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Abstract: Fault-cause identification plays a significant role in transmission line maintenance and
fault disposal. With the increasing types of monitoring data, i.e., micrometeorology and geographic
information, multiview learning can be used to realize the information fusion for better fault-cause
identification. To reduce the redundant information of different types of monitoring data, in this
paper, a hierarchical multiview feature selection (HMVFS) method is proposed to address the
challenge of combining waveform and contextual fault features. To enhance the discriminant ability
of the model, an ε-dragging technique is introduced to enlarge the boundary between different
classes. To effectively select the useful feature subset, two regularization terms, namely l2,1-norm and
Frobenius norm penalty, are adopted to conduct the hierarchical feature selection for multiview data.
Subsequently, an iterative optimization algorithm is developed to solve our proposed method, and its
convergence is theoretically proven. Waveform and contextual features are extracted from yield data
and used to evaluate the proposed HMVFS. The experimental results demonstrate the effectiveness
of the combined used of fault features and reveal the superior performance and application potential
of HMVFS.

Keywords: fault-cause identification; transmission line; sparse learning; multiview learning; fea-
ture selection

1. Introduction

Transmission lines cover a wide area and work in diverse outdoor environments to
achieve long-distance, high-capacity power transmission. In order to maintain stable power
supply, high-speed fault diagnosis is indispensable for line maintenance and fault disposal.

Traditional fault diagnosis technologies concerning fault detecting, fault locating,
and phase selection are well developed [1,2], while diagnosis on external causes is still
underdeveloped. Operation crews attach great importance to fault location for line patrol
and manual inspection. However, on-site inspection is labor-intensive and depends on
subjective judgment. Moreover, cause identification after inspection is too late for dispatch-
ers to give better instructions according to the external cause, such as forced energization.
Fault-cause identification is expected to help dispatch and maintenance personnel make a
proper and speedy fault response.

Transmission line faults are more often triggered by external factors due to environ-
mental change or surrounding activities. Though the cause categories are slightly different
between regions or institutions, the common causes can be listed as lighting, tree, animal
contact, fire, icing, pollution and external damage [3]. Considering complexity and vari-
ability of open-air work, it is hard to model fault scenarios for diverse root causes [4,5].
Thus, these existing studies on line fault-cause identification have been developed based
on data-driven methods rather than physical modeling.
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The early identification methods were rule-based, such as statistical analysis, CN2
rule induction [6] and fuzzy inference system (FIS) [7–9]. Their identification frameworks
are finally presented in the form of logic flow, demanding a great degree of robustness
and generality for their rules or thresholds. In recent years, various machine learning
(ML) techniques that attach great importance to hand-crafted features have been applied to
diagnose external causes [10–14], such as logistic regression (LR), artificial neural network
(ANN), k-nearest neighbor (KNN) and support vector machine (SVM). Deep learning (DL)
provides a more efficient way in the field of fault identification. In [15], deep belief network
(DBN) is used as the classification algorithm after extracting time–frequency characteristics
from traveling wave data. Even when using DL methods, feature engineering is still an
inevitable part to achieve high accuracy.

Feature signature study provides knowledge about fault information and plays a
critical role in fault-cause identification. On the one hand, when fault events happen,
power quality monitors (PQMs) enable us to have easy access to electrical signals and time
stamps [16]. Time-domain features extracted from fault waveform and time stamp were
used to construct logic flow to classify lightning-, animal- and tree-induced faults [6]. To
exploit transient characteristics in the frequency domain, signal processing techniques such
as wavelet transform (WT) and empirical mode decomposition (EMD) are used for further
waveform characteristic analysis [17–20]. In [21], a fault waveform was characterized based
on the time and frequency domain to develop an identification logic. However, a fault
waveform is easily affected by the system operation state, and there is no direct connection
between these characteristics and external causes. On the other hand, weather condition is
directly relevant to many fault-cause categories such as lightning, icing and wind. With the
development of monitoring equipment and communication technology, dispatchers now
can make judgments with more and more outdoor information [22]. These nonwaveform
characteristics such as time stamps, environment attributes and other textual data are called
contextual characteristics in this paper. Table 1 lists and compares the characterization and
classification methods in existing works.

Table 1. A summarized list of characterization and classification methods used for fault-cause identification.

Article

Waveform Characteristics
Time Char-
acteristics

External Char-
acteristics

Classification
MethodsSignal

Amplitude
Sequence

Component
Spectrum
Analysis

Phase or
Phase Angle

* Núñez, Meléndez [6]
√ √ √ √

CN2
Liang, Li [7]

√ √
FIS

* Xu, Chow [8–10]
√ √ √

FIS/LR/ANN
* Cai, Chow [11]

√ √ √
LR

Chang, Hong [12]
√ √

SVM
* Jiang, Liu [14]

√ √ √ √ √
KNN

Liang, Liu [15]
√ √ √

DBN
Asman, Aziz [20]

√ √
decision tree

* Qin, Wang [21]
√ √ √ √ √

logic flow
* Dehbozorgi, Rastegar [22]

√ √
decision tree

Minnaar, Nicolls [23]
√ √ √ √ √

KNN

Articles with * concern faults on distribution network but their work is still inspiring for transmission network.

Studies have shown that waveform and contextual features can achieve high accuracy
without each other, but there are high data requirements. For economic and operational
reasons, data condition will not change significantly in the short term. It is necessary
to study performance improvement for fault-cause identification based on current data
conditions. One of the challenges is determining how to combine waveform features and
multisource contextual features. This is an information fusion problem, and the simplest
approach is feature concatenation. The authors of [23] tried to combine contextual features
and waveform features as a mixed vector, but concatenated features reduce performance.
Moreover, in contrast to focusing on either side, a few studies use both waveform and
contextual characteristics for higher classification performance.
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To tackle the fusion challenge, multiview learning (MVL) is introduced in this pa-
per because waveform and contextual features describe the same fault event in different
views. MVL aims to integrate multiple-view data properly and overcome biases between
multiple views to obtain satisfactory performance. One of typical MVL methods is canon-
ical correlation analysis (CCA), which maps multiview features into a common feature
space [24]. Instead of mapping features, multiview feature selection that selects features
from each view is preferred in fault-cause identification. Unlike traditional feature selec-
tion, multiview feature selection treats multiview data as inherently related and ensures
that complementary information from other views is exploited [25,26]. In [27], a review
on real-time power system data analytics with wavelet transform is given. The use of
discrete wavelet transform was used to identify the high impedance fault and heavy load
conditions [28]. The authors of [29] propose a fault diagnosis approach for the main drive
chain in a wind turbine based on data fusion. To deal with the kind of multivariable fault
diagnosis problem for which input variables need to be adjusted for different typical faults,
the deep autoencoder model is adopted for the fault diagnosis model training for different
typical fault types.

In this paper, we propose a hierarchical multiview feature selection (HMVFS) method
for transmission line fault-cause identification. Two view datasets are composed of the
waveform features and the contextual features. Our proposed HMVFS is applied to conduct
the feature selection for the optimal feature combination. In our model, to enhance the
discriminant ability of regression, an ε-dragging technology is used to enlarge the margin
between classes. Next, two regularization terms, namely l2,1-norm and Frobenius norm
(F-norm) penalty, are adopted to perform the hierarchical feature selection. Here, the
l2,1-norm realizes the row sparsity to reduce the unimportant features of each view and the
F-norm realizes the view-level sparsity to reduce the diversity between these two-view data.
Hence, these two penalties can be viewed as low-level and high-level feature selection,
respectively. At last, the fault-cause identification is carried out using ML classifiers and
integrated features. The contributions of this paper are highlighted as follows:

• To the best of our knowledge, this is the first time that multiview learning is introduced
for transmission line fault-cause identification in view of the nature of multiview
fault data.

• We propose a novel approach, HMVFS, based on the ε-dragging and two regular-
ization terms to select the discriminative features across views. We also develop
an iterative algorithm to solve the optimization problem and prove its convergence
theoretically.

• The performance of HMVFS is evaluated on field data and compared with classical
feature selection methods. Experimental results prove the effectiveness of combining
waveform and contextual features and demonstrate the feasibility and superiority
of HMVFS.

The rest of this paper is organized as follows: Section 2 presents the proposed HMVFS
algorithm and its convergence analysis. Section 3 outlines the real-life line fault dataset and
extracts features in terms of waveform and nonwaveform. The empirical study is provided
and discussed in Section 4. Section 5 presents concluding remarks.

2. Hierarchical Multiview Feature Selection (HMVFS)
2.1. Notation

Sparsity-based multiview feature selection can be formulated as an optimization
problem and denoted by loss functions and regularization items. Before introducing our
formulation, the notation is stated.

Matrices are denoted by boldface uppercase letters, and vectors are denoted by bold-
face lowercase letters. Given original feature matrix X = [x1, x2, . . . , xn]

T ∈ Rn×d, each
row of which corresponds to a fault instance, n is the total number and d denotes the size
of features. X(v) ∈ Rn×d(v) and x(v)i ∈ Rd(v) denote a feature matrix and a vector in the
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vth view. There are two views in this paper; thus, X = [X(1), X(2)]. Suppose there are c
categories, the label matrix will be represented as Y = [y1, y2, . . . , yn]

T ∈ {0, 1}n×c. Weight

matrix W can be derived as W = [W(1), W(2)]
T
= [w1, w2, . . . , wd]

T ∈ Rd×c.

2.2. The Objective Function

Given the notation defined and a fault dataset (X, Y), the problem of HMVFS is
transformed into determining weight matrix W and then ranking features for selection. We
formulate the optimization problem as

min
W,M

Ψ(W, M) + αΦ(W) + βΩ(W) = min
W,M
‖XW− Y− B⊗M‖2

F + α‖W‖2,1 + β
m
∑

v=1
‖Wv‖F, (1)

where m is the view number; m = 2 in this paper.
In this formulation, Ψ(W, M) is the loss function that measures the calculation distance

to achieve minimum regression error, which is derived from the least square loss function.
Furthermore, the ε-dragging is introduced to drag binary outputs in Y away along two
opposite directions. The outputs for positive digits will become 1 + εi and the outputs
for negative digits will be −εi, in which all of the εs are nonnegative. The treatment that
enlarges the distance between data points from different classes helps to develop a compact
optimization model for classification [30]. B ∈ {−1, 1}n×c in the formulation is a constant
matrix, and its element Bij is defined as

Bij =

{
+1, Yij = 1
−1, Yij = 0.

(2)

Bij denotes the dragging direction for elements in label matrix Y. M ∈ Rn×c is a
nonnegative matrix that records all εs. The operator ⊗ is the Hadamard product operator
of matrices. Thus, B ⊗M represents the dragging distance, and we have a new label matrix
after the ε-dragging:

Y′ = Y + B⊗M. (3)

With the least square loss function defined as

Ψ(W) = ‖XW − Y‖2
F, (4)

we can attain our loss function Ψ(W,B,M).

Ψ(W, B, M) = ‖XW − Y − B⊗M‖2
F. (5)

Next, regularization items used in the formulation are l2,1-norm and F-norm, and we
take row-wise feature selection and view-wise feature selection into account.

Φ(W) = ‖W‖2,1 = ∑d
i=1

√
∑c

j=1 w2
ij. (6)

Ω(W) =
m

∑
v=1
‖Wv‖F =

m

∑
v=1

√
∑d

i=1 ∑c
j=1 w2

ij. (7)

l2,1-norm measures the distance of features as a whole and forces the weights of
unimportant features to be assigned small values so that it can perform feature selection
among all features. Similarly, F-norm measuring the distance between views forces the
weights of unimportant views to be assigned small values [31]. The weight matrix W is
regulated by these penalty terms, and hierarchical feature selection is completed with
row-wise and view-wise selection. l2,1-norm penalty corresponds to the low-level feature
selection, and F-norm penalty corresponds to the high-level feature selection.
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Therefore, the objective function of the HMVFS model is obtained and represented as
(1). α and β are nonnegative constants that tune hierarchical feature selection. This model
is also available with more than two views.

2.3. Optimization

In order to solve l2,1-norm minimization and F-norm minimization problems, the

regularization terms ‖W‖2,1 and
m
∑

v=1
‖Wv‖F need to be respectively relaxed by Tr(WTCW)

and Tr(WTDW) [32]. The objective function is rewritten as

min
W,M,C,D

‖XW− Y− B⊗M‖2
F + αTr(WTCW) + βTr(WTDW),

s.t. Cii =
1

2‖wi‖2
, Djj =

1
2‖Wv‖F

,
(8)

where C ∈ Rd×d and D ∈ Rd×d are diagonal matrices and derived from W. For Dii, wi is
the row vector of Wv.

Though two more variables are introduced, we obtain a convex function, and we can
solve the optimization problem iteratively. In each iteration, we update one variable while
others are fixed, and all variables can be optimized in order. In view of C and D derived
from W, we fix M and update W at first. The derivative of (8) w.r.t. W is calculated as

2XT(XW− Y− B⊗M) + 2αCW + 2βDW. (9)

Let (9) equal zero, then the updated W can be obtained by solving the equation. If there
are big-size data or high-dimensional data, the gradient descent method is recommended.
Following that, C and D can be updated.

When it turns to M, the optimization problem can be transformed from (8) to (10).

min
M
‖Z− B⊗M‖2

F,

s.t. Z = XW− Y.
(10)

According to the definition of F-norm, this problem can be decoupled into n × c
subproblems [30] and represented as

min
Mij

(
Zij − Bij Mij

)2. (11)

With Bij
2 = 1, (11) is equivalent to (12).

min
Mij

(
ZijBij −Mij

)2. (12)

With the nonnegative constraint, Mij is calculated as

Mij = max(ZijBij, 0). (13)

Accordingly, M can be updated as

M = max(Z⊗ B, 0). (14)

Up to now, all variables are updated in the iteration and we present the optimization
process in Algorithm 1.

After optimization, we obtain weight matrix W learned across all views and then sort
all features according to their importance. The importance is measured by the l2-norm
value of each row vector of W, ‖wi‖2(i = 1, 2, . . . , d). Feature selection can be completed
with features ranked in descending order.
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2.4. Convergence

In this subsection, we analyze the convergence of Algorithm 1. We need to guarantee
the objective function decreases in each iteration of the optimization algorithm. The
following lemma is used to verify its convergence.

Lemma 1. For any nonzero values a, b ∈ R, the following inequality holds:

2ab ≤
(

a2 + b2
)
⇒ a− a2

2b
≤ b− b2

2b
. (15)

Theorem 1. The objective Function (1) monotonically decreases in the iteration of Algorithm 1.

Proof. According to Step 6 and Step 7 in Algorithm 1, we have Wt+1 and Mt+1 as follows:

Wt+1 ⇐ min
W
‖XWt − Y− B⊗Mt‖2

F + αTr(WT
t CtWt) + βTr(WT

t DtWt), (16)

Mt+1 ⇐ min
M
‖XWt+1 − Y− B⊗Mt‖2

F. (17)

Firstly, according to (16) and (17), there is

‖XWt+1 − Y− B⊗Mt+1‖2
F + αTr(WT

t+1CtWt+1) + βTr(WT
t+1DtWt+1)

≤ ‖XWt+1 − Y− B⊗Mt‖2
F + αTr(WT

t+1CtWt+1) + βTr(WT
t+1DtWt+1) ≤ ‖XWt − Y− B⊗Mt‖2

F + αTr(WT
t CtWt) + βTr(WT

t DtWt).
(18)

Thus, according to the definition of C, we have

αTr(WT
t+1CtWt+1) =

d
∑

i=1

‖(wi)t+1‖
2
2

2‖(wi)t‖2

= α
d
∑

i=1

∥∥(wi)t+1
∥∥

2 − α(
d
∑

i=1

∥∥(wi)t+1
∥∥

2 −
d
∑

i=1

‖(wi)t+1‖
2
2

2‖(wi)t‖2
) = αΦ(Wt+1)− α(

d
∑

i=1

∥∥(wi)t+1
∥∥

2 −
d
∑

i=1

‖(wi)t+1‖
2
2

2‖(wi)t‖2
)

(19)

We also perform the same transformation with Tr(WT
t+1DtWt+1), Tr(WT

t CtWt) and
Tr(WT

t DtWt). We can rewrite (18) as

Ψ(Wt+1, Mt+1) + αΦ(Wt+1) + βΩ(Wt+1)− α(
d
∑

i=1

∥∥(wi)t+1
∥∥

2 −
d
∑

i=1

‖(wi)t+1‖
2
2

2‖(wi)t‖2
)− β(

m
∑
v

∥∥(Wv)t+1
∥∥

F−
m
∑
v

‖(Wv)t+1‖
2
F

2‖(Wv)t‖F
)

≤ Ψ(Wt, Mt) + αΦ(Wt) + βΩ(Wt)− α(
d
∑

i=1
‖(wi)t‖2 −

d
∑

i=1

‖(wi)t‖
2
2

2‖(wi)t‖2
)− β(

m
∑
v
‖(Wv)t‖F−

m
∑
v

‖(Wv)t‖
2
F

2‖(Wv)t‖F
).

(20)

According to Lemma 1, we arrive at

Ψ(Wt+1, Mt+1) + αΦ(Wt+1) + βΩ(Wt+1) ≤ Ψ(Wt, Mt) + αΦ(Wt) + βΩ(Wt). (21)

Thus, Algorithm 1 decreases the optimization problem in (1) for each iteration so (1)
will converge to its global optimum according to its convexity.
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Algorithm 1 The optimization algorithm for (8)

Input: The feature matrix across all views, X ∈ Rn×d; the label matrix, Y ∈ {0, 1}n×c; the parameters α and β

Output: The weight matrix across all views, W ∈ Rd×c

1: Calculate B from Y via (2)
2: Initialize W0 and M0
3: Initialize t = 0
4: Repeat
5: Calculate Ct and Dt from Wt
6: Wt+1= (XTX + αCt + βDt)−1(XTY + XTB⊗Mt)
7: Mt+1 = max((XWt+1 − Y)⊗ B)
8: t = t + 1
9: Calculate residue via (1)
10: Until convergence or maximum iteration number achieved

3. Material and Characterization
3.1. Data Collection and Cleaning

In this study, the fault data were collected from an AC transmission network located
in a coastal populous city in Guangdong Province, China. These faults occurred between
2016 and 2019, and the voltage levels varied from 110 to 500 kV. Fault signals were recorded
by digital fault recorders (DFRs) installed on substations. The DFR equipment involves
PMUs and computer systems to synchronize, store and display analog data for voltage
and current signals. These signals can be remotely accessed through a communication
network and provide offline data stored in common format for transient data exchange
(COMTRADE). The sampling rate is 5 kHz in the dataset. Environmental information and
other associated monitoring data were obtained through the inner maintenance system. A
patrol report of manual inspection was attached to each fault, describing the inspection
result and labeling its cause. The original dataset comprised 551 samples, and 288 of them
remained after cleansing. The distribution of fault-cause categories is shown in Figure 1.
Lightning, external force and object contact are the three dominant causes. External force
refers to collision or damage due to human activity. Object contact is usually caused by
floating objects in the air. These are typical causes in a densely populated city, causing
more than 90% of known faults.

Figure 1. Distribution of transmission line fault cause after cleansing.

3.2. Waveform Characteristics

It is believed that the disturbance variation of electrical quantity after faults occurring
contains important transient information for fault diagnosis [33]. The original waveform
data are recorded in COMTRADE files with the sampling frequency of 5 kHz. The first
step is to acquire fault segments and extract valid waveform segments without disturbance
caused by tripping. In this paper, the beginning of valid segments is determined by
inspection thresholds based on root mean squared (rms) current magnitude. dI is the
difference between consecutive values.

dI ≥ 0.15 pu or I ≥ 1.2 pu. (22)

The start thresholds are determined by inspection to make sure that fault measure-
ments in this study are correctly captured. Since COMTRADE stores not only electrical
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signals in analog channels but also tripping information in digital channels, one and a half
cycles after tripping enabling signal is regarded as the end of the segment. In characteri-
zation, we extend previous research work on waveform characterization. The following
waveform features are considered and extracted.

1. Maximum Change of Sequence Components: Instantaneous magnitude is calculated
relative to prefault amplitude in order to be compatible with measurements from
different voltage levels and operation conditions. Karenbauer transformation is used
to obtain zero, positive and negative components of three-phase signals, denoted by s,
s = 0, 1, 2.

Vs(max) =
max

(
Vs( f ault)

)
Vs(pre− f ault)

, s = 0, 2. (23)

Is(max) =
max

(
Is( f ault)

)
Is(pre− f ault)

, s = 0, 1, 2. (24)

2. Maximum Rate of Change of Sequence Components:

∆Vs(max) =
max(|∆Vs|)
Vs(pre− f ault)

, s = 0, 1, 2. (25)

∆Is(max) =
max(|∆Is|)
Is(pre− f ault)

, s = 0, 1, 2. (26)

3. Sequence Component Values at t-cycle: t is set to be 0, 0.5, 1 and 1.5. For instance,
t = 0.5 means the measuring point is 1/2 cycle from the start.

Vs(t) =
Vs(t)

Vs(pre− f ault)
, s = 0, 1, 2. (27)

Is(t) =
Is(t)

Is(pre− f ault)
, s = 0, 1, 2. (28)

4. Custom Time Constant of Sequence Current: Inspired by a linear time-invariant
system, time content is introduced to reflect the dynamic response of the network [23].
Time content is the time required to rise from the zero point to 1/e of the maximum
current. In this study, 1/e is replaced with a custom value, m. These features are
denoted as TC_Is(m), m = 0.1, 0.2, . . . , 0.9, 1

5. DC and Harmonic Content: Hilbert–Huang transform is used to conduct spectrum
analysis [17]. The harmonic content and DC content are calculated from the ratio of
the specific component to the fundamental component. DC and harmonic content are
denoted as Har_k, k = 0, 3, 5, 7, 9, 11

6. Wavelet Energy and Energy Entropy: Discrete wavelet transform is applied to de-
compose fault-phase current signals into three wavelet scales. Wavelet energy E and
energy entropy S are calculated for each scale.

pj =
Ej

∑
j

Ej
=

∑
∣∣Cj
∣∣2

∑
j

∑
∣∣Cj
∣∣2 , Sj = −pj log2(pj). (29)

where Cj, Ej, pj denote wavelet coefficient, wavelet energy and relative energy in scale
j, j = 1, 2, 3.
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7. Maximum DC Current: Equation (30) is used to calculate the maximum DC current
on three-phase signals. Ns is the number of data points in one cycle, and n = 0 means
the triggering point.

Idc(max) = max(Idc_a, Idc_b, Idc_c), Idc =

Ns
∑

n=1
in −

Ns
∑

n≤−Ns

in

max(Ipre− f ault)
. (30)

8. Time Domain Factors: Form factor, crest factor, skewness and kurtosis, denoted as
t1–t4, respectively, are introduced to reflect characteristics of waveform shape and the
shock for fault-phase current signals. SD denotes their standard deviation.

t1 =

√
1

Ns

Ns
∑

n=1
(in)

2

1
Ns

Ns
∑

n=1
|in|

, t2 =
max(in)

1
Ns

Ns
∑

n=1
|in|

, t3 =

Ns
∑

n=1

(
in − i

)3

SD3Ns
, t4 =

Ns
∑

n=1

(
in − i

)4

SD4Ns
(31)

9. Approximation Constants δ for Neural Waveform: In order to learn more from the
front wave, the waveform of rms neutral voltage/current is approximated by (32), as
introduced in [33].

f (t, δ) = 1− e−δt, (32)

where t is time step and δ is the approximation constant. Equation (32) estimates the
closest value with regard to the actual waveform in per unit value.

10. Fault Inception Phase Angle (FIPA): FIPA is calculated based on the trigger time after
the last zero crossing point prior to fault happening.

All waveform features are listed in Table 2. Faulted phase features are included in the
next subsection.

Table 2. Feature pools.

Pool Type Feature Total Number

Waveform

Maximum sequence voltage/current 5
Maximum change of three-phase signals and sequence components 6

Sequence component values 24
Custom time constant of sequence current 30

DC and harmonic content 6
Wavelet energy and energy entropy 6

Maximum DC current 1
Form factor, crest factor, skewness and kurtosis 4

Approximation constants 2
FIPA 1

Contextual

Time stamp: season, day/night, mouth, hour 4
Location: landform, zone 2

Meteorological data: weather, temperature, humidity, rainfall, cloud
cover, maximum wind speed, wind scale 7

Protection data: reclosing, fault phase, fault duration, tripping time,
breaker quenching time, reclosing time, number of triggering 7

Others: voltage level, number of faults 2

3.3. Contextual Characteristics

Most monitoring technologies are developed for specified causes and work indepen-
dently with interconnected data. In this study, due to data restriction, available nonwave-
form data include time stamps, meteorological data, geographical data, protection data and
query information. These informative values are preprocessed and integrated into the pool
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of candidate contextual features, as shown in Table 2. Considering that there is no accurate
discretization standard, we only discretize text data roughly if necessary. The time stamp
information is discretized twice based on season and day/night as a contrast of months
and daytime. As for dynamic records such as meteorological value, the records closest to
the fault time are retained. Protection data are feedback information of protection devices
after fault, usually obtained from the production management system. Although these
collected data are related to fault events, they are not suitable for fault cause identification.
These irrelevant features pose a great challenge in feature selection.

4. Experiments and Discussion
4.1. Experiment Setup

To validate the effectiveness and efficiency of HMVFS, we conducted comparison
experiments using the mentioned field data previously. Three strategies for utilizing mul-
tiview data with feature selection were considered, namely single-view learning, feature
concatenation after selection and feature selection after concatenation. The last two are the
simplest early fusion methods. Single-view learning is represented via best single view
(BSV) method, through which the most informative view achieves the best performance
among views. As for the dataset in this paper, contextual features are more representative
than hand-crafted waveform features. Feature concatenation after selection (FSFC) employs
a feature selection technique separately and concatenates features selected from different
views. Feature selection after concatenation (FCFS) concatenates original feature sets of
two views and then performs feature selection. Adaptable feature selection methods listed
in the next subsection are applied to select discriminative features.

The fault dataset was split into training data and testing data in a stratified fashion
according to the ratio of 3:1. All samples were normalized by standard deviation after
zero-mean standardization. Then, feature selection methods were used to seek the optimal
feature combination using training sets and transform all samples for fault-cause classifica-
tion. ML classifiers were utilized to finish the classification. In the presence of imbalanced
data, criteria such as G-mean and accuracy were used to quantitatively assess classification
performance. Since G-mean is a metric within biclass concepts, its microaverage was
computed and adopted. The final results of each metric were calculated as the average of
the 5 trials.

4.2. Comparison Feature Algorithms

As reviewed in [34], there are many feature selection methods. We conducted com-
parison experiments between our MVFS and several typical feature selection algorithms,
namely Fisher score (F-Score), mutual information (MI), joint mutual information (JMI),
joint mutual information maximization (JMIM), ReliefF, Hilbert–Schmidt independence
criterion lasso (HSIC Lasso) [35] and recursive feature elimination (RFE). F-Score ranks
features through variance similarity calculation, and the same rank can be obtained by
analysis of variance (ANOVA). MI ranks features according to values of their mutual
information with class labels. JMI and JMIM are developed from MI [36]. RFE ranks
and discards features after training a certain kind of classifier. Starting from all features,
the elimination process continues until the feature number or output error is settled
to a minimum.

The above algorithms are developed for single-view learning and can be used in BSV,
FCFS and FSFC directly. Except for RFE, all of them are filter feature selection approaches,
as is HMVFS. Besides, the comparison algorithms designed for multiview learning are
kernel canonical correlation analysis (KCCA) [24] and discriminant correlation analysis
(DCA) [37]. These feature extraction approaches map multiview data into a common feature
space so their results are attached to the comparison in FCFS. As for the proposed algorithm,
there are two hyperparameters in HMVFS. In the experiments, these hyperparameters α
and βwere tuned ranging in {10−2, 10−1, 1, 10, 102, 103} through grid search on the training
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sets. Moreover, experiments without any feature algorithm were conducted using BSV
features and all features, tabbed as RAW_BSV and RAW.

4.3. Overall Classification Performance

In this subsection, we compare the mentioned dimension reduction approach on
the basis of SVM to verify the effectiveness of multiview learning and HMVFS. Two
concatenating rules were applied to FSFC. The first rule tries to keep 1:1 proportion of
waveform and contextual features. There is one more contextual feature when the total
number is odd. The second rule holds the same proportion of waveform and contextual
features as that in HMVFS.

The results in terms of Gmean with different numbers of selected features are shown in
Figure 2. By comparing single-view feature selection methods among strategies, we notice
that most of them perform best in BSV rather than in FSFC and FCFS. Added fault features
from the other view will even degrade their classification, and this indicates that simple
concatenation cannot help conventional feature selection methods adapt to multiview
classification. A similar conclusion is drawn in [23]. Thus, the introduction of MVL appears
vital in particular. HMVFS has comprehensive advantages in the comparison of FSFC
and FCFS and achieves the best performance compared with methods in BSV. HMVFS
outperforms others in the middle of feature increasing, and its result with 14 selected
features is the global or near-global optimum. When features from the other view increase,
the performance is degraded to a certain extent, and then it rises to another peak. Most
methods in BSV produce a zigzag rise curve and reach their best when almost all view
features are selected. They are also inferior to HMVFS in FSFC and FCFS. ReliefF is the
best competitor that achieves acceptable performance in different strategies. As for KCCA
and DCA, their performance is low. Figure 2 illustrates that HMVFS is more capable of
obtaining the best performance combining waveform and contextual features.

Figure 2. Classification comparison between HMVFS and other feature algorithms in strategies: (a) BSV; (b) FSFC_rule1;
(c) FSFC_rule2; (d) FCFS.
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Due to the limit of yield data condition and fault signature study, irrelevant and
redundant features are introduced with increasing feature numbers. This problem is
more prominent in the waveform view in both theoretical and experimental studies. The
advantage of HMVFS is that it selects features with independent and complementary
information of all views, while the single-view methods are easily affected by irrelevant
features facing concatenated assembly or meeting the limitation of single-view features. As
seen from Figure 2, concatenating and mapping fail to select or transform discriminative
features with combined waveform and contextual features. There are two local optimums
for HMVFS, and they are better than the performance of competitors, which demonstrates
that HMVFS overcomes the negative effect of redundant features in multiview data.

4.4. Parameter Sensitivity

Determination of hyperparameters is an open problem for many algorithms. We
conducted parameter sensitivity study by testing different settings of parameters α and β.
Since these parameters help HMVFS perform hierarchical feature selection, it is clear that
HMVFS will be sensitive to parameter change, and this study may reveal a hierarchical
feature relationship. The candidate set was {10−2, 10−1, 1, 10, 102, 103} for each parameter.
Classification performance and average running time are recorded and illustrated in
Figure 3.

Figure 3. Performance variation of HMVFS with different values for the parameters α and β in terms of (a) Gmean; (b) ACC;
(c) time.

It is observed that α = 10 is beneficial to final selection and maintains relatively high
classification performance, among which lower β has slight advantages. View importance
is different in multiview learning. From the perspective of view importance, when only two
views exist and one of them is generally better, acceptable performance can be achieved
by one view, and additional features are expected for improvement. High-level feature
selection is weak because the other view has relatively more redundant features and will
be ignored with higher β. Meanwhile, appropriately higher α enhances low-level feature
selection to exploit the most representative features from the unimportant view. Moreover,
acceptable performance is achieved with α = 10−2, β = 102 and α = 10−1, β = 102. High-
level selection is enhanced, and low-level selection is restrained, which results in limited
performance approximating in single-view learning and short convergence time.

4.5. Comparison between ML Classifiers

In order to investigate the effect of classifiers and explore better identification accuracy,
we employed different ML learners to complete fault-cause classification with HMVFS.
Owing to space limitation and performance stability, F_Score and ReliefF were used for
comparison. The typical individual classifiers CN2, LR, KNN, SVM and ANN, which
have been proven effective in fault-cause identification studies, were tested, and the results
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are presented in this subsection. Ensemble models promote fault-cause identification by
combining individual learners [22], so we also explored the performance of various ensem-
ble models, including random forest (RF), AdaBoosting, stacking ensemble and dynamic
ensemble. META-DES, DES-Clustering and KNORA-U are dynamic ensemble techniques
based on metalearning, clustering and k-nearest neighbors, respectively. Classification
models were developed using Python machine learning library, scikit-learn and DESlib.
Table 3 presents the best performance for each combination of feature selection methods
and classifiers. Considering some data may be similar, AUC is introduced as a supple-
ment criterion, which is derived from receiver operating characteristic (ROC) analysis and
calculated as the area under the ROC curve.

Table 3. Best performance comparison with different ML classifiers.

Classifier Feature Selection Feature Number Gmean ACC AUC

CN2
F_Score 39 0.707 0.581 0.834
ReliefF 33 0.707 0.580 0.836

HMVFS 28 0.730 0.612 0.841

LR
F_Score 16 0.833 0.756 0.889
ReliefF 15 0.833 0.756 0.896
HMVFS 33 0.831 0.752 0.896

KNN
F_Score 14 0.838 0.764 0.891
ReliefF 11 0.835 0.760 0.895

HMVFS 7 0.848 0.778 0.909

SVM
F_Score 18 0.812 0.728 0.908
ReliefF 18 0.837 0.761 0.906

HMVFS 14 0.849 0.779 0.921

ANN
F_Score 18 0.837 0.761 0.891
ReliefF 15 0.850 0.780 0.911
HMVFS 36 0.842 0.769 0.915

RF
F_Score 27 0.878 0.821 0.926
ReliefF 12 0.876 0.819 0.935
HMVFS 9 0.875 0.817 0.935

AdaBoost
F_Score 36 0.781 0.684 0.797
ReliefF 19 0.777 0.679 0.830

HMVFS 14 0.784 0.690 0.846

META-DES
F_Score 19 0.876 0.816 0.930
ReliefF 11 0.872 0.812 0.928

HMVFS 12 0.881 0.824 0.937

DES-Clustering
F_Score 32 0.872 0.812 0.916
ReliefF 13 0.875 0.817 0.932

HMVFS 10 0.882 0.827 0.945

KNORA-U
F_Score 15 0.872 0.812 0.926
ReliefF 14 0.870 0.809 0.932

HMVFS 12 0.884 0.829 0.942

Stacking
F_Score 16 0.880 0.824 0.930
ReliefF 13 0.874 0.814 0.936

HMVFS 11 0.886 0.831 0.939

As seen from the table, HMVFS outperforms F_Score and ReliefF except with LR
and ANN. It is observed that HMVFS always takes fewer features to achieve the best
performance in the remaining comparisons. In the group of RF, the best scores of F_Score,
ReliefF and HMVFS are very close to each other because RF has the ability of variable
selection. Thus the features that function in final classification are similar if selected feature
subsets are large enough to contain valuable features. Except for mentioned learners,
HMVFS has advantages in both score and feature number.
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From the perspective of learners, the classification performance improves with the
enhancement of model complexity. CN2 as a rule-based learner cannot cope with multiview
features to achieve acceptable performance. Individual learners cannot achieve accuracies
greater than 0.8, which are apparently inferior to most ensemble models. Among ensemble
models, stacking ensemble realizes the best fault-cause identification in this study. The
experimental results of ML classifiers indicate that HMVFS is more suitable for classifiers
with high generalization and that ensemble models can bring significant improvement for
fault-cause identification.

5. Conclusions

Associated multisource data for transmission line fault-cause diagnosis are divided
and extracted as waveform and contextual features in this paper. MVL is introduced to
appropriately combine these features for performance improvement. A novel hierarchi-
cal multiview feature selection method based on an ε-dragging technique and sparsity
regularization is proposed to perform hierarchical feature selection with multiview data.
The ε-dragging is applied in the loss function to enlarge sample distance between classes.
l2,1-norm and F-norm conduct row-wise and view-level selection, respectively, which can
be viewed as the low-level and high-level feature selection. We also develop the optimiza-
tion algorithm and prove its convergence theoretically. The proposed HMVFS is evaluated
by comparisons on yield data. The results reveal that HMVFS outperforms conventional
feature selection methods in single-view and early fusion strategies. The further experi-
ments concerning ML classifiers also demonstrate the superiority and effectiveness of the
proposed method with high generalization learners. This study has shown the combined
use of waveform and contextual features with HMVFS can cause significant improvement
for fault-cause identification. In future work, more multiview data and further fault sig-
nature study are needed to refine the feature pools, and the performance of HMVFS is
expected to be further improved.
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