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Abstract: Dictionary learning has been an important role in the success of data representation.
As a complete view of data representation, hybrid dictionary learning (HDL) is still in its infant
stage. In previous HDL approaches, the scheme of how to learn an effective hybrid dictionary for
image classification has not been well addressed. In this paper, we proposed a locality preserving
and label-aware constraint-based hybrid dictionary learning (LPLC-HDL) method, and apply it in
image classification effectively. More specifically, the locality information of the data is preserved
by using a graph Laplacian matrix based on the shared dictionary for learning the commonality
representation, and a label-aware constraint with group regularization is imposed on the coding
coefficients corresponding to the class-specific dictionary for learning the particularity representation.
Moreover, all the introduced constraints in the proposed LPLC-HDL method are based on the l2-norm
regularization, which can be solved efficiently via employing an alternative optimization strategy.
The extensive experiments on the benchmark image datasets demonstrate that our method is an
improvement over previous competing methods on both the hand-crafted and deep features.

Keywords: locality preserving; label-aware constraint; hybrid dictionary learning; image classification

1. Introduction

Due to the insufficiency of data representation, Dictionary Learning (DL) has aroused
considerable interest in the past decade and achieved much success in the various applica-
tions, such as image denoising [1,2], person re-identification [3,4] and vision recognition [5–8].
Generally speaking, the DL methods are developed based on a basic hypothesis, which are
that a test signal can be well approximated using the linear combination of some atoms in
a dictionary. Thus the dictionary usually plays an important role in the success of these
applications. Traditionally, the DL methods can be roughly divided into two categories:
The unsupervised DL methods and the supervised DL methods [9,10].

In the unsupervised DL methods, a dictionary is optimized to reconstruct all the
training samples without any label assignment; hence, there is no class information in
the learned dictionary. By further integrating the label information into dictionary learn-
ing, the supervised DL methods can achieve better classification performance than the
unsupervised ones for image classification. Supervised dictionary learning encodes the
input signals using the learned dictionary, then utilizes the representation coefficients or
the residuals for classification. Thus the discriminative ability of the dictionary and the
representative ability of the coding coefficients play the key roles in this kind of approach.
According to the types of the dictionary, the supervised DL methods can be further divided
into three categories: The class-shared DL methods, the class-specific DL methods and the
hybrid DL methods [11].
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The class-shared DL methods generally force the coding coefficients to be discrim-
inative via learning a single dictionary shared by all the classes. Based on the K-SVD
algorithm, Zhang and Li [5] proposed the Discriminative K-SVD (D-KSVD) method to
construct a classification error term for learning a linear classifier. Jiang et al. [6] further
proposed the Label Consistent K-SVD (LC-KSVD) which encourages the coding coefficients
from the same class to be as similar as possible. Considering the characteristics of atoms,
Song et al. [12] designed an indicator function to regularize the class-shared dictionary to
improve the discriminative ability of coding coefficients. In general, the computation of
the test stage is very efficient in the class-shared DL methods, but it is hard to improve
the coefficients’ discriminativity for better classification performance as the class-shared
dictionary is not enough for fitting the complex data.

In the class-specific dictionary learning, each sub-dictionary is assigned to a single
class and the sub-dictionaries with the different classes are encouraged to be as independent
as possible. As a representative class-specific DL method, Fisher Discrimination Dictionary
Learning (FDDL) [13] employs Fisher discrimination criterion on the coding coefficients,
then utilizes the representation residual of each class to establish the discriminative term.
Using with the incoherence constraint, Ramirez et al. [14] proposed a structured dictionary
learning scheme to promote the discriminative ability of the class-specific sub-dictionaries.
Akhtar et al. [15] developed a Joint discriminative Bayesian Dictionary and Classifier
learning (JBDC) model to associate the dictionary atoms by the class labels with Bernoulli
distributions. The class-specific DL methods usually associate a dictionary atom to a
single class directly; hence, the reconstruction error with respect to each class can be used
for classification. However, the test stage of this category often requires the coefficient
computation of test data over many sub-dictionaries.

In the hybrid dictionary learning, a dictionary is designed to have a set of class-shared
atoms in addition to the class-specific sub-dictionaries. Wang and Kong [16] proposed a
hybrid dictionary dubbed DL-COPAR to explicitly separate the common and particular
features of the data, which also encourages the class-specific sub-dictionaries to be incoher-
ent. Vu et al. [17] developed a Low-Rank Shared Dictionary Learning (LRSDL) method to
preserve the common features of samples. Gao et al. [18] developed a Category-specific
and Shared Dictionary Learning (CSDL) approach for fine-grained image classification.
Wang et al. [19] designed a structured dictionary consisting of label-particular atoms corre-
sponding to some class and shared atoms commonly used by all the classes, and introduced
a Cross-Label Suppression for Dictionary Learning (CLSDL) to generate approximate sparse
coding vectors for classification. To some extent, the hybrid dictionary is very effective at
preserving the complex structure of the visual data. However, it is nontrivial to design the
class-specific and shared dictionaries with the proper number of atoms, which often has a
severe effect on classification performance.

In addition to utilizing the class label information, more and more supervised DL
approaches have been proposed to incorporate the locality information of the data into
the learned dictionary. By calculating the distances between the bases (atoms) and the
training samples, Wang et al. [20] developed a Locality-constrained Linear Coding (LLC)
model to select the k-nearest neighbor bases for coding, and set the coding coefficients
of other atoms to zero. Wei et al. [21] proposed locality-sensitive dictionary learning to
enhance the power of discrimination for sparse coding. Song et al. [22] integrated the
locality constraints into the multi-layer discriminative dictionary to avoid the appearance of
over-fitting. By coupling the locality reconstruction and the label reconstruction, the LCLE-
DL method [7] ensures that the locality-based and label-based coding coefficients are as
approximate to each other as possible. It is noted that the locality constraint in LCLE-DL
may cause the dictionary atoms from the different classes to be similar, which weakens the
discriminative ability of the learned dictionary.

It is observed that the real-world object categories are not only a marked difference,
but are also strongly correlated in terms of the visual property, e.g., faces from the differ-
ent persons often share similar illumination and pose variants; objects in the Caltech 101
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dataset [23] have the correlated background. These correlations are not very helpful to dis-
tinguish the different categories, but without them the data with common features cannot
be well represented. Thus, the dictionary learning approach should learn the distinctive
features with the class-specific dictionary, and simultaneously exploit the common features
of the correlated classes by learning a commonality dictionary. To this end, we proposed
the locality preserving and label-aware constraint-based hybrid dictionary learning (LPLC-
HDL) method for image classification, which is composed of a label-aware constraint,
a group regularization and a locality constraint. The main contributions are summarized
as follows.

[1]. The proposed LPLC-HDL method learns the hybrid dictionary by fully exploiting the
locality information and the label information of the data. In this way, the learned
hybrid dictionary can not only preserve the complex structural information of the
data, but also have strong discriminativity for image classification.

[2]. In LPLC-HDL, a locality constraint is constructed to encourage the samples from
different classes with similar features to have similar commonality representation;
then, a label-aware constraint is integrated to make the class-specific dictionary
sparsely represent the samples from the same class, so that the robust particularity–
commonality representation can be obtained by the proposed LPLC-HDL.

[3]. In a departure from the competing methods which impose the l0-norm or l1-norm
on the coefficients, LPLC-HDL consists of l2-norm constraints that can be calculated
efficiently. The objective function is solved elegantly by employing an alternative
optimization technique.

The rest of this paper is outlined as follows. Section 2 reviews the related work
on our LPLC-HDL method. Then Section 3 presents the details of LPLC-HDL and an
effective optimization is introduced in Section 4. To verify the efficiency of our method for
image classification, the experiments are conducted in Section 5. Finally, the conclusion is
summarized in Section 6.

2. Notation and Background

In this section, we first provide the notation used in this paper, then review the LCLE-
DL algorithm and the objective function of hybrid dictionary learning (DL), which can be
taken as the theoretical background of our LPLC-HDL method.

2.1. Notation

Let X = [X1, · · · , XC] ∈ Rm×N be a set of N training samples in an m dimension with
class labels Yi ∈ [1, · · · , C]; here, C is the class number of the training samples and Xi
is a matrix consisting of Ni training samples of the ith class. Suppose D0 ∈ Rm×k0 and
Dp = [D1, · · · , DC] ∈ Rm×Kp make up the learned hybrid dictionary D = [D0, Dp] from
the training samples X, where k0 is the atom number of shared dictionary, Kp = ∑C

i=1 ki
denotes the atom number of class-specific dictionary and ki is the atom number of ith
class sub-dictionary. Let Z = [Z1, · · · , ZC] ∈ R(k0+Kp)×N be the coding coefficients of
training samples X over the hybrid dictionary D; then, Z0 = [Z1

0 , · · · , ZC
0 ] ∈ Rk0×N and

Zi = [Z1
i , · · · , ZC

i ] ∈ Rki×N represent the coding coefficients over the shared dictionary
and the ith class sub-dictionary, respectively.

According to [24], a row vector of coefficient matrix Z can be defined as a profile of the
corresponding dictionary atom. Therefore, we can define a vector zr = [zr

1; zr
2; · · · ; zr

C] ∈
RN×1 (r = 1, · · · , K) as the profile of atom dr for all the training samples, where the sub-
vector zr

c = [zr
1, zr

2, · · · , zr
Nc
]T ∈ RNc×1 is the sub-profile for the training samples of the

cth class.

2.2. The LCLE-DL Algorithm

To improve the classification performance, the LCLE-DL algorithm [7] takes both the
locality and label information of dictionary atoms into account in the learning process.
This algorithm firstly constructs the locality constraint to ensure that similar profiles have
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similar atoms, then establishes the label embedding constraint to encourage the atoms
of the same class to have similar profiles. The objective function of LCLE-DL is defined
as follows.

min
Dp ,Zp ,Vp ,L

‖X− DpZp‖2
2 + αTr

(
ZT

p LZp
)
+ ‖X− DpVp‖2

2 + βTr
(
VT

p UVp
)

+ γ‖Zp −Vp‖2
2, s.t. ‖dj‖2 = 1, j = 1, · · · , K

(1)

where Zp ∈ RKp×N and Vp ∈ RKp×N denote the locality-based and the label-based coding
coefficients, L ∈ RKp×Kp is the graph Laplacian matrix that is constructed by the atom’s
similarity in the dictionary Dp ∈ Rm×Kp , U ∈ RKp×Kp is the scaled label matrix which is
constructed using the label matrix of the dictionary Dp. ‖X− DpZp‖2

2 combined with the
second term encodes the reconstruction under the locality constraint; ‖X− DpVp‖2

2 com-
bined with fourth term encodes the reconstruction under the label embedding; ‖Zp −Vp‖2

2
is used to transfer the label constraint to the locality constraint. α, β and γ are the regular-
ization parameters; the constraint on the atoms can avoid the scaling issue.

The LCLE-DL algorithm first exploits the K-SVD algorithm to learn sub-dictionaries
Di(i = 1, · · · , C) using with the training samples Xi. Similar to the label matrix of the train-
ing samples Y, the label matrix of the dictionary Dp can be obtained as B = [b1, · · · , bKp ] ∈
RKp×C. Then a weighted label matrix is constructed by G = B(BTB)−

1
2 ∈ RKp×C. Next,

the label embedding of atoms is defined as

min
Vp

Tr(VT
p GGTVp) = min

Vp
Tr(VT

p UVp), (2)

where U = GGT ∈ RKp×Kp is the scaled label matrix of the dictionary Dp; the above terms
make the coding coefficients Vp have a block-diagonal structure with strong discrimina-
tive information.

The learned dictionary inherits the manifold structure of the data via using the derived-
graph Laplacian matrix L, and the optimal representation of the samples can be obtained
with the label embedding of dictionary atoms. By combining the double reconstructions,
LCLE-DL ensures the label-based and the locality-based coding coefficients are as ap-
proximate to each other as possible. However, the locality constraint is imposed on the
class-specific dictionary in the LCLE-DL algorithm, which may cause the dictionary atoms
from the different classes to be similar, thus the discriminative ability of the dictionary
is weakened.

2.3. The Objective Function of Hybrid DL

In recent years, the hybrid DL [16,19,25,26] has been getting more and more attention
in the classification problem. The hybrid dictionary has been shown to perform better
than the other types of dictionaries, as it can preserve both the class-specific and common
information of the data. To learn such a dictionary, we can define the objective function of
Hybrid DL as follows.

min
D,Z

C

∑
i=1
‖Xi − D0Zi

0 − DiZi
i‖2

F + λ1ψ(D) + λ2φ(Z)

s.t. ‖dj‖2 = 1, j = 1, · · · , k0, · · · , K

(3)

where D = [D0, D1, · · · , DC] ∈ Rm×K, D0 is the dictionary shared by all the classes,
Di (i = 1, · · · , C) is the ith class sub-dictionary, Zi

0 and Zi
i are the coding coefficients of

the samples from the ith class over D0 and Di, and ψ(D) and φ(Z) denote the functions
about the hybrid dictionary and the coding coefficients, respectively. The constraint of
φ(Z) typically adopts l1 [26] norm or l2,1 [25,27] norm for sparse coding.
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3. The Proposed Method

By learning the shared dictionary D0, the previous hybrid DL algorithms can capture
the common features of the data, but they do not concern the correlation among these
features, which will reduce the robustness of the learned dictionary. In this section, we
firstly utilize the locality information of the atoms in D0 to construct a locality constraint,
then impose it on the coefficients Z0, so that the correlation of the common features is
captured explicitly and the learned dictionary D0 is very robust concerning commonality
representation. Moreover, once the correlation is discarded, the classification of a query
sample will be dominated by the class-specific sub-dictionary corresponding to the correct
class to reach minimized data fidelity.

To obtain the discriminative ability of the class-specific dictionary, we further intro-
duce a label-aware constraint as well as group regularization on the distinctive coding
coefficients for the particularity representation. Since this constraint integrated with the lo-
cality constraint to reconstruct the input data, they will reinforce each other in the learning
process, which results in a discriminative hybrid dictionary for image classification.

Accordingly, the objective function of the proposed LPLC-HDL method can be formu-
lated as follows.

min
D0,L0,Z0,Dp ,Zp

C

∑
i=1

{
‖Xi − D0Zi

0 − DpZi
p‖2

F + λ‖PiZi
p‖2

F

}
+ γ

(
‖Zp‖2

F+

Tr
(
ZpLpZ T

p
))

+ η
(
‖Z0‖2

F + Tr
(
Z T

0 L0Z0
))

,

s.t. ‖dk
0‖2

2 = 1, (k = 1, 2, · · · , k0); ‖dl
p‖2

2 = 1, (l = 1, 2, · · · , Kp),

(4)

where λ, γ and η are the regularization parameters, which can adjust the weights of the
label-aware constraint, the group regularization and the the locality constraint, respectively.
Here we set the Euclidean length of all the atoms in the shared dictionary D0 and the
class-specific dictionary Dp to be 1, which can avoid the scaling issue.

3.1. The Locality Constraint for Commonality Representation

Locality information of the data has played an important role in many real appli-
cations. By incorporating locality information for learning a dictionary, we can ensure
that the samples with common features tend to have similar coding coefficients [7]. Fur-
ther more, the dictionary atoms measure the similarity of the samples, which are more
robust to the noise and outliers than the original samples. Hence, we use the atoms of the
shared dictionary to capture the correlation among the common features and construct a
locality constraint.

Based on the shared dictionary D0 ∈ Rm×k0 , we can construct a nearest neighbor
graph M0 ∈ Rk0×k0 as follows.

Mr,s
0 =

{
exp(− ‖dr−ds‖2

δ ), if dr ∈ kNN(ds);
0, else,

(5)

where δ is a parameter to control the exponential function, kNN(ds) denotes k nearest
neighbors of atom ds, Mr,s

0 indicates the similarity between the atoms dr and ds. For
convenience of calculation, we invariably set the parameters δ = 4 and k = 1, as they have
the stable values in the experiments.

Once M0 is calculated, we construct a graph Laplacian matrix L0 as follows.

L0 = G0 −M0, G0 = diag(g1
0, . . . , gk0

0 ), and gr
0 =

k0

∑
s=1

Mr,s
0 . (6)

Since L0 is constructed based on the dictionary D0, it will be updated in coordination
with D0 in the learning process.
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By now, we can obtain a locality constraint term for choosing graph Laplacian matrix
L0 as follows.

1
2

k0

∑
r=1

k0

∑
s=1

(zr − zs)2Mr,s
0 = Tr

(
ZT

0 L0Z0
)
=

C

∑
i=1

Tr
(
Zi T

0 L0Zi
0
)
. (7)

Because the profile zr/zs and the atom dr/ds have a one-to-one correspondence,
the above equation ensures that similar atoms encourage similar profiles [7]. Hence,
the correlated information of the common features can be inherited by the coefficient
matrix Z0 and the graph Laplacian matrix L0.

3.2. The Constraints for Particularity Representation
3.2.1. The Label-Aware Constraint

To obtain the particularity representation for the classification, we will assign the
labels to the atoms of the class-specific dictionary, as presented in [7,19]. If an atom
dt ∈ Di (i = 1, · · · , C), the label i will be assigned to the atom dt and kept invariant in
the iterations. We take Si as the index set for the atoms of ith class sub-dictionary Di,
and S as the index set for all the atoms of the class-specific dictionary. For the particularity
representation of samples Xi, it is desirable that the large coefficients should mainly occur
on the atoms in Si. In other words, the sub-profiles associated with the atoms in S\Si need
to be suppressed to some extent.

For the ith class samples, we construct a matrix Pi ∈ RK×K to pick up the sub-profiles
from the representation ZT

i , which locate at the atoms in S\Si rather than the atoms in
Si (i = 1, · · · , C), so that we can define a label-aware constraint term as follows.

‖Zi T
p PT

i ‖2
F = ‖PiZi

p‖2
F, (8)

and the matrix Pi can be written as

Pi(t1, t2) =

{
1, t1 = t2 and t2 ∈ S\Si;
0, else,

(9)

where Pi(t1, t2) is the (t1, t2)th entry of matrix Pi. For the particularity representation Zi
p,

minimizing the label-aware constraint can suppress the large values in the sub-profiles
associated with the atoms in S\Si, as well as encourage the large ones in the sub-profiles
associated with ith class atoms. Therefore, it is expected that this constraint with a proper
scalar can make the particularity representation approximately sparse. Besides, once a
series of matrices Pi (i = 1, · · · , C) are constructed, they will be unchanged in the iterations.
Thus it is very efficient for coding over the class-specific dictionary.

3.2.2. The Group Regularization

Furthermore, to promote the consistency of particularity representation from the same
class, we introduce the group regularization on Zi

p. In light of the label information of
training samples, assume one sample is related to one vertex; the vertices corresponding to
the same class samples are connected and neighboring each other; thus, each class forms
a densely connected sub-graph. Considering the training samples Xi and their coding
coefficients Zi

p, we first define ki graph maps with mapping each graph to a line that
consists of Ni points, as follows

f i
k =


zi

1(k)
zi

2(k)
...

zi
Ni
(k)

 ∈ RNi×1, ∀ k = 1, 2, · · · , ki; i = 1, 2, · · · , C. (10)
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Here zi
n(k) (n = 1, 2, · · · , Ni) is the kth component of zi

n, which corresponds to the kth
atom in the ith class sub-dictionary Di.

Then, we can calculate the variation for these ki graph maps as follows.

Vi =
ki

∑
k=1

f i T
k Li f i

k = Tr


 f i T

1
...

f i T
ki

Li[ f i
1, · · · , f i

ki
]

 = Tr(Zi
pLiZi T

p ), (11)

where Li ∈ RNi×Ni denotes the normalized Laplacian of the overall graph for the ith class,
which can be derived as

Li =
1

Ni − 1


Ni − 1 −1 · · · −1
−1 Ni − 1 · · · −1

...
...

...
...

−1 −1 · · · Ni − 1

. (12)

For the different classes, the vertices related to their samples should not be connected;
thus, the graphs of C classes are isolated from each other. Therefore, we can obtain the
total variation for Kp graph maps of all the C classes as ∑C

i=1 Tr(Zi
pLiZi T

p ) = Tr(ZpLpZ T
p ),

where Lp = diag(L1, · · · , LC). Keeping this group regularization small will promote the
consistency of the representation for the same class samples. Moreover, by combing it
with the label-aware constraint, the coding coefficients for the different classes will be
remarkably distinct with the large coefficients locating in the different areas, which is very
favorable for the classification task.

4. Optimization Strategy and Classification
4.1. Optimization Strategy of LPLC-HDL

As the objective function in Equation (4) is not a jointly convex optimization problem
for the variables (D0, L0, Z0, Dp, Zp), it will be divided into two sub-problems by learn-
ing the shared and class-specific dictionaries alternatively, that is, updating variables
(D0, L0, Z0) by fixing (Dp, Zp), then updating variables (Dp, Zp) by fixing (D0, L0, Z0).

We firstly use k-means algorithm to initialize shared dictionary D0 ∈ Rm×k0 by using
all the training samples, then initialize ith class sub-dictionary Di ∈ Rm×ki by using
the training samples Xi and concatenate all these sub-dictionaries as the class-specific
dictionary Dp ∈ Rm×Kp . Next, we compute the initialized coefficients Z0 and Zp with the
Multi-Variate Ridge Regression (MVRR) algorithm, and obtain the initialized matrix L0 by
Equation (6). In line with the corresponding sub-dictionaries, the serial of matrices Pi and
Li (i = 1, 2, · · · , C) are constructed with Equations (9) and (12), respectively. After finishing
the initialization, we can optimize the objective function as the following steps.

4.1.1. Shared Dictionary Learning

By fixing the variables (Dp, Zp), the objective function of our LPLC-HDL for learning
the shared dictionary becomes

min
D0,L0,Z0

C

∑
i=1
‖X′i − D0Zi

0‖2
F + η

(
‖Z0‖2

F + Tr
(
Z T

0 L0Z0
))

,

s.t. ‖dk
0‖2

2 = 1, (k = 1, 2, · · · , k0),

(13)

where X′i = Xi −DpZi
p. To update the variables (D0, L0, Z0), we turn to an iterative scheme,

i.e., updating D0 by fixing (L0, Z0), constructing L0 based on D0; updating Z0 by fixing
(D0, L0). The detailed steps are elaborated as below.

(a) Update the shared dictionary D0 and matrix L0
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Without loss of generality, we first concentrate on optimizing the shared dictionary
D0 by fixing the variables (L0, Z0). The function (13) for D0 becomes

min
D0
‖X′ − D0Z0‖2

F, s.t. ‖dk
0‖2

2 = 1, (k = 1, 2, · · · , k0), (14)

where X′ = ∑C
i=1 X′i and Z0 = ∑C

i=1 Zi
0. The quadratic constraint is introduced on each

atom in D0 to avoid the scaling issue risk. The above minimization can be solved by
adopting the Lagrange dual algorithm presented as in [28].

Based on the obtained dictionary D0, the graph Laplacian matrix L0 can be constructed
using (5) and (6).

(b) Update the commonality representation Z0
By fixing the variables (D0, L0), the optimization of the commonality representation

Z0 in Equation (13) can be formulated as

min
Z0
‖X′ − D0Z0‖2

F + η
(
‖Z0‖2

F + Tr
(
Z T

0 L0Z0
))

, (15)

where X′ = ∑C
i=1 X′i and Z0 = ∑C

i=1 Zi
0; there is a closed-form solution for Z0 as all the

above terms are based on the l2 norm regularization.
By setting the derivative of (15) to zero, the optimal representation Z0 can be obtained

as Z0 =
(

DT
0 D0 + 2η(L0 + I0)

)
DT

0 X′, where I0 ∈ Rk0×k0 is an identity matrix.

4.1.2. Class-Specific Dictionary Learning

Assuming the variables (D0, L0, Z0) are fixed, the objective function (4) for learning
the class-specific dictionary can be formulated as follows.

min
Dp ,Zp

C

∑
i=1

{
‖X′′i − DpZi

p‖2
F + λ‖PiZi

p‖2
F + γ

(
‖Zi

p‖2
F + Tr

(
Zi

pLiZi T
p
))}

,

s.t. ‖dl
p‖2

2 = 1, (l = 1, 2, · · · , Kp),

(16)

where X′′i = Xi − D0Zi
0. To update the variables (Dp, Zp), we follow the iterative scheme

presented in Section 4.1.1, i.e., updating Dp by fixing Zp; then updating Zp by fixing Dp.
The updating steps are elaborated as below.

(c) Update the class-specific dictionary Dp
By fixing the variable Zp, the optimization of dictionary Dp can be simplified as the

optimization of each atom dk
p (k = 1, 2, · · · , Kp). Provided k ∈ Si and the other atoms in

Dp are fixed, to update the atom dk
p we can solve the optimization problem as follows.

min
dk

p

‖X′′ − ∑
t/∈Si

dt
p z̄t

p − ∑
t∈Si ,t 6=k

dt
p z̄t

p − dk
p z̄k

p‖2
F, (17)

where X′′ = ∑C
i=1 X′′i , and z̄t

p denotes the tth row vector of coefficient matrix Zp. By in-
troducing a variable Ẽ = X′′ −∑t/∈Si

dt
p z̄t

p −∑t∈Si ,t 6=k dt
p z̄t

p, the solution of atom dk
p can be

easily derived as

d̃k
p =

1
‖z̄t

p‖2
2

Ẽz̄tT
p . (18)

Consider the energy of each atom as being constrained in (16), the solution can be
further normalized as

d̂k
p =

Ẽz̄tT
p

‖Ẽz̄tT
p ‖2

. (19)

Because the atoms with indices out of Si are fixed when updating the atoms with in-
dices in Si, we can compute E = X′′−∑t/∈Si

dt
p z̄t

p in advance and take it into the calculation
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of Ẽ to accelerate the update. Likewise, we successively update the atoms corresponding
to Si with (i = 1, 2, · · · , C) and obtain the overall class-specific dictionary Dp.

(d) Update the particularity representation Zp

For the particularity representation of the ith class Zi
p, the optimization problem

depending on it becomes

min
Zi

p

‖X′′i − DpZi
p‖2

F + λ‖PiZi
p‖2

F + γ
(
‖Zi

p‖2
F + Tr

(
Zi

pLiZi T
p
))

. (20)

The solution of the above equation can be obtained by computing each code in Zi
p

as follows

min
zi

p(n)
‖x′′i (n)− Dpzi

p(n)‖2
2 + λ‖Pizi

p(n)‖2
2 + γ‖zi

p(n)‖2
2

+ γ ∑
n1,n2

Li(n1, n2)zi
p(n2)

Tzi
p(n1),

(21)

where x′′i (n) (n = 1, 2, · · · , Ni) is the nth training sample of the ith class, zi
p(n) is the code

of x′′i (n) and Li(n1, n2) denotes the (n1, n2)th entry of matrix Li. Since all the terms in
Equation (21) are based on the quadratic form, the solution of zi

p(n) can be easily obtained
by setting its derivation to zero.

By using (12) and denoting L̄i as Li − Ii with the identity matrix Ii ∈ RNi×Ni , we can
further obtain a matrix version for Zi

p update as:

Ẑi
p =

(
DT

p Dp + λPT
i Pi + 2γIi

)−1(
DT

p X′′i − γZi
p L̄i

)
. (22)

By repeating the steps (a)–(d), we can iteratively obtain all the optimal variables
(D0, L0, Z0, Dp, Zp). The overall optimization of our LPLC-HDL is summarized in Algorithm 1.
Moreover, the objective function value of Equation (4) decreases as the number of iterations
increases on a given dataset. For example, the convergence curve of LPLC-HDL on the Yale
face dataset [29] is illustrated in Figure 1. From it we can see that the proposed algorithm
converges quickly, no more than 20 iterations.

0 10 20 30 40 50 60 70 80 90 100

Number of iterations

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

O
b

je
ct

iv
e 

fu
n

ct
io

n
 v

al
u

es

Figure 1. The convergence curve of the proposed LPLC-HDL with the number of iterations on the
Yale face dataset.
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In Algorithm 1, the time complexity of our LPLC-HDL mainly comes from these parts:
O(k3

0mN) for updating the shared dictionary D0, O(k2
0) for updating the graph Laplacian

matrix L0, O(k3
0) for updating the commonality representation Z0, O(KpmN) for updating

the class-specific dictionary Dp and O(K3
p) for updating the particularity representation Zp.

Thus the final time complexity is O((k3
0 + Kp)mN + K3

p) in each iteration.

Algorithm 1 Optimization procedure of the proposed LPLC-HDL
1: Input: Train samples X, class label Y, the parameters λ, γ, η
2: Initialization: Using the k-means algorithm, initialize D0 by all the training samples, compute the

matrix L0 with Equation (6); Initialize Di (i = 1, 2, · · · , C) by the training samples Xi, concatenate
these sub-dictionaries as the initialized Dp; Initialize the coefficients Z0 and Zp with the MVRR
algorithm; Construct the serial of matrices Pi and Li with Equations (9) and (12), respectively.

3: while converge condition no satisfied do
4: (a) Update D0 by solving Equation (14), update L0 by using Equations (5) and (6);
5: (b) Update Z0 =

(
DT

0 D0 + 2η(L0 + I0)
)

DT
0 X′;

6: (c) Update Dp as follows:
7: for i = 1 to C do
8: Compute E = X′′ −∑t/∈Si

dt
p z̄t

p;
9: for k ∈ Si do

10: Update the atom dk
p by solving Equation (19);

11: end for
12: end for
13: (d) Update Zp as follows:
14: for i = 1 to C do
15: Update the coding coefficients Zi

p by solving Equation (22);
16: end for
17: end while
18: Output: The variables D0, L0, Z0, Dp, Zp.

4.2. Classification Procedure

After completing Algorithm 1, we can use the learned hybrid dictionary D = [D0, Dp]
to represent a test sample and predict its label. Firstly, we find the commonality–particularity
representation ẑt = [(z0

t )
T, (zp

t )
T]T of a test sample xt by solving the following equation:

ẑt = arg min
zt
‖xt − Dzt‖2

2 + γ‖zt‖2
2. (23)

Secondly, we compute x′t = xt − D0z0
t based on ẑt to exclude the contribution of the

shared dictionary. Thus, the class label of xt can be determined by:

label(xt) = arg min
i
‖x′t − Dizi

t‖2
2, i = 1, 2, · · · , C. (24)

5. Experiments

In this section, we compare LPLC-HDL with the representative dictionary learning
methods including D-KSVD [5], LC-KSVD [6], LCLE-DL [7], FDDL [13], DL-COPAR [16]
and CLSDDL [19] on the Yale face dataset [29], the Extended YaleB face dataset [30], the La-
beled Faces in the Wild (LFW) dataset [31] for face recognition, the Caltech-101 object
dataset [23] and the Oxford 102 Flowers dataset [32] for object classification and flower
classification, respectively. Moreover, we further compare it with the Sparse Representation
based Classification (SRC) [33], the Collaborative Representation based Classifier (CRC) [34],
the Probabilistic CRC (ProCRC) [35], the Sparsity Augmented Collaborative Representation
(SACR) [36] and some other state-of-the-art methods on the particular datasets.

In the proposed LPLC-HDL method, the three parameters λ, γ and η are selected by
five-fold cross validation on the training set, and their optimal values on each dataset are
shown in Table 1. In addition, the atom numbers of the shared dictionary and the class-
specific dictionary for each dataset are elaborated as detailed in the following experiments.
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Table 1. The parameters of the proposed LPLC-HDL method on each dataset.

Yale Ext. YaleB LFW Caltech-101 102 Flowers

λ 1 × 10−1 1 × 10−1 1 × 10−2 3 2 × 10−1

γ 1 × 104 2 × 103 5 × 103 3 × 102 1 × 104

η 1 × 10−3 1 × 10−3 1 × 10−3 1 × 101 1 × 10−1

5.1. Experiments on the Yale Face Dataset

In the experiments, we first consider the Yale face dataset which contains 165 gray
scale images for 15 individuals with 11 images per category. Each individual contains one
different facial expression or configuration: Left-light, center-light, right-light, w/glasses,
w/no glasses, happy, sad, normal, surprised, sleepy and wink, as shown in Figure 2a.
Each image has 24× 24 pixel resolution, and is resized to 576-dimensional vectors with
normalization for representation. Following the setting in [19], six images of each individual
are randomly selected for training and the rest are used for testing. In addition, the number
of dictionary atoms is set to 15× 4 + 60 = 120, which means four class-specific atoms
for each individual and 60 shared atoms for all the individuals. The parameters of our
LPLC-HDL on the Yale face dataset can be seen in Table 1.

(a) The Yale face dataset.

(b) The Extended YaleB face dataset.

(c) The LFW face dataset.

Figure 2. The example images from the face datasets.

To acquire a stable recognition accuracy, we operate LPLC-HDL over 30 times rather
than 10 times with independent training/testing splits. The comparison results on the Yale
face dataset are listed in Table 2. Since the variations in terms of facial expression are com-
plex, the variations in the testing samples cannot be well represented via directly using the
training data. Hence SRC has worse accuracy than the other dictionary learning methods.
We can also see that the hybrid dictionary learning methods including DL-COPAR [16],
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LRSDL [17] and CLSDDL [19] outperform the remaining competing approaches, and the
proposed LPLC-HDL method achieves the best recognition accuracy of 97.01%, which
illustrates that our method can distinguish the shared and class-specific information of face
images more appropriately.

Table 2. The recognition rates (%) on the Yale face dataset.

Method Acc. (%) Method Acc. (%)

LLC [37] 82.1 ± 2.6 LC-KSVD (120) [6] 83.6 ± 2.7
SVM [38] 94.4 ± 2.8 LCLE-DL (120) [7] 91.2 ± 3.1
SRC [33] 81.3 ± 2.5 DL-COPAR (120) [16] 92.3 ± 3.7
CRC [34] 89.8 ± 1.9 LRSDL (120) [17] 92.7 ± 3.3
ProCRC [35] 91.7 ± 2.1 CLSDDL-LC (120) [19] 95.9 ± 2.2
D-KSVD (120) [5] 82.3 ± 4.5 CLSDDL-GC (120) [19] 95.3 ± 2.9
FDDL (120) [13] 89.6 ± 2.6 LPLC-HDL (120) 97.01 ± 2.6

We further illustrate the performance of LPLC-HDL on face recognition accuracy
with different sizes of the shared and class-specific dictionaries, as shown in Figure 3.
From it we can see that a higher recognition accuracy on the Yale face dataset can be
obtained by increasing the atom numbers of both the shared and class-specific dictionaries.
Besides, Figure 3 also shows that when the number of the class-specific atoms is few,
the recognition accuracy is sensitive to the number of the shared atoms, as the large shared
dictionary is harmful to the discriminative power of the class-specific dictionary in this
case. However, increasing the number of the class-specific atoms beyond the particular
number of training samples of each class brings no notable increase in recognition accuracy.
Considering that the large dictionary will slow down both the training time and the testing
time, the atom numbers of the shared and class-specific dictionaries are not set to big values
in the experiments.

Figure 3. The recognition accuracy versus different sizes of the shared dictionary and the class-specific
dictionary on the Yale face dataset.

5.2. Experiments on the Extended YaleB Face Dataset

The Extended YaleB face dataset contains 2414 frontal face images of 38 people. For each
person, there are about 64 face images and the original images have 192× 168 pixels. This
dataset is challenging due to varying poses and illumination conditions, as displayed in
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Figure 2b. For comparison, we use the normalized 32× 32 images instead of the original
pixel information. In addition, we randomly select 20 images per category for training and
take the rest as the testing images. The parameters of LPLC-HDL on the Extended YaleB face
dataset are also shown in Table 1. The hybrid dictionary size is set to 38× 13 + 76 = 570,
which denotes 13 class-specific atoms for each person and 76 shared atoms for all the
persons, with the same structure adopted by the other hybrid dictionary learning methods.

We repeatedly run LPLC-HDL and all the comparison methods 10 times for reliable
accuracy, and the average recognition rates are listed in Table 3. As shown in Table 3,
compared with the K-SVD, D-KSVD, FDDL and LC-KSVD methods, LCLE-DL achieves
a better recognition result with the same dictionary size. The reason for this behavior is
that the LCLE-DL method can effectively utilize the locality and label information of the
atoms in the dictionary learning. It is also shown that the hybrid dictionary learning meth-
ods, including DL-COPAR, LRSDL, CLSDDL and LPLC-HDL, generally outperform the
other DL methods, which demonstrates the discriminative ability of the hybrid dictionary.
By integrating the locality and label information into the hybrid dictionary, our LPLC-HDL
method obtains the best recognition rate of 97.25%, which outperforms the second best
approach CLSDDL-GC by 0.8%, and at least 1.2% higher than the other competing methods.

Table 3. The recognition rates (%) on the Extended YaleB face dataset.

Method Acc. (%) Method Acc. (%)

LLC [37] 88.9 ± 0.57 LC-KSVD (570) [6] 92.7 ± 0.62
SVM [38] 92.5 ± 0.82 LCLE-DL (570) [7] 95.8 ± 0.42
SRC [33] 95.3 ± 0.65 DL-COPAR (570) [16] 95.8 ± 0.88
CRC [34] 95.0 ± 0.48 LRSDL (570) [17] 95.7 ± 0.51
K-SVD (570) [39] 94.0 ± 0.71 CLSDDL-LC (570) [19] 96.05 ± 0.56
D-KSVD (570) [5] 94.3 ± 0.63 CLSDDL-GC (570) [19] 96.45 ± 0.52
FDDL (570) [13] 93.4 ± 0.76 LPLC-HDL (570) 97.25 ± 0.43

5.3. Experiments on the LFW Face Dataset

The LFW face dataset has more than 13,000 images with the name of the person
pictured, and all of them are collected from the web for unconstrained face recognition and
verification. Following the prior work [7], we use a subset of the LFW face dataset which
consists of 1215 images from 86 persons. In this subset, there are around 11–20 images for
each person, and all the images are resized to be 32× 32. Some samples from this face
dataset are shown in Figure 2c. For each person, eight samples are randomly selected for
training and the remaining samples are taken for testing. The parameters of LPLC-HDL
on the LFW face dataset are also shown in Table 1. In addition, the hybrid dictionary size
is set to 86× 4 + 86 = 430, which means four class-specific atoms for each individual and
86 shared atoms for all the individuals.

We repeatedly run LPLC-HDL and the comparison methods 10 times, the average
recognition rates are reported in Table 4, where the symbol ± denotes the standard de-
viation of average recognition rates. Similar to the results on the Extended YaleB face
dataset, the LCLE-DL method achieves a higher recognition rate than the other shared or
class-specific DL methods, and the hybrid dictionary learning methods, e.g., DL-COPAR,
LRSDL, CLSDDL and LPLC-HDL, have a super performance in general. The proposed
LPLC-HDL method obtains the best result with an average recognition rate of 42.39%,
which is significantly better than all the comparison methods.
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Table 4. The recognition rates (%) on the LFW face dataset.

Method Acc. (%) Method Acc. (%)

LLC [37] 34.6 ± 0.88 LC-KSVD (430) [6] 34.1 ± 1.32
SVM [38] 37.73 ± 1.5 LCLE-DL (430) [7] 39.1 ± 1.19
SRC [33] 36.5 ± 1.92 DL-COPAR (430) [16] 38.63 ± 1.6
CRC [34] 36.7 ± 1.55 LRSDL (430) [17] 40.23 ± 1.4
K-SVD (430) [39] 32.8 ± 1.27 CLSDDL-LC (430) [19] 41.05 ± 1.5
D-KSVD (430) [5] 33.2 ± 1.25 CLSDDL-GC (430) [19] 38.45 ± 1.8
FDDL (430) [13] 34.8 ± 1.76 LPLC-HDL (430) 42.39 ± 1.6

5.4. Object Classification

In this subsection, we evaluate LPLC-HDL on the Caltech-101 dataset [23] for object
classification. This dataset contains a total of 9146 images from 101 object categories and a
background category. The number of images for per category varies from a minimum of 31
to a maximum of 800 images. The resolution of each image is about 300× 200, as shown in
Figure 4. Following the settings [6,40], we perform the Spatial Pyramid Features (SPFs) on
this dataset. Firstly, we partition each image into 2L × 2L sub-regions with different spatial
scales L = 0, 1, 2, then extract SIFT descriptors over a sub-region with a spacing of 8 pixels
and concatenate them as the SPFs. Next, we encode the SPFs with a codebook of size 1024.
Finally, the dimension of the features is reduced to 3000 using the the Principal Component
Analysis (PCA) algorithm.

For this dataset, 10 samples of each category are selected as the training data and the
remaining are for testing. The parameters of LPLC-HDL on this dataset can be seen in
Table 1. The hybrid dictionary size is set to 102× 9 + 100 = 1018, which denotes nine class-
specific atoms for each category and 100 shared atoms for all the categories. The proposed
LPLC-HDL and the comparison methods are carried out 10 times, the average classification
rates are reported in Table 5. As can be seen in Table 5, our LPLC-HDL method achieves
the best classification result again, with improvement margins of at least 1.3% compared
with the comparison methods.

 

 

Figure 4. Examples from the Caltech-101 object dataset.

Table 5. The classification results (%) on the Caltech101 object dataset.

Method Acc. (%) Method Acc. (%)

SVM [38] 59.1 ± 0.80 LC-KSVD (1020) [6] 63.1 ± 0.45
LLC [37] 59.8 ± 0.61 LCLE-DL (1020) [7] 62.7 ± 0.31
SRC [33] 60.1 ± 0.51 JBDC (1020) [15] 61.3 ± 0.35
CRC [34] 59.4 ± 0.48 DL-COPAR (1018) [16] 63.0 ± 0.57
SACR [36] 60.7 ± 0.40 LRSDL (1018) [17] 63.5 ± 0.55
K-SVD (1020) [39] 59.1 ± 0.65 CLSDDL-LC (1018) [19] 63.7 ± 0.48
D-KSVD (1020) [5] 59.5 ± 0.87 CLSDDL-GC (1018) [19] 64.0 ± 0.43
FDDL (1020) [13] 63.6 ± 0.59 LPLC-HDL (1018) 65.3 ± 0.38
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5.5. Flower Classification

We finally evaluate the proposed LPLC-HDL on the Oxford 102 Flowers dataset [32]
for fine-grained image classification, which consists of 8189 images from 102 categories,
and each category contains at least 40 images. This dataset is very challenging because
there exist large variations within the same category but small differences across several
categories. The flowers appear at different scales, poses and lighting conditions; some
flower images are shown in Figure 5. For each category, 10 images are used for training,
10 for validation, and the rest for testing, as in [32]. For ease of comparison, we take the
convolutional neural network (CNN) features provided by Cai et al. [35] as the image-
level features.

The parameters of LPLC-HDL on the Oxford 102 Flowers dataset can be seen in
Table 1. The size of hybrid dictionary is set to be 102× 9 + 100 = 1018, which means nine
atoms for each category and 100 atoms as the shared amount. We compare LPLC-HDL
with different kinds of representative methods for flower classification, such as the basic
classifiers (Softmax and linear SVM [38]), the recent ProCRC [35], the related DDL methods
and the deep learning models. Following the common measurement [41,42], we evaluate
the comparison methods by the average classification accuracy of all the categories, and the
results are reported in Table 6. From it we can see that, taking the CNN features as the
image-level features, the proposed LPLC-HDL method outperforms the basic classifiers
and the competing DL methods. Compared with the other kinds of methods, LPLC-HDL
is greatly superior to SparBases [43] and SMP [44]. Moreover, our method outperforms the
recent deep learning models including GoogLeNet-GAP [45], ASPD [46] and AugHS [47],
which need to design the special CNN architectures for flower classification.

 

 

Figure 5. Example images from the Oxford 102 Flowers dataset.

Table 6. The classification results (%) on the Oxford 102 Flowers dataset.

Method Acc. (%) Method Acc. (%)

Softmax 87.3 LC-KSVD (1020) [6] 93.60
SVM [38] 90.9 DL-COPAR (1025) [16] 91.62
SRC [33] 93.2 JBDC (1002) [15] 93.12
NSC [48] 90.10 CLSDDL-LC (1018) [19] 94.01
CRC [34] 93.0 CLSDDL-GC (1018) [19] 94.47
ProCRC [35] 94.8 OverFeat [41] 86.8
K-SVD (1020) [39] 92.41 NAC [49] 95.3
D-KSVD (1020) [5] 93.55 DAS [50] 80.66
FDDL (1020) [13] 94.60 LPLC-HDL (1018) 95.7

5.6. Parameter Sensitivity

In the proposed LPLC-HDL method, there are three key parameters, i.e., λ, γ and η,
which are used to balance the importance of the label-aware constraint, the group regular-
ization and the locality constraint. To analyze the sensitivity of the parameters, we define a
candidate set {10−5, 10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 104, 105} for them and then
perform LPLC-HDL with different combinations of the parameters on the Yale face dataset
and the Caltech 101 dataset. By fixing the parameter η, the classification accuracy versus
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different values of the parameters λ and γ are shown in Figures 6a and 7a. As can be seen
in the figures, the best classification result can be obtained when the parameters λ and γ
locate in a feasible range. When γ is very small, the effect of the group regularization is
limited, leading to weak discrimination of the class-specific dictionary. On the other hand,
when γ becomes very large, the classification accuracy drops as the remaining terms in (4)
become less important, which decreases the representation ability of the hybrid dictionary.

By fixing the parameters λ and γ, the classification accuracy versus different values of
the parameter η are shown in Figures 6b and 7b. From them we can see that the classifica-
tion accuracy is insensitive to the parameter η when its value located in a certain range,
e.g., 10−5 ≤ η ≤ 10−1 on the Yale face dataset. It should be noted that the incoherence
between the shared and class-specific dictionaries is increased with increasing parameter η,
which influences the reconstruction of the test data and decreases the classification accuracy.

Due to the diversity of the datasets, it is still an open problem to adaptively select
the optimal parameters for the different datasets. In the experiments, we use an effective
and simple way to find the optimal values for the parameters λ, γ and η. Based on the
previous analysis, we first fix the parameter η to a small value such as 0.01, then search the
candidate combination of the parameters λ and β from the coarse set of {10−5, 10−4, 10−3,
10−2, 10−1, 100, 101, 102, 103, 104, 105}. According to the best coarse combination of them,
we can further define a fine candidate set where their optimal values may exist. Then we
perform the proposed LPLC-HDL again with different combinations of the parameters
λ and β selected from the fine candidate set. This way, we can obtain the optimal values
of the parameters for all the experimental datasets: hence, the best classification results
are guaranteed.
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Figure 6. The classification accuracy versus parameters λ, γ and η on the Yale face dataset;
(a) parameter η is fixed; (b) parameters λ and γ are fixed.

Besides the key parameters λ, γ and η in our LPLC-HDL method, there are also
the parameters δ and k in the proposed locality constraint. In the experiments, we find
that these two parameters have stable values on the experimental datasets. For example,
Figure 8a,b show the classification accuracies of our LPLC-HDL method with respect to the
parameter δ by fixing the remaining parameters on the Yale face dataset and the Caltech
101 dataset. From the subfigures, we can see that the classification accuracy is insensitive
to the parameter δ, and the approximate best result can be obtained when δ = 4. For the
parameter k, this similar phenomenon can be observed on the experimental datasets. Thus
we can set δ = 4 and k = 1 in our LPLC-HDL method for convenience of calculation.
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Figure 7. The classification accuracy versus parameters λ, γ and η on the Caltech 101 object dataset;
(a) parameter η is fixed; (b) parameters λ and γ are fixed.
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Figure 8. The classification accuracy versus parameter δ on (a) the Yale face dataset, and (b) the
Caltech 101 object dataset by fixing the parameters λ, γ, η and k.

5.7. Evaluation of Computational Time

We also conducted experiments to evaluate the running time of the proposed LPLC-
HDL and other representative DL methods on the two face datasets and the Caltech-101
dataset, the comparison results are listed in Table 7. “Train” denotes the running time of
each iteration, and “Test” is the average processing time for classifying one test sample. All
the experiments are conducted on a 64-bit computer with Intel i7-7700 3.6 GHz CPU and
12 GB RAM under the MATLAB R2019b programming environment. From Table 7, we can
see that, although slower than CLSDDL-LC [19], the training efficiency of LPLC-HDL is
obviously higher than that of D-KSVD [5], LC-KSVD [6], FDDL [13] and DL-COPAR [16].
In the testing stage, the proposed LPLC-HDL has similar testing efficiency as D-KSVD and
LC-KSVD, and the testing process of LPLC-HDL is much faster than that of FDDL and
DL-COPAR. Specifically, the average time for classifying a test image by LPLC-HDL is
always less than that of CLSDDL-LC on the experiments.
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Table 7. The computational times (second) on the experimental datasets.

Ext. YaleB LFW Caltech-101

Train Test Train Test Train Test

D-KSVD [5] 46.7 3.36 × 10−4 57.3 1.70 × 10−3 303.4 2.89 × 10−3

LC-KSVD [6] 47.8 3.37 × 10−4 59.1 1.57 × 10−3 311.2 3.12 × 10−3

FDDL [13] 455.8 9.40 × 10−2 558.3 2.90 × 10−1 3537.0 1.59
DL-COPAR [16] 8.54 1.01 × 10−2 38.9 6.21 × 10−2 120.5 1.12 × 10−1

CLSDDL-LC [19] 1.26 1.53 × 10−4 1.42 9.18 × 10−4 21.37 5.10 × 10−3

LPLC-HDL 3.62 1.50 × 10−4 3.82 6.25 × 10−4 22.19 3.80 × 10−3

6. Conclusions

In this paper, we propose a novel hybrid dictionary learning (LPLC-HDL) method
by taking advantage of the locality and label information of the data, which can solve
the image classification task effectively. The LPLC-HDL method incorporates the locality
constraint with the label-aware constraint to more appropriately distinguish the shared and
particularity information. More specifically, the locality constraint on the shared dictionary
is used to model the similar features of the images from different classes; the label-aware
constraint and the group regularization are coupled to make the class-specific dictionary
more discriminative. An effective alternative strategy is developed to solve the objective
function of LPLC-HDL. After training the hybrid dictionary, the class label of the test image
can be predicted more accurately by excluding the contribution of the shared dictionary.
The experimental results on three face datasets, the object dataset and the flower dataset
demonstrate that our method has effectiveness and superiority for image classification.
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