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Featured Application: The results of this work will be used to develop a classification framework
that will be applied in the analysis of a large number of scattered users’ electricity consumption
behavior. This work sets labels for existing electricity consumption behaviors to carry out the
classification of unknown types of electricity consumption behavior.

Abstract: Power big data-based artificial intelligence or data mining methods, which can be used to
analyze electricity consumption behavior, have been widely applied to provide targeted marketing
services for electricity consumers. However, the traditional clustering algorithm has difficulty in
judging new electricity consumption patterns. Deep neural networks usually need large amounts
of labeled data. However, there are few comparable electricity consumption features or basic data,
and the labeled data cannot meet the actual needs. Therefore, an intelligent classification framework
for electricity consumption behavior based on an improved k-means and long short-term memory
(LSTM) is proposed, which not only extracts features effectively, but also establishes a mapping
relationship between unlabeled electricity consumption behavior characteristics and user types. The
features can be labeled to train the deep neural network to judge the electricity consumption behavior
of new users. Firstly, nine typical characteristics were selected from aspects including electricity
price sensitivity and load fluctuation rate. Secondly, the k value and initial clustering centers of
the k-means algorithm were optimized. Thirdly, the users were labelled based on the clustering
results, together with the features, and a dataset was formed, which was input into LSTM to train
the classification model. Finally, the analysis of users in Shenyang, China, showed the results based
on the proposed method were consistent with the actual situation. Moreover, compared to other
methods, the efficiency and accuracy were higher.

Keywords: electricity consumption behavior; power big data; improved k-means algorithm; deep
neural network; LSTM

1. Introduction

Based on power big data, artificial intelligence or data mining techniques can be
reasonably applied to the analysis of user electricity consumption behavior and habits,
which can help power grids to understand the characteristics of users’ electricity con-
sumption and provide more targeted electricity services and marketing strategies [1–3].
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However, with regard to dispersed and distinct power big data, how to choose appropri-
ate data analysis methods, how to select effective features, and how to make full use of
historical data to achieve detailed classification of electricity consumption behavior are all
unsolved problems.

At present, the methods commonly used in electricity behavior analysis are cluster
analysis and deep neural networks [4]. A clustering method based on self-organizing maps
and k-means was proposed in [5], where the self-organizing map was used to initially
select cluster centers, which significantly improved the accuracy of clustering and reduced
the convergence time of the algorithm. In [6], principal component analysis was introduced
to extract features from the original data, and then these features were used as the input of
fuzzy clustering, which effectively improved the efficiency of the clustering. In [7], affinity
propagation clustering was used in the analysis of electricity consumption. The discrete
characteristics and time domain features obtained by symbolic aggregate approximation
were extracted. The load curve was reduced in dimensionality and has been fully described.
In [8], based on a correlation analysis, cluster forecasting was carried out for each type
of load, which not only considered the electricity consumption characteristics of each
type of load but also clustered the loads with similar characteristics, reducing the error
of load forecasting. In [9], a method based on a simulated annealing algorithm for the
optimization of initial cluster centers was proposed, which improved the performance of
the k-means algorithm. A pattern classification of an electricity consumption curve based
on auto-encoding neural network and fuzzy c-means clustering was proposed in [10], and
the optimized electricity price model was established for different electricity consumption
patterns, which could guide users to adjust electricity consumption behavior and electricity
purchase strategies. Deep neural networks are generally used in load forecasting and
classification. A load forecasting method based on a deep belief network (DBN) was
proposed in [11]. The potential environmental factors with the strongest correlation with
the electricity consumption behavior were selected as inputs to improve the forecasting
accuracy. A user classification method based on hybrid long short-term memory (H-LSTM)
neural network was proposed in [12]. The H-LSTM neural network analyzed the temporal
correlation of feature sequences, and then obtained the classification results.

The above methods focused on the improvement of clustering algorithms or the
optimization of features, and the cluster analyses were only performed on the existing
data. If new electricity consumption data appears, re-clustering will take a lot of time.
Additionally, deep neural networks are often used for load forecasting and require a large
amount of label data.

The main contributions of this paper are summarized as follows:

(1) A framework for intelligent classification of electricity consumption behavior based
on improved k-means and LSTM is proposed, which can judge users’ electricity
consumption behavior accurately.

(2) An improved k-means clustering method is introduced to set labels for scattered and
irregular original data, and the initial k value and initial clustering centers of the
k-means algorithm are optimized intelligently.

The remainder of this paper is organized as follows: Section 2 proposes the classifi-
cation framework for electricity consumption behavior based on improved k-means and
LSTM. Section 3 delivers the defined characteristics and the improved k-means clustering
algorithm, as well as the basic network framework of LSTM. Section 4 analyzes the electric-
ity consumption behavior of SY city in LN Province, China, based on the proposed method.
Section 5 concludes the paper.

2. The Framework of Electricity Consumption Behavior Classification Based on
Improved K-Means and LSTM

Electricity consumption behavior classification based on improved k-means and LSTM
mainly includes selecting electricity characteristics and electricity consumption behavior
classification. In order to form an effective feature set to train the classification model,
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cluster analysis was performed. Based on the clustering results, the labels for each user
were set corresponding to the extracted features. Then, the intelligent classification model
was achieved. The framework is shown in Figure 1.
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The specific steps corresponding to the framework are as follows:

1. Data acquisition: The electricity consumption data of a certain period were acquired
by smart meters. Then, the incomplete data in the original data were replaced with
values (average or median) close to the center of the sample attribute. In order to avoid
the impact of data differentiation, the above preprocessed data were normalized.

2. Feature selection: Multi-dimensional features were calculated based on the prepro-
cessed data, which included electricity consumption, electricity price sensitivity, load
fluctuation rate, and power factor.

3. Cluster analysis: Referring to the calculated features, we performed a preliminary
clustering of users. In order to improve the performance of clustering, the traditional
k-means algorithm was improved.

4. Training classification model: We initialized the LSTM network structure and selected
model parameters. Based on the results of clustering, the users’ labels were set.
Together with the calculated features, the electricity consumption behavior dataset
was formed, which was used as an input to train the LSTM classification model, and
then the trained model parameters were saved.

5. Evaluation of classification results: We obtained new electricity consumption data
from smart meters and calculated features through the same steps as above. Then, we
input the new features into the trained LSTM, and output the classification results
to judge the users’ electricity consumption behavior. Finally, the performance of the
model was evaluated, and the classification results of other models were compared.



Appl. Sci. 2021, 11, 7625 4 of 17

3. Analysis Method of Users’ Electricity Consumption Behavior
3.1. Multi-Dimensional Feature Extraction

There are two common clustering methods for electricity consumption behaviors:
direct clustering and indirect clustering. Direct clustering includes k-means, hierarchical
clustering, density-based spatial clustering with noise, and self-organizing maps. Indirect
clustering requires the performance of feature extraction on the electricity data before
clustering. Good feature extraction can greatly improve the effect of clustering [2].

The user’s electricity consumption behaviors are related to multiple factors, such
as load, price, time, and environment. There are many characteristics used to describe
the behavior, including the daily load rate, valley electricity coefficient, peak time power
consumption rate, daily minimum, and maximum load [13,14]. According to different
electricity consumption characteristics, different electricity consumption behaviors can be
derived.

However, there are few horizontally comparable features and basic data that can be
obtained. Some defined features are difficult to meet the actual needs [15,16]. In this paper,
a set of electricity consumption characteristics based on power big data (mainly including
active load, reactive load, electricity consumption, and electricity price) are proposed,
which take into account four aspects: electricity consumption, electricity price sensitivity,
load fluctuation rate, and power factor.

• Electricity consumption characteristics.

The total electricity consumption reflects the user’s electricity consumption capacity,
which is closely related to the type of the user. It is shown as:

A =
24

∑
i=1

P(i)∆T (1)

where A is the total electricity consumption in one day; P(i) is the active power per hour;
∆T is the time interval, which is 1 h. The total electricity consumption is related to the
composition and load adjustment measures of users.

• Sensitivity of electricity price.

Electricity price sensitivity includes sensitivity of electricity price changes and sensi-
tivity of total electricity price.

(a) Sensitivity of electricity price changes:

SS =
24

∑
i=1

F(i) (2)

F(i) =

{
0, T(i + 1)− T(i) = 0
P(i+1)−P(i)
T(i+1)−T(i) , T(i + 1)− T(i) 6= 0

(3)

where SS represents the sensitivity of electricity price change; F(i) represents the electricity
price change at each hour. P(i) represents the active power at time i; P(i + 1) represents the
active power at time i + 1; T(i) represents the electricity price at time i; T(i + 1) represents
the electricity price at time i + 1.

(b) Sensitivity of total electricity price:

ST1 =
W1

T1
(4)

ST2 =
W2

T2
(5)

ST3 =
W3

T3
(6)
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where ST1, ST2, and ST3 are the sensitivity of total electricity price in the valley, flat, and
peak period, respectively; W1, W2, and W3 are the electricity consumption in the valley, flat,
and peak period, respectively. T1 = 0.4 is the electricity price in the valley period; T2 = 0.8
is the electricity price in the flat period; and T3 = 1.2 is the electricity price in the peak
period.

The above two parameters can reflect the users’ electricity demand changes with
electricity prices. The higher the electricity price sensitivity, the greater the load. Conversely,
the lower the electricity price sensitivity, the smaller the load.

• Load fluctuation rate.

Load fluctuation rate includes the peak–valley difference, the mean square deviation,
and the ramps.

(a) Peak–valley difference:

DPN = max(P(i))−min(P(i)) (7)

where DPN is the peak–valley difference, which is equal to the difference between max(P(i))
(maximum active power) and min(P(i)) (minimum active power) at time i. The index is
closely related to the fluctuation of electricity consumption and season.

The greater the peak–valley difference, the greater the peak-shaving pressure of the
grid, and the greater the peak-shaving capacity required to maintain the safe operation of
the grid.

(b) Mean square deviation:

MSE =

√√√√ 1
24

24

∑
i=1

(P(i)− P)2 (8)

where MSE represents the mean square deviation; P(i) is the active power at i; P is the
average active power of a day.

The mean square deviation can reflect the dispersion degree of active power of the
user at 24 h. The larger the mean square deviation, the greater the user’s load fluctuation
rate. The smaller the mean square deviation, the smaller the user’s load fluctuation rate,
and the more stable the load.

(c) Ramps:

R =
23

∑
i=1

(P(i + 1)− P(i))2 (9)

where R represents ramps; P(i) represents the active power at i; P(i + 1) represents the
active power at i + 1. In peak or low periods of load, ramping events pose a great threat to
the safe operation of a power system.

• Power factor.

The power factor reflects the utilization rate of electrical equipment from a technologi-
cal perspective and the economic benefits of a grid from a management perspective. The
minimum power factor is selected as the characteristic:

MINPF = min(P(i)/Q(i)) (10)

where MINPF is the minimum power factor; P(i) is the active power at i; Q(i) is the
reactive power at i. The higher the power factor, the higher the equipment utilization rate,
and the better the economic efficiency of the grid.

Based on the above index, each user’s electricity consumption behavior is expressed
as a 1 × 9 vector X = [A, SS, ST1, ST2, ST3, DPN, MSE, R, MINPF]. In order to avoid the
influence of larger or smaller values, X is normalized. Using X as a reference, the cluster
analysis is performed on the user’s electricity consumption behavior.
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3.2. Optimization of K Value

Cluster analysis of users’ electricity data can divide a large number of scattered
users into k typical electricity consumption patterns, which is helpful for further refining
electricity consumption characteristics. A k-means clustering algorithm is simple and
efficient, and with fast convergence and strong scalability, which is often used in the study
of electricity consumption behavior [17–19].

A k-means algorithm needs to specify the number of clusters k in advance. However,
the k is usually given by experience, without considering the actual characteristics of the
sample, which is subjective. Therefore, a k value selection strategy based on the K-D
calculation was proposed.

Firstly, select a point as the first clustering center in feature dataset. Secondly, calculate
the distance D(x) between each point and the selected cluster center. The smaller the D(x),
the greater the probability that that point is selected as the new cluster center. Then, repeat
the calculation until k cluster centers are selected. Finally, use these k values as the initial
cluster centers, and the k value can be obtained from the K-D curve.

D =
D1

D2
(11)

where D is the distance between each point and the nearest cluster center; D1 is the average
distance within the cluster; and D2 is the average distance between clusters. The smaller
the D, the smaller the intra-class distance, or the larger the inter-class distance.

The common distance calculation methods of a k-means algorithm are cosine similarity
and Euclidean distance. We adopted the latter and took the square root of the minimum
Euclidean distance as the objective function.

3.3. Optimization of Initial Clustering Centers

The initial clustering centers of the traditional k-means algorithm is randomly given,
which may cause the algorithm to fall into a local optimum, and the final result will
be unstable. Therefore, an improved particle swarm optimization (PSO) algorithm for
initial cluster centers optimization is proposed. The PSO algorithm does not have many
adjustment parameters, which is simple and can be used for a wide range of applications.
The algorithm has been introduced many times in the literature [20,21].

The improved PSO algorithm proposed in this paper mainly selects the inertial weight
factor and the learning factor by adjusting the parameters, which avoids the algorithm
from falling into the local optimum and being difficult to converge when searching the
optimal solution.

Supposing the initial clustering centers composed of N particles are searched in the D
dimensional space, the position of the i−th particle is xid = (xi1, xi2, . . . xid), and the flight
speed is vid = (vi1, vi2, . . . , viD), where, i = 1, . . . , N. After determining the optimal solu-
tion, the particle swarm updates the position and velocity according to (12) and (13) [22].

vk+1
id = wvk

id + c1r1(pk
i − xk

id) + c2r2(pk
g − xk

id) (12)

xk+1
id = xk

id + vk+1
id (13)

where k is the number of iterations; w is the inertia weight factor; c1 and c2 are the learning
factor, and their values are reported in [1,2]. Their appropriate value can accelerate the
convergence rate and avoid falling into the local optimum. r1 and r2 are two random
numbers in [0, 1]. pk

i and pk
g are the local optimal value and global optimal value of the

particle swarm, respectively.
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In order to increase the position search ability of the particles in the early stage and
the converge speed in the later stage, the inertial weight factor w is iterated according to
the rule of linear decrease, which is adjusted with the number of iterations:

wi = wmax −
t(wmax − wmin)

tmax
(14)

where wi is the i-th inertia weight value; tmax is the maximum number of iterations; wmax
is the maximum inertia weight factor; wmin is the minimum inertia weight factor.

The learning factors c1 and c2 are the linear change of the update rate. In the initial
search, c1 is larger, and c2 is smaller. As the iteration progresses, c1 decreases linearly, and
c2 increases linearly. Each particle moves closer to the global optimum. The update of c1
and c2 is as follows (15)–(16):

c1t = c1 f +
t(c1b − c1 f )

tmax
(15)

c2t = c2 f +
t(c2b − c2 f )

tmax
(16)

where c1b and c2b are the initial setting value of acceleration constant c1 and c2; c1 f and c2 f
are the final value of acceleration constant c1 and c2 after the maximum iteration; tmax is
the maximum number of iterations.

The flowchart of the improved k-means clustering algorithm is shown in Figure 2.
Based on the above process, the user’s electricity consumption behaviors were clustered,
and the labels were obtained according to different electricity consumption patterns, which
provide the basis of the data for intelligent classification.

3.4. LSTM Classification Model

Based on the clustering result and the extracted features, the dataset of users’ electricity
consumption behavior characteristics was formed. Considering the high dimensionality
and timing correlation of features, a long short-term memory (LSTM) neural network
was selected as the classification model. After setting up the network architecture and
parameters, the neural network was trained to learn the characteristics with the above-
mentioned dataset. Then, the mapping relationship between the user’s category and the
electricity characteristics was established, which can automatically judge the new user
electricity behavior.

Deep learning has many practical applications in electricity consumption behavior
analysis, including grid operation monitoring and load forecasting [23,24]. LSTM is a
common classification model and is widely used in speech recognition, text classification,
and other fields; it is especially suitable for sequence modeling. Through continuous
improvement of LSTM [25–27], the neurons in the hidden layer of the recurrent neural
network (RNN) were replaced with unique memory neural units, which effectively solves
the problems of gradient disappearance and gradient explosion in the RNN.

Each memory unit of LSTM is composed of an input gate, a forget gate, and an output
gate. The unit structure is shown in Figure 3. C is used to save the long-term state of the
sequence and to pass the information to the next layer. The forget gate updates C and
discards the outdated information.
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After the data xt at t reach the network, it is used as the input together with the output
ht−1 at the previous time to update Ct−1 to obtain a new long-term state Ct, which is shown
in (17). 

ft = σ(W f · [ht−1, xt] + b f )

it = σ
(

W f · [ht−1, xt] + bi

)
Ct = tanh(WC[ht−1, xt] + bc)

Ct = ft × Ct−1 + itCt

(17)
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Then, perform a sigmoid calculation on xt to obtain ot. Calculate ot and the updated
long-term state ot to obtain the output Ct, which is shown in (18):{

ot = σ(Wo · [ht−1, xt] + bo)

ht = oi × tanh(Ct)
(18)

LSTM regulates the flow of characteristic sequences and filters information through
input gates, forget gates, and output gates, which can better cover seasonal changes or
timing fluctuations of users’ electricity consumption behavior. Moreover, for a large number
of high-dimensional features, the classification performance of LSTM is better than BP,
SVM, ELM, and other shallow learning models. The generalization ability is stronger, and
the accuracy is higher.

4. Case Analysis Results

The electricity consumption data in this case are the active and reactive power of
99,442 users in SY City, LN Province, in February, May, August, and November 2018,
which is measured every hour every day. February, May, August, and November can
represent the electricity consumption characteristics of the four seasons, respectively. The
peak–valley–flat time periods and the corresponding electricity prices in SY City are shown
in Table 1.

Table 1. Peak–valley–flat time and price of electricity load in SY city.

Electricity Consumption Peak Valley Flat

Time 8:00–12:00
17:00–21:00

5:00–8:00
12:00–17:00
21:00–22:00

22:00–05:00

Price [CNY· (kW · h)−1] 1.2 0.8 0.4

4.1. Analysis of Electricity Consumption Behavior

Firstly, the electricity data were divided into 77,000 sets for the preprocessing and
multi-dimensional features calculation. Then, the improved k-means method was used for
cluster analysis on the calculated features. The minimum D was obtained by testing when
K = 5, and the corresponding K-D curve is shown in Figure 4.
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According to the clustering results, the users’ electricity characteristics are divided
into five typical patterns, from which the average value of the electricity load of each type
of user can be calculated for detailed analysis. The electricity consumption curves of each
type of user in each quarter are shown in Figures 5–8. As shown in Figure 5a, Figure 6a,
Figure 7a, Figure 8a, load types 1, 2, 4, and 5 are in the same left y-axis coordinate, and load
type 3 is in the other right y-axis coordinate.
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It can be concluded that (a) the load curves in February and August (spring and
autumn), and in May and November (summer and winter) were consistent, respectively.
Compared with the load curves of the four months, it was found that the average type 2
load in May and November was higher than that in February and August. This type of
load was a cooling load in the summer and a heating load in the winter. The first type 3 and
4 load curves remained unchanged within one year, which are the daily electricity loads,
such as resident load, industrial load, and commercial load. (b) The electricity consumption
characteristics of type 1, 4 and 5 loads among the four months had obvious time-dependent
characteristics: the electricity consumption period was concentrated between 5:00 a.m. to
11:00 p.m., which has a strong correlation with working hours. The type 1 load had the
most severe fluctuation and the largest average electricity consumption. It also had a more
obvious load spike. The average electricity consumption values of the type 2 and the type
4 loads were relatively small. The analysis results are consistent with the actual situation.

The electricity consumption characteristics of each user in each quarter are shown in
Tables 2–5.

Table 2. Electricity characteristics in February.

Type A SS ST1 ST2 ST3 DPN MSE RMP MINFP

1 148,724.90 691.05 887.60 3028.27 2028.09 500.17 151.60 1,736,617.25 0.69
2 2.73 0.00 0.03 0.05 0.03 0.02 0.00 0.00 0.48
3 150.48 0.25 1.01 3.16 1.70 1.14 0.29 26.64 0.61
4 1438.09 10.28 8.55 28.23 20.87 6.98 1.94 630.46 0.56
5 22,811.29 112.37 178.13 471.28 243.09 84.79 24.88 220,706.65 0.48

Table 3. Electricity characteristics in May.

Type A SS ST1 ST2 ST3 DPN MSE RMP MINFP

1 139,238.99 726.53 795.37 2907.16 1929.18 476.91 144.38 1,457,026.12 0.75
2 103,531.74 436.17 827.64 2107.28 1116.34 357.39 106.10 1,314,510.43 0.68
3 131.84 0.33 0.95 2.61 1.62 0.92 0.24 7.77 0.67
4 1401.43 9.92 20.16 22.43 10.43 17.08 4.03 9224.87 0.67
5 1491.33 10.61 8.88 29.32 21.60 7.05 1.98 548.61 0.90



Appl. Sci. 2021, 11, 7625 12 of 17

Table 4. Electricity characteristics in August.

Type A SS ST1 ST2 ST3 DPN MSE RMP MINFP

1 160,102.23 688.09 894.54 3094.59 2035.40 501.63 152.03 1,732,439.39 0.68
2 2.95 0.00 0.03 0.05 0.03 0.02 0.00 0.00 0.82
3 160.85 0.24 1.02 3.15 1.70 1.13 0.29 24.17 0.68
4 1541.06 10.28 8.52 28.26 20.88 6.99 1.94 640.59 1.00
5 23,964.09 111.05 174.16 462.87 238.34 83.37 24.49 217,997.52 0.81

Table 5. Electricity characteristics in November.

Type A SS ST1 ST2 ST3 DPN MSE RMP MINFP

1 147,504.50 725.86 784.20 2874.68 1910.23 472.74 143.19 1,440,424.00 0.62
2 113,077.80 436.06 842.00 2149.86 1139.75 362.00 107.54 1,330,185.00 0.67
3 140.18 0.32 0.94 2.59 1.61 0.92 0.24 7.79 0.70
4 1582.28 10.55 8.82 28.95 21.43 7.01 1.96 539.64 0.62
5 1516.08 10.02 20.24 22.75 10.56 17.08 4.03 9265.71 0.62

As can be seen from these tables, except for the minimum power factor, the other
characteristic values of the type 1 load of each quarter were the largest. Combined with the
actual analysis of the change of the type 2 load, it was the cooling load in May (summer)
and the heating load in November (winter), and thus the characteristic value was larger.
In February (spring) and August (autumn), the type 2 load was out of service, and the
characteristic value was small.

The characteristics of the type 3 and 4 loads were smaller. The characteristics of
the type 5 load were closer to the type 4 load in May and November. The difference of
characteristic values of the two types was less than 100. However, the characteristics of the
type 5 load in February and August increased by more than 10 times compared to May
and November.

The change in the characteristic value was consistent with the load fluctuation, which
can effectively reflect the users’ electricity consumption behavior. The characteristic value
of the type 3 and 4 loads was smaller. The characteristics of the type 5 load were closer
to those of the type 4 load in May and November, and the type 5 load consumption in
February and August increased nearly 10 times compared with that in May and November.
The change in the characteristic value was consistent with the load fluctuation, which can
effectively reflect the users’ electricity consumption behavior.

Finally, the silhouette index (SI) was used to compare the traditional k-means al-
gorithm, the particle swarm optimization-based k-means algorithm (PSO-K), and the
improved k-means proposed in this paper.

The silhouette index is defined as

SI =
dout − din

max(dout, din)
(19)

where din represents the average distance between the sample point and all other points
in the same cluster; dout represents the average distance between the sample point and
all points in the next closest cluster. SI is a key indicator used to describe the difference
between the inside and outside of the cluster. Its value range is (−1, 1). The closer to 1, the
better the clustering effect.

The comparison results are shown in Table 6.

Table 6. Evaluation of clustering performance.

Evaluation K-Means PSO-K PSO-KD

Silhouette Index (SI) 0.5644 0.6434 0.6345
Time (T/s) 17,263.3 39,736.62 10,274.02
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It can be seen that although the SI of PSO-K is high, the efficiency is low. The SI of
the algorithm proposed in this paper was high, the calculation time was short, and the
efficiency was improved, which shows the superiority of the improved algorithm.

4.2. Classification of Electricity Consumption Feature

The above characteristics can be normalized, and thus, the labels for each user based
on different electricity consumption quarters and user clustering categories can be obtained,
which can form the users’ electricity consumption behavior dataset. The labels are shown in
Table 7. Then, 15,000 new sample data from the measurement data that did not participate
in the above cluster analysis were selected. After data preprocessing, multiple feature
values were calculated. These formed a test dataset of the classification model. Since the
classification performance of LSTM needs to be evaluated, the sampling period and users’
type of the test sample in this case were known.

Table 7. User-type label.

User Type Label Quarter Label

1 001 1 001
2 010 2 010
3 100 3 100
4 101 4 101
5 111

The specific settings of the LSTM classification model were the following: the number
of input channels was 1; the input dimension was 9; the output dimension was 6; and the
numbers of neurons in the first and second hidden layers were 25 and 10, respectively. The
neuron excitation function adopted a sigmoid function; the model learning rate was 0.001;
and the execution environment was designated as the GPU. The gradient threshold was 1;
the number of trainings per batch was set to 300; and the sequence length was specified as
the longest.

The accuracy of the classification model under different optimization algorithms and
different hidden layer nodes is shown in Figure 9. It can be seen that Adam was superior
to other algorithms. When the Adam algorithm was used to train the network, the learning
step size of each iteration parameter had a certain range, and the large gradient did not
cause an excessive learning step size. Therefore, the parameter update was more stable,
and the convergence speed was faster.
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Based on the feature dataset, the users’ electricity consumption behavior in SY city
was classified. During the training process, the classification accuracy changed when the
network selected different initial learning rates and different iteration times, as shown in
Figure 10. When the initial learning rate was 0.001 and the number of iterations was 50, the
corresponding training dataset accuracy rate curve and loss curve changed, as shown in
Figure 11.
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Due to certain differences in input features, the classification accuracy in the early
days of network training varied greatly. As the iteration continued, the loss curve gradually
approached zero, and the model training was completed. LSTM can give the characteristic
sequence a certain timing correlation, and has a good time dependence on the input
electricity consumption characteristics of different quarters.

The test data were input into the network, and the classification accuracy rate was
96.71%. In order to further evaluate the network performance, precision, recall, and F1-
score were also introduced, and the evaluation values of some classification models, such
as SVM, KNN, ELM, and BP, were compared. The comparison results are shown in Table 8.

Table 8. Performance evaluation of different classifiers.

Classifier Accuracy Precision Recall F1-Score

LSTM 96.71% 95.15% 98% 96.65%
SVM 90.85% 90.15% 95% 90.81%
KNN 83.53% 80.32% 88.82% 84.36%
ELM 86.47% 86.74% 90.83% 88.74%
BP 73.53% 67.07% 98.24% 79.71%

It can be concluded from the above analysis that the combination of LSTM and k-
means clustering cannot only set cluster labels for complex and irregular original electricity
consumption data, but also automatically classify new users’ electricity consumption
characteristics, which can carry out analysis of the users’ electricity consumption behavior
based on the existing massive electricity big data.

After preliminary clustering analysis of electricity consumption data, the scattered
electricity characteristics can be divided into typical categories, and labels can be set for
each user. The classification model was trained, and new electricity behavior classifications
were given by LSTM, which is beneficial to grids to provide users with targeted services.

5. Conclusions

In this paper, an intelligent analysis of users’ electricity consumption behavior based
on improved k-means and LSTM is proposed, which can divide scattered and irregular
original electricity consumption data according to the effective features. Then, the labels
corresponding to the data can be given to form a feature dataset. A deep neural network
trained based on the existing data can predict the user’s type based on new electricity con-
sumption characteristics so that it can intelligently provide users with targeted electricity
consumption strategies or marketing services. This effectively solves the problem of a
single analysis method not being able to easily classify and judge the new electricity data.

Nine features were extracted based on power big data, which could comprehensively
characterize users’ electricity consumption behavior. The improvement of a k-means
algorithm greatly improved the efficiency of cluster analysis. The clustering results and
features formed an effective dataset.

Compared with the method of directly training a neural network with original data,
the calculation time of the proposed algorithm was reduced, and the classification results of
new electricity data were more accurate. The analysis results can provide support for grids
to formulate targeted marketing services. However, the classification model selected only
considered the time dependence of electricity data and the seasonal correlation of features.
In the future, the applicability of other deep learning models will be further analyzed.
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