking, where we place a token with a color of 1 to
show that the corresponding vertex is in the vertex cover, and where a color of 0 is not in the cover.
To satisfy the feasibility of the vertex cover, we need to avoid a token with a color of 0 in both input
places of each transition because the situation does not cover the corresponding edge. We formulate
the feasibility of the condition corresponding to Iqubo

8 in Table A1 as follows:

Appl. Sci. 2021, 11, 7574 8 of 19

Hconstraint(M) = ∑
i<j,p̂•i ∩ p̂•j 6=∅

(1−M(p̂i))(1−M(p̂j)), (15)

To minimize the objective function, we attempt to reduce the number of color 1 tokens in M.
Therefore, the following penalty function is suitable because only color 1 tokens increase the penalty.

Hcost(M) = (
|P|

∑
i=1

M(p̂i)) (16)

Based on the superposition principle, we have the total formulation by combining the binary
quadratic nets corresponding to (15) and (16):

Htotal(M) = A · Hconstraint(M) + B · Hcost(M) (17)

where Hconstraint(M) counts the number of transitions, both of which have a 0 color token. In
addition, Hcost(M) denotes the number of places colored with 1 to minimize the vertex cover.
Moreover, A and B show the parameters for a trade-off between the constraint and the objective
function. The formulation is equivalent to the QUBO model in [6].

Consider the graph shown in Figure 3 as a problem instance of the vertex cover problem. We
can formulate the problem instance as a marking problem in the corresponding binary quadratic net
in Figure 4. Marking M = (1, 0, 1, 0, 0, 1, 0, 1) is a feasible solution to the instance.

vv

VV11VV11

V

VV

8

5

VV44

VV33

VV66

VV77

テテ

V V 22

テテ

テテvv
テテ

テテ
テテ テテ
テテ

テテテテテテ テテ

ee

テテ
1,21,2

テテテテ

ee

テ
3,4

eeee

テテ
3,53,5

テテ

ee4,84,8

テテ
ee7,87,8

テテ
ee

テテ
6,86,8

テテ

テテ
ee1,71,7

ee

テテ
6,76,7

テテ
ee1,61,6

テテ

テテ

テテ
ee2,62,6

テテ
ee2,32,3

テ

テテ

v
e2,8

vv
ee5,85,8

テテ

テテ テ

テテ

テ

テテテ
テ テテ

Figure 3. Example of Undirected Graphs.

テテp1p1

p2p2

p7p7

p6p6

p3p3

p4

p5p5

p8p8

1,21,2tttt

2,62,6tttt

1,61,6tttt

6,76,7tttt

tt 7,87,8tt

1,71,7tttt

2,82,8tttt

tt2,32,3tt

tt 4,8t

5,8t

3,53,5tt

tt 3,43,4tt

テテ

テテ

6,86,8tttt テテ

テテ

テテ

テテ

^̂̂
^̂

^̂

^̂̂

^̂̂

^̂̂

^̂

^̂

^̂̂

^̂̂^̂̂

^̂̂

^̂̂

^̂̂^̂̂

^̂̂

^̂̂

^̂̂
^̂̂ ^̂̂

^̂̂

テ

テ

テ

Figure 4. Binary Quadratic Net for Vertex Cover Problem Instance shown in Figure 3.

Appl. Sci. 2021, 11, 7574 9 of 19

Example 2. Graph Partitioning: Graph partitioning is an optimization problem, which is explained
as follows: Let us consider an undirected graph G = (V, E) with vertex set V and edge set E,
where |V| is the number of vertices. The problem is partitioning V into two subsets whose sizes
are equal to |V|/2, minimizing the number of edges between the subsets. The problem is known as
NP-hard [5].

We reduce the problem to a marking problem in binary quadratic nets, where each vertex
in the given graph corresponds to a place in the binary quadratic net, and the marking such that
M(p̂i) ∈ {−1,+1}, ∀ p̂i ∈ P̂ shows the partition. The objective function minimizes the number of
edges connecting the two partitioned groups. The transitions have a one-to-one correspondence with
the edges. To minimize the objective function, we want to reduce the different color tokens in pairs
of places that share the output transition. We design the objective function with I Ising

6 in Table A2
as follows:

Hcost(M) = ∑
i<j,p̂•i ∩ p̂•j 6=∅

1−M0(p̂i)M0(p̂j)

2
(18)

Here, I Ising
6 outputs 1 only when both places have different color tokens, that is, XOR.

Second, we consider the constraint of the graph-partitioning problem and the equality in the
vertex size of both partitioned groups. Concerning {−1,+1} logic, we can design the following
energy function for the constraint because minimizing the function leads to a satisfaction of
the constraint:

Hconstraint(M) = (
|P|

∑
i=1

M(p̂i))
2 (19)

The following penalty function shows the total energy function for graph partitioning and is
equivalent to the Ising model presented in [6].

Htotal(M) = A · Hconstraint(M) + B · Hcost(M) (20)

Figure 5 shows the binary quadratic net for the graph partitioning example, where the subnet
composed of the places and the transitions connected by the solid arcs correspond to Hcost(M), and
the other subnet with all places and transitions connected by the dotted arcs are added based on
Hconstraint(M).

One of the feasible solutions is such that M(p̂1) = M(p̂2) = M(p̂6) = M(p̂7) = +1 and
M(p̂3) = M(p̂4) = M(p̂5) = M(p̂8) = −1.

テテp1p1

p2p2

p7p7

p6p6

p3p3

p4p4

p5p5

p8p8

1,21,2tttt

2,62,6tttt

1,61,6tttt

6,76,7tttt

tt 7,87,8tt

1,71,7tttt

2,82,8tttt

tt2,32,3tt

tt 4,84,8tt

5,85,8tt

3,53,5tt

tt 3,43,4tt

テテ

テテ

6,86,8tttt テテ

テテ

テテ

テテ

^̂̂
^̂̂

^̂̂

^̂̂

^̂̂

^̂̂

^̂̂

^̂̂

^̂̂

^̂̂^̂̂

^̂̂

^̂̂

^̂̂^̂̂

^̂̂

^̂̂

^̂̂
^̂̂ ^̂̂

^̂̂

テテ

テテ

テテ

Figure 5. Binary Quadratic Net of Graph Partitioning Problem for Instance shown in Figure 3.

Appl. Sci. 2021, 11, 7574 10 of 19

4. Binary Quadratic Net Construction from Problem Domain Petri Nets

In the previous section, we modeled combinatorial optimization problems directly,
a minimum vertex cover problem, and a graph partitioning problem with binary quadratic
nets and formulated them as marking problems. However, they are exceptional cases. In
general, we can meet the conceptual gap between combinatorial optimization problems
and target binary quadratic nets. Note that the problem is more serious in the direct
formulation of the Ising or QUBO models.

Our approach attempts to minimize the gap by converting problem-domain Petri net
models, represented by timed Petri nets and colored Petri nets, into the corresponding
binary quadratic nets. This section proposes a method for constructing target binary
quadratic nets from problem-domain Petri net models.

4.1. Incremental Construction Based on Superposition Principle

A binary quadratic net can be composed incrementally by combining binary quadratic
subnets, each corresponding to a constraint or an objective function in the original opti-
mization problem. This superposition principle of the net structure and weight values
simplifies the binary quadratic net construction. The composition is straightforward,
where we add the weight values on the places and transitions if the same places and
transitions in the subnets are to be combined; otherwise, add new places and transitions
with their weight values. In the previous section, we observed this process in the graph
partitioning example (Example 2). Even though we did not consider the weight values,
we combined the two subnets. The following definition formally represents the binary
quadratic net composition.

Definition 3. (Binary Quadratic Net Composition) For two given binary quadratic nets
BQNh = (Σ̂, P̂h, T̂h, F̂h, Ĉh, ŵh) and BQNk = (Σ̂, P̂k, T̂k, F̂k, Ĉk, ŵk) such that the model types of
both nets, Ising or QUBO, are the same, the new binary quadratic net BQN = (Σ̂, P̂, T̂, F̂, Ĉ, ŵ)
is composed based on the following superposition principle:

Σ̂ ∈ {{−1,+1}, {0, 1}} (21)

P̂ = P̂h ∪ P̂k (22)

T̂ = T̂h ∪ T̂k (23)

F̂ : (P̂× T̂) ∪ (T̂ × P̂)→
{

1 (p̂i, t̂i,j) and (p̂j, t̂i,j), t̂i,j ∈ T̂,
0 otherwise

(24)

Ĉ :P̂→
{
{−1,+1} Ising Model
{0, 1} QUBO Model

(25)

ŵ : P̂ ∪ T̂ →

wh(x) + wk(x) x ∈ P̂h ∪ T̂h and x ∈ P̂k ∪ T̂k,
wh(x) x ∈ P̂h ∪ T̂h and x /∈ P̂k ∪ T̂k,
wk(x) x ∈ P̂k ∪ T̂k and x /∈ P̂h ∪ T̂h,
0 otherwise

(26)

The following proposition is a straightforward but essential property for validating
our method.

Proposition 2. (Superposition Property) Let BQN be composed from BQNh and BQNk. The
following properties hold.

HBQN(M) = HBQNh(M) + HBQNk (M), (Additivity), (27)

HA·BQN(M) = A · HBQN(M), (Homogeneity), (28)

Appl. Sci. 2021, 11, 7574 11 of 19

where A is a scalar, and HA·BQN(M) is the energy function of BQN, such that we replace the
weight function ŵ with A · ŵ.

Proof. In Definition 3, the energy function is defined by the net structure and weight
function ŵ. Based on the composition rules in Equations (22), (24), and (25), all structural
properties of BQNh and BQNk are transformed into BQN. Based on the rule for the weight
function (26), we can confirm that ŵ(p̂i) and ŵ(t̂i,j) can be divided into ŵh(p̂i) + ŵk(p̂i)
and ŵh(t̂i,j) + ŵk(t̂i,j) for the common place p̂i and transition t̂i,j, respectively. Therefore,
the additivity in Equation (27) holds.

The homogeneity property with a degree of 1 is given by Definition 2 if we replace the
weight function ŵ with A · ŵ.

Owing to the additivity and homogeneity properties in Proposition 2, we have the
following corollary:

Corollary 1. Binary quadratic nets can be composed by the incremental application of Definition 3,
in which we can scale the weight function ŵ in subnets with a constant factor.

In our approach, we construct a target binary quadratic net based on the incremental
compositions of binary quadratic subnets. Each subnet is converted from a property of
the Petri net model representing the optimization problems. We call the Petri net problem-
domain Petri net. The properties of the problem-domain Petri net models are expressed
with marking or firing sequences. To focus on markings or firing sequences, we employ
marking-based or firing-based constructions. In the following subsections, we assume that
binary quadratic nets are QUBO models unless otherwise stated, but can be converted into
Ising models by using the conversion rule (13).

4.2. Marking-Based Construction

Let us denote a problem-domain Petri net for a target optimization problem by
N = (P, T, F) with P = {P1, P2, . . . , Pn} and T = {T1, T2, . . . , Tm}. Marking Mk(Pj) repre-
sents a set of tokens in place Pj at time step k. In addition, Mk is a vector of size |P|, showing
a token distribution on the Petri net at time step k. The marking trajectory of a Petri net
model, M0, M1, . . . , MK denotes the status changes triggered by the firing of transitions.

In the marking-based construction of binary quadratic nets, we represent a marking
trajectory of the problem domain Petri net by the place set of the target binary quadratic
net. If each place Pi in the problem-domain Petri net has at most one token at any time and
the maximum step is K, we initially prepare the following place set of the target binary
quadratic net.

P̂ = { p̂k
i |Pi ∈ P, k = 0, 1, 2, . . . , K} (29)

If Mk(Pi) is a natural number, that is, more than one token or a color token with a
natural number value is possible in each place in P, we need to prepare more places because
each place in the binary quadratic nets has one token with color in {0, 1} or {−1,+1}.

P̂ = { p̂k
i,n|Pi ∈ P, n = 0, 1, 2, . . . , N, k = 0, 1, 2, . . . , K}, (30)

where N is the possible maximum value of Mk(Pi). At the same time, we require a one-hot
constraint because only one place between p̂k

i,n for n = 0, 1, . . . , N for each i and k should
be marked with 1, and the others should be marked with 0:

N

∑
n=0

M(p̂k
i,n) = 1, ∀i, k (31)

Appl. Sci. 2021, 11, 7574 12 of 19

As the energy function representation, we need the following:

Honehot(M) = (
N

∑
n=0

M(p̂k
i,n)− 1)2, ∀i, k (32)

Note that we can obtain the corresponding binary quadratic net from an energy function.

4.2.1. Boundedness

The boundedness is an essential characteristic to ensure avoiding an overflow in the
system behavior. In the Petri net theory, we can express this characteristic as follows.

Mk(Pi) ≤ Ui, ∀i, k (33)

where Ui is the upper bound for Pi. We can convert the constraint into a binary quadratic
net and represent it as the energy function under the one-hot constraint (32):

Hboundedness(M) =
K+1

∑
k=0

|P|

∑
i=1

(
N

∑
n=0

nM(p̂k
i,n)−Ui)

2, (34)

Function (34) is sufficient for the equality constraint Mk(Pi) = Ui, but not for the upper
bound. Therefore, we improve the function by introducing ancilla places,
ûi,m, i = 1, 2, . . . , |P|, m = 0, 1, . . . , Ui. This technique is well known in the Ising model
formulation [6,14].

Hboundedness(M) =
K+1

∑
k=0

|P|

∑
i=1

(
N

∑
n=0

nM(p̂k
i,n)−

Ui

∑
m=0

mûi,m)
2 + (

Ui

∑
m=0

ûi,m − 1)2 (35)

The upper bound constraint appears in numerous optimization problems. The knap-
sack constraint is a well-known example of this constraint for the knapsack place. We
can also express the boundedness of specific places Pi by removing the other places from
the function.

4.2.2. Invariant

The boundedness shown in Equation (33) denotes inequality constraints. The invari-
ance leads to equality constraints based on markings. Note that the invariance is different
from the structural invariance of the net theory. The behavioral invariance requires that the
total weighted sum of the tokens be equal among the firing sequences. The sum may be
the cost required for the resource to operate the system. The following constraint shows
that the weighted sum becomes W for all k.

|P|

∑
i=1

hi Mk(Pi) = W, k = 0, 1, . . . , K. (36)

We can convert the constraint into a binary quadratic net and represent it as the energy
function under the one-hot constraint (32):

Hinvariant(M) =
K+1

∑
k=0

(
|P|

∑
i=1

N

∑
n=0

hinM(p̂k
i,n)−W)2 (37)

4.3. Firing-Based Construction

A firing count vector Xk represents the firing counts of each transition in a Petri net
model at step k, where Xk(Tj) denotes the firing counts of transition Tj at time step k.
Elements of Xk are usually one of {0, 1}; that is, transitions can fire only once at each time
step. We call this single firing restriction single-server semantics in Petri net theory. However,

Appl. Sci. 2021, 11, 7574 13 of 19

any natural number values (allowing more than one) are also possible with infinite server
semantics. For the single-server semantics, we generate a place set P̂ in the target binary
quadratic net, where M(p̂k

i) corresponds to Xk(Ti):

P̂ = { p̂k
i |Ti ∈ T, k = 0, 1, 2, . . . , K} (38)

Similarly, we can extend the single-firing semantics to the N times firing semantics.
Note that an infinite number of firing times is possible mathematically but impossible
practically. Thus, we restrict the maximum number reasonably to N.

P̂ = { p̂k
i,n|Ti ∈ P, n = 0, 1, 2, . . . , N, k = 0, 1, 2, . . . , K}, (39)

As the energy function representation, we need the same one-hot constraint (32).

4.3.1. Resource Conflict

If transitions Ti and Tj have a common input place and conflict with a single token,
Xk(Ti) = Xk(Tj) = 1 cannot be allowed. Therefore, we need the following energy function:

Hcon f lict(M) =
K

∑
k=0

∑
(Ti ,Tj)∈C

M(p̂k
i)M(p̂k

j), (40)

where C is a set of conflict transitions. In addition, C can be extracted from the problem-
domain Petri net.

In timed Petri net models, we need to consider the firing duration. Let N = (P, T, F, TS, FD)
with P = {P1, P2, . . . , Pn} and T = {T1, T2, . . . , Tm} be a timed Petri net, where FD : T → N
is a function that returns the firing duration. We then extend the resource conflict in the
stepwise firing into the timed firing.

Hcon f lict(M) = ∑
(Ti ,Tj ,k,h)∈Ctimed

M(p̂k
i)M(p̂h

j), (41)

Ctimed = {(Ti, Tj, k, h)|∀(Ti, Tj) ∈ C, h ≤ k + FD(Ti) or k ≤ h + FD(Tj)}, (42)

where Ctimed is the timed conflict set such that conflict transitions cannot fire until the firing
duration is complete. We can obtain Ctimed from the given timed Petri net.

4.3.2. Firing Count

In some applications, we must specify the number of firing occurrences for each transition.

K

∑
k=0

Xk(Ti) = FCi, ∀i (43)

where FCi is the specified number of firings of Ti.
We can convert the constraint into a binary quadratic net and represent it as the energy

function under the one-hot constraint (32):

H f irings(M) =
|T|

∑
i=1

(
K

∑
k=0

N

∑
n=0

nM(p̂k
i,n)− FCi)

2 (44)

Note that M(p̂k
i,n) in the binary quadratic net corresponds to Xk(Ti) in the problem-

domain Petri net.

Appl. Sci. 2021, 11, 7574 14 of 19

Assuming that each transition Ti should fire exactly once during X0, X1, . . . , XK, the
function (43) can be represented as follows:

H f irings(M) =
|T|

∑
i=1

(
K

∑
k=0

M(p̂k
i)− 1)2 (45)

In practical cases, this constraint is commonly used.

4.3.3. Precedence Relation

Let us assume again that each transition Ti should fire exactly once during X0, X1, . . . , XK. We
consider the precedence relation between the firing of transitions. If Ti precedes structurally
to Tj, that is, T•i ⊆ •Tj and •Ti 6⊆ T•j , the following penalty function is required.

Hprecedence(M) =
K

∑
k=0

∑
(Ti ,Tj)∈Prec,h≤k

M(p̂k
i)M(p̂h

j), (46)

where Prec is the set of precedence relations. Here, Prec can be extracted from the problem-
domain Petri net. Similar to the firing conflict, we consider timed Petri nets by introducing
the firing duration.

Hprecedence(M) =
K

∑
k=0

(∑
(Ti ,Tj)∈Prec,h≤k+FD(Ti)

M(p̂k
i)M(p̂h

j)) (47)

4.4. Application Example 1 (Marking-Based Construction): Traveling Salesman Problems

We consider the traveling salesman problem as an example of a marking-based con-
struction. Let N = (P, T, F, TS, FD) with P = {P1, P2, . . . , Pn} and
T = {Ti,j|∀(Pi, Pj) ∈ P × P} be a timed Petri net, where FD : T → N is a function
that returns the firing duration. Each place Pi corresponds to a city, and the transition Ti.j
denotes the path from Pi to Pj. The firing of Ti,j indicates the movement from Pi to Pj. The
initial marking M0 includes only one token at P1.

Because the salesman visits each city only once from the problem definition,

|P|−1

∑
k=0

Mk(Pi) = 1, ∀Pi ∈ P. (48)

In addition, because the salesman should be at one place for each step,

|P|

∑
i=1

Mk(Pi) = 1, k = 0, 1, . . . , |P| − 1. (49)

The objective function is to minimize the total time to visit all cities and return to the
starting place.

distance =
|P|

∑
i=1

|P|

∑
j=1

(FD(Ti,j) ·
|P|−1

∑
k=0

Mk(Pi)Mk+1(Pj)) (50)

Appl. Sci. 2021, 11, 7574 15 of 19

By converting the constraints and objective function in the problem-domain Petri net
into the binary quadratic nets, we have

HvisitingOnce(M) =
|P|

∑
i=1

(
|P|−1

∑
k=0

M(p̂k
i)− 1)2 (51)

Hsingleness(M) =
|P|−1

∑
k=0

(
|P|

∑
i=1

M(p̂k
i)− 1)2 (52)

Hdistance(M) =
|P|

∑
i=1

|P|

∑
j=1

(FD(Ti,j) ·
|P|−1

∑
k=0

M(p̂k
i)M(p̂k+1

j)). (53)

The total binary quadratic net is as follows:

Htotal(M) = A · HvisitingOnce(M) + B · Hsingleness(M) + C · Hdistance(M), (54)

where A, B, and C denote the scale factors of the corresponding subnets. The formulation
is equivalent to the QUBO model in [6].

4.5. Application Example 2 (Firing-Based Construction): Job-Shop Scheduling Problems

We implemented our method by incorporating CPNTools [24], SNAKES[26], and
PyQUBO [14]. As an example, we modeled a simple job-shop scheduling problem with
three jobs, four tasks per job, and three shared resources. Figure 6 shows the model drawn
by the GUI software of CPNTools. Three sequential systems,

p0, t0, p1, t1, p2, t2, p3, t3, p4,

p5, t4, p6, t5, p7, t6, p8, t7, p9,

p10, t8, p11, t9, p12, t10, p13, t11, p14,

represent the jobs, and places m0, m1, m2 represent the resources. Our software reads the
model, represents the problem-domain Petri net model with SNAKES, and then extracts
the necessary information to convert it into the target binary quadratic net.

The following are the energy functions of the binary quadratic subnets correspond-
ing to the precedence relation constraint between tasks in each job, the resource conflict
constraint for each shared resource, and the firing count constraint for each task.

Hprecedence(M) =
MaxTime

∑
k=0

(∑
(Ti ,Tj)∈Prec,h≤k+FD(Ti)

M(p̂k
i)M(p̂h

j)) (55)

Hcon f lict(M) = ∑
(Ti ,Tj ,k,h)∈Ctimed

M(p̂k
i)M(p̂h

j), (56)

H f irings(M) =
|T|

∑
i=1

(
MaxTime

∑
k=0

M(p̂k
i)− 1)2. (57)

The precedence set Prec in Equation (55) is easily constructed by extracting the prece-
dence relation in each sequential system (job). We can extract the timed conflict set Ctimed

in Equation (56) from the connection between the transitions and resource places and the
firing duration FD. MaxTime is the only parameter we need to set before the optimization
process. This value indicates the delivery time deadline. The total binary quadratic net is
as follows:

Htotal(M) = A · Hprecedence(M) + B · Hcon f lict(M) + C · H f irings(M) (58)

Note that this formulation is used to obtain a feasible solution; however, we can extend
this to the optimization by incorporating it with a binary search to find the minimum

Appl. Sci. 2021, 11, 7574 16 of 19

MaxTime. This formulation is equivalent to the QUBO model in [27]. Figure 7 shows the
schedule obtained through the annealing process using a Fujitsu Digital Annealer.

p1 p2 p3 p4p0

p5 p6 p7 p8 p9

p10 p11 p12 p13 p14

m0

RESOURCE 1`C1

m1

RESOURCE 1`C1

m2

RESOURCE 1`C1

t1

@+1

t2

@+1

t3

@+2

t0

@+2

t4

@+1

t6

@+2

t7

@+1

t5

@+3

t8

@+2

t9

@+3

t10

@+2

t11

@+2

Figure 6. Colored Timed Petri Net Model for Job-Shop Scheduling created by using CPNTools [24].

00:00
May 1, 2021

02:00 04:00 06:00 08:00 10:00 12:00

Operation11

Operation10

Operation9

Operation8

Operation7

Operation6

Operation5

Operation4

Operation3

Operation2

Operation1

Operation0

job1

job0

job2

1w 1m 6m YTD 1y all

Job Shop Schedule

Figure 7. Job-Shop Schedule obtained with the Fujitsu Digital Annealer.

5. Conclusions

This paper proposes a Petri net modeling approach to Ising model formulation for
quantum annealing. A Petri net is an outstanding method for modeling target optimization
problems because it can represent the structure and behavior of problem instances using
simple rules; the color and time extension provides powerful modeling capability. More-
over, for Ising model formulation, we can use various properties extracted systematically
from Petri net models. These properties are well-defined in the Petri net theory.

Appl. Sci. 2021, 11, 7574 17 of 19

We introduced a new class of colored Petri nets, binary quadratic nets, which are
equivalent to the Ising models. Thus, our modeling approach has the following steps:

Step 1: Model the target combinatorial optimization problem with a problem-domain Petri
net such as a timed and colored Petri net;

Step 2: Extract constraints and objective functions as properties from problem-domain
Petri net models and construct a binary quadratic net incrementally;

Step 3: Convert the binary quadratic net to the specified format of the corresponding
quantum annealing machine;

Step 4: Invoke the annealing process with the converted Hamiltonian.

Although our method requires users to model their optimization problems with
problem-domain Petri nets, this process can be carried out in a relatively straightforward
manner if we know the target problem and the simple Petri net modeling rules. Therefore,
we can drastically reduce the difficulty of the Ising model formulation.

We implemented our method with Python incorporated using well-known Petri
net tools, CPNTools, and SNAKES. We can systematically generate the Ising models for
optimization problems, such as scheduling, vehicle routing, and portfolio optimization,
once we model the target optimization problems with Petri nets.

In the future, we aim to introduce a mechanism to reduce the Ising variables and their
interaction densities because they can affect the performance of quantum annealing. Petri
net reachability analysis can contribute to this process as a pre-processing step for quantum
annealing. The binary quadratic net model can also be used to analyze the quantum
annealing process by attaching an additional subnet that simulates the annealing process.
This tool may contribute to parameter tuning for annealing, which is an essential task used
to expand the quantum annealing technology, mentioned in the Introduction.

Author Contributions: Conceptualization, M.N.; methodology, M.N. and K.K.; software, K.K.;
validation, T.Y. and M.N.; formal analysis, M.N. and K.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Interaction Primitives

Table A1 shows the interaction primitives Iqubo
i , i = 0, 1, . . . , 15 for two binary variables

in {0, 1}, where (0, 0), (0, 1), (1, 0), and (1, 1) express all possible combinations of the two
binary variables. In addition, Iqubo

1 , Iqubo
7 , Iqubo

8 , Iqubo
9 correspond to AND, XOR, OR, and

NOR, respectively. Moreover, Iqubo
0 , Iqubo

15 are the inconsistency and tautology, respectively.
The others also show important logical functions.

Table A2 shows the interaction primitives for the Ising model converted from Table A1
by using the following relation.

M(p̂i)
ising = 2M(p̂i)

qubo − 1 (A1)

M(p̂i)
qubo = (M(p̂i)

ising + 1)/2 (A2)

Appl. Sci. 2021, 11, 7574 18 of 19

Table A1. Interaction Primitives in QUBO Models.

(0, 0) (0, 1) (1, 0) (1, 1) Energy Function

Iqubo
0 0 0 0 0 0

Iqubo
1 0 0 0 1 M(p̂i)M(p̂j)

Iqubo
2 0 0 1 0 M(p̂i)(1−M(p̂j))

Iqubo
3 0 0 1 1 M(p̂i)

Iqubo
4 0 1 0 0 (1−M(p̂i))M(p̂j)

Iqubo
5 0 1 0 1 M(p̂j)

Iqubo
6 0 1 1 0 M(p̂i) + M(p̂j)− 2M(p̂i)M(p̂j)

Iqubo
7 0 1 1 1 M(p̂i) + M(p̂j)−M(p̂i)M(p̂j)

Iqubo
8 1 0 0 0 1−M(p̂i)−M(p̂j) + M(p̂i)M(p̂j)

Iqubo
9 1 0 0 1 1−M(p̂i)−M(p̂j) + 2M(p̂i)M(p̂j)

Iqubo
10 1 0 1 0 1−M(p̂j)

Iqubo
11 1 0 1 1 1−M(p̂j) + M(p̂i)M(p̂j)

Iqubo
12 1 1 0 0 1−M(p̂i)

Iqubo
13 1 1 0 1 1−M(p̂i) + M(p̂i)M(p̂j)

Iqubo
14 1 1 1 0 1−M(p̂i)M(p̂j)

Iqubo
15 1 1 1 1 1

x and y in (x, y), x, y ∈ {0, 1}, show M(p̂i) and M(p̂j), respectively. A value of 1 and 0 in each cell represents a
preferable and an un-preferable interaction, respectively.

Table A2. Interaction Primitives in Ising Models.

(−1,−1) (−1,+1) (+1,−1) (+1,+1) Energy Function

I Ising
0 0 0 0 0 0

I Ising
1 0 0 0 1 1

4 (M(p̂i) + 1)(M(p̂j) + 1)

I Ising
2 0 0 1 0 1

4 (M(p̂i) + 1)(−M(p̂j) + 1)

I Ising
3 0 0 1 1 1

2 (M(p̂i) + 1)

I Ising
4 0 1 0 0 1

4 (−M(p̂i) + 1)(M(p̂j) + 1)

I Ising
5 0 1 0 1 1

2 (M(p̂j) + 1)

I Ising
6 0 1 1 0 1

2 (1−M(p̂i)M(p̂j))

I Ising
7 0 1 1 1 1

4 (M(p̂i) + M(p̂j)−M(p̂i)M(p̂j) + 3)

I Ising
8 1 0 0 0 1

4 (−M(p̂i)−M(p̂j) + M(p̂i)M(p̂j) + 1)

I Ising
9 1 0 0 1 1

2 (M(p̂i)M(p̂j) + 1)

I Ising
10 1 0 1 0 1

2 (1−M(p̂j))

I Ising
11 1 0 1 1 1

4 (M(p̂i)−M(p̂j) + M(p̂i)M(p̂j) + 3)

I Ising
12 1 1 0 0 1

2 (1−M(p̂i))

I Ising
13 1 1 0 1 1

4 (−M(p̂i) + M(p̂j) + M(p̂i)M(p̂j) + 3)

I Ising
14 1 1 1 0 1

4 (−M(p̂i)−M(p̂j)−M(p̂i)M(p̂j) + 3)

I Ising
15 1 1 1 1 1

x and y in (x, y), x, y ∈ {−1,+1}, show M(p̂i) and M(p̂j), respectively. A value of 1 and 0 in each cell represents
a preferable and an un-preferable interaction, respectively.

Appl. Sci. 2021, 11, 7574 19 of 19

References
1. Kadowaki, T.; Nishimori, H. Quantum annealing in the transverse Ising model. Phys. Rev. E 1998, 58, 5355–5363. [CrossRef]
2. Farhi, E.; Goldstone, J.; Gutmann, S.; Lapan, J.; Lundgren, A.; Preda, D. A Quantum Adiabatic Evolution Algorithm Applied to

Random Instances of an NP-Complete Problem. Science 2001, 292, 472–475. [CrossRef]
3. Morita, S.; Nishimori, H. Mathematical foundation of quantum annealing. J. Math. Phys. 2008, 49, 125210. [CrossRef]
4. Johnson, M.W.; Amin, M.H.S.; Gildert, S.; Lanting, T.; Hamze, F.; Dickson, N.; Harris, R.; Berkley, A.J.; Johansson, J.; Bunyk, P.; et al.

Quantum annealing with manufactured spins. Nature 2011, 473, 194–198. [CrossRef]
5. Garey, M.R.; Johnson, D.S. Computers and Intractability; A Guide to the Theory of NP-Completeness; W. H. Freeman & Co.: New York,

NY, USA, 1990.
6. Lucas, A. Ising formulations of many NP problems. Front. Phys. 2014, 2, 5. [CrossRef]
7. Grant, E.; Humble, T.S.; Stump, B. Benchmarking Quantum Annealing Controls with Portfolio Optimization. Phys. Rev. Appl.

2021, 15, 014012. [CrossRef]
8. Stollenwerk, T.; O’Gorman, B.; Venturelli, D.; Mandrà, S.; Rodionova, O.; Ng, H.; Sridhar, B.; Rieffel, E.G.; Biswas, R. Quantum

Annealing Applied to De-Conflicting Optimal Trajectories for Air Traffic Management. IEEE Trans. Intell. Transp. Syst.
2020, 21, 285–297. [CrossRef]

9. Ikeda, K.; Nakamura, Y.; Humble, T.S. Application of Quantum Annealing to Nurse Scheduling Problem. Sci. Rep. 2019, 9, 12837.
[CrossRef]

10. Chen, H.; Lidar, D.A. Why and When Pausing is Beneficial in Quantum Annealing. Phys. Rev. Appl. 2020, 14, 014100. [CrossRef]
11. Graß, T. Quantum Annealing with Longitudinal Bias Fields. Phys. Rev. Lett. 2019, 123, 120501. [CrossRef]
12. Brady, L.T.; Baldwin, C.L.; Bapat, A.; Kharkov, Y.; Gorshkov, A.V. Optimal Protocols in Quantum Annealing and Quantum

Approximate Optimization Algorithm Problems. Phys. Rev. Lett. 2021, 126, 070505. [CrossRef]
13. Hauke, P.; Katzgraber, H.G.; Lechner, W.; Nishimori, H.; Oliver, W.D. Perspectives of quantum annealing: methods and

implementations. Rep. Prog. Phys. 2020, 83, 054401. [CrossRef] [PubMed]
14. Tanahashi, K.; Takayanagi, S.; Motohashi, T.; Tanaka, S. Application of Ising Machines and a Software Development for Ising

Machines. J. Phys. Soc. Jpn. 2019, 88, 061010. [CrossRef]
15. Waidyasooriya, H.M.; Hariyama, M. A GPU-Based Quantum Annealing Simulator for Fully-Connected Ising Models Utilizing

Spatial and Temporal Parallelism. IEEE Access 2020, 8, 67929–67939. [CrossRef]
16. Murata, T. Petri nets: Properties, analysis and applications. Proc. IEEE 1989, 77, 541–580. [CrossRef]
17. David, R.; Alla, H. Discrete, Continuous, and Hybrid Petri Nets, 2nd ed.; Springer Publishing Company, Incorporated: Heidelberg,

Germany, 2010.
18. Richard, P. Modelling integer linear programs with petri nets*. RAIRO-Oper. Res. 2000, 34, 305–312. [CrossRef]
19. Nakamura, M.; Tengan, T.; Yoshida, T. A Petri Net Approach to Generate Integer Linear Programming Problems. IEICE Trans.

Fundam. Electron. Commun. Comput. Sci. 2019, E102.A, 389–398. [CrossRef]
20. Porco, A.V.; Ushijima, R.; Nakamura, M. Automatic Generation of Mixed Integer Programming for Scheduling Problems Based

on Colored Timed Petri Nets. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2018, E101.A, 367–372. [CrossRef]
21. Hoos, H.H.; Stützle, T. 1-Introduction. In Stochastic Local Search; Hoos, H.H., Stützle, T., Eds.; The Morgan Kaufmann Series in

Artificial Intelligence; Morgan Kaufmann: San Francisco, CA, USA, 2005; pp. 13–59. [CrossRef]
22. Gendreau, M.; Potvin, J.Y. Metaheuristics in Combinatorial Optimization. Ann. Oper. Res. 2005, 140, 189–213. [CrossRef]
23. van der Aalst, W.M.P. Petri net based scheduling. Oper. Res. Spektrum 1996, 18, 219–229. [CrossRef]
24. Jensen, K.; Kristensen, L.M.; Wells, L. Coloured Petri Nets and CPN Tools for modeling and validation of concurrent systems.

Int. J. Softw. Tools Technol. Transf. 2007, 9, 213–254. [CrossRef]
25. Oku, D.; Terada, K.; Hayashi, M.; Yamaoka, M.; Tanaka, S.; Togawa, N. A Fully-Connected Ising Model Embedding Method and

Its Evaluation for CMOS Annealing Machines. IEICE Trans. Inf. Syst. 2019, E102.D, 1696–1706. [CrossRef]
26. Pommereau, F. SNAKES: A Flexible High-Level Petri Nets Library (Tool Paper). In Application and Theory of Petri Nets and

Concurrency; Devillers, R., Valmari, A., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 254–265.
27. Venturelli, D.; Marchand, D.J.J.; Rojo, G. Quantum Annealing Implementation of Job-Shop Scheduling. arXiv 2016,

arXiv:1506.08479.

http://doi.org/10.1103/PhysRevE.58.5355
http://dx.doi.org/10.1126/science.1057726
http://dx.doi.org/10.1063/1.2995837
http://dx.doi.org/10.1038/nature10012
http://dx.doi.org/10.3389/fphy.2014.00005
http://dx.doi.org/10.1103/PhysRevApplied.15.014012
http://dx.doi.org/10.1109/TITS.2019.2891235
http://dx.doi.org/10.1038/s41598-019-49172-3
http://dx.doi.org/10.1103/PhysRevApplied.14.014100
http://dx.doi.org/10.1103/PhysRevLett.123.120501
http://dx.doi.org/10.1103/PhysRevLett.126.070505
http://dx.doi.org/10.1088/1361-6633/ab85b8
http://www.ncbi.nlm.nih.gov/pubmed/32235066
http://dx.doi.org/10.7566/JPSJ.88.061010
http://dx.doi.org/10.1109/ACCESS.2020.2985699
http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.1051/ro:2000115
http://dx.doi.org/10.1587/transfun.E102.A.389
http://dx.doi.org/10.1587/transfun.E101.A.367
http://dx.doi.org/10.1016/B978-155860872-6/50018-4
http://dx.doi.org/10.1007/s10479-005-3971-7
http://dx.doi.org/10.1007/BF01540160
http://dx.doi.org/10.1007/s10009-007-0038-x
http://dx.doi.org/10.1587/transinf.2018EDP7411

	Introduction
	Preliminaries
	Combinatorial Optimization Problems
	Quantum Annealing and Ising Models
	Petri Net Fundamentals

	Binary Quadratic Nets
	Formal Definition
	Binary Quadratic Net Examples

	Binary Quadratic Net Construction from Problem Domain Petri Nets
	Incremental Construction Based on Superposition Principle
	Marking-Based Construction
	Boundedness
	Invariant

	Firing-Based Construction
	Resource Conflict
	Firing Count
	Precedence Relation

	Application Example 1 (Marking-Based Construction): Traveling Salesman Problems
	Application Example 2 (Firing-Based Construction): Job-Shop Scheduling Problems

	Conclusions
	
	References

