
applied
sciences

Systematic Review

On Microservice Analysis and Architecture Evolution:
A Systematic Mapping Study

Vincent Bushong 1,* , Amr S. Abdelfattah 1, Abdullah A. Maruf 1, Dipta Das 1 , Austin Lehman 1,
Eric Jaroszewski 1, Michael Coffey 1, Tomas Cerny 1,* , Karel Frajtak 2 , Pavel Tisnovsky 3 and Miroslav Bures 2

����������
�������

Citation: Bushong, V.; Abdelfattah,

A.S.; Maruf, A.A.; Das, D.; Lehman,

A.; Jaroszewski, E.; Coffey, M.; Cerny,

T.; Frajtak, K.; Tisnovsky, P.; et al. On

Microservice Analysis and

Architecture Evolution: A Systematic

Mapping Study. Appl. Sci. 2021, 11,

7856. https://doi.org/10.3390/

app11177856

Academic Editor: Sofie Van Hoecke

Received: 22 July 2021

Accepted: 24 August 2021

Published: 26 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computer Science, Baylor University, One Bear Place #97141, Waco, TX 76798, USA;
amr_elsayed1@baylor.edu (A.S.A.); Maruf_Maruf1@baylor.edu (A.A.M.); dipta_das1@baylor.edu (D.D.);
austin_lehman1@baylor.edu (A.L.); eric_jaroszewski1@baylor.edu (E.J.); Michael_Coffey@baylor.edu (M.C.)

2 Computer Science, Faculty of Electrical Engineering, Czech Technical University, Karlovo Nam. 13,
121 35 Prague, Czech Republic; frajtak@fel.cvut.cz (K.F.); buresm3@fel.cvut.cz (M.B.)

3 Red Hat, Purkynova 99, 612 00 Brno, Czech Republic; ptisnovs@redhat.com
* Correspondence: vincent_bushong1@baylor.edu (V.B.); tomas_cerny@baylor.edu (T.C.)

Abstract: Microservice architecture has become the leading design for cloud-native systems. The
highly decentralized approach to software development consists of relatively independent services,
which provides benefits such as faster deployment cycles, better scalability, and good separation
of concerns among services. With this new architecture, one can naturally expect a broad range
of advancements and simplifications over legacy systems. However, microservice system design
remains challenging, as it is still difficult for engineers to understand the system module boundaries.
Thus, understanding and explaining the microservice systems might not be as easy as initially thought.
This study aims to classify recently published approaches and techniques to analyze microservice
systems. It also looks at the evolutionary perspective of such systems and their analysis. Furthermore,
the identified approaches target various challenges and goals, which this study analyzed. Thus, it
provides the reader with a roadmap to the discipline, tools, techniques, and open challenges for future
work. It provides a guide towards choices when aiming for analyzing cloud-native systems. The
results indicate five analytical approaches commonly used in the literature, possibly in combination,
towards problems classified into seven categories.

Keywords: microservices; system analysis; architectural degradation; software architecture reconstruction

1. Introduction

Cloud-native systems take full advantage of distributed computing offered by the
cloud delivery model. These systems are fueled mainly by microservice architecture [1],
an architectural style where the system is broken down into reusable, lightweight, and gran-
ular services that interact with one another. In industry, microservices are rapidly gaining
popularity, with companies such as Amazon, Netflix, and Spotify acting as role models
in this trend. The increasing popularity of microservices can be attributed to the fact that
they are easy to scale and more resilient to faults than other architectural styles when
implemented properly [2]. Microservices are independently deployed, have lower cou-
pling, and are self-contained. This means that services can be developed and tested by
different development teams, dramatically lowering development time. It is expected that
microservices become easier to maintain due to their smaller size and scope. However, is
this really the case from a global perspective?

Since development teams are given more freedom for microservice evolution, a mecha-
nism informing other teams about what has changed or evolved is missing. Thus, microser-
vice architecture is not without its drawbacks. With the highly decentralized development
and design of microservices, it becomes difficult to maintain a centralized reference of the
architectural design. As a result, the system becomes vulnerable to architectural degrada-

Appl. Sci. 2021, 11, 7856. https://doi.org/10.3390/app11177856 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0475-4232
https://orcid.org/0000-0001-8366-2453
https://orcid.org/0000-0002-5882-5502
https://orcid.org/0000-0003-4133-2805
https://orcid.org/0000-0002-2994-7826
https://doi.org/10.3390/app11177856
https://doi.org/10.3390/app11177856
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11177856
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11177856?type=check_update&version=2

Appl. Sci. 2021, 11, 7856 2 of 27

tion, a phenomenon where changes to the codebase cause the architecture to deviate from
the originally intended design.

One answer to face these challenges (centralized architectural design and architectural
degradation) is to extract information about microservices to better explain them. This is
accomplished by system analysis. However, what is the recent practice used in the literature
to perform such analysis? We could use static or dynamic analysis on conventional systems,
but how do these differ for microservices, and do they pose any limitations? To deal
with these challenges more effectively, we should know about the recent microservice-
specific practice.

The goal of this study is to report on the practice of analyzing microservice architecture.
There are many questions about microservices that must be answered, such as finding
most efficient and accurate methods for analyzing and debugging microservice systems.
The unique characteristics of microservices make analysis simultaneously challenging and
valuable. Thus, this study also focuses on the issues of how microservice architecture
evolves and possibly degrades over time. In particular, this study considers:

• challenges in the analysis of the system architecture;
• fault detection, prevention, and root cause analysis of failure states;
• the practice of migration of monolithic systems into microservices;
• analysis role in system evolution, technical debt, and architecture degradation;
• how quality aspects are analyzed in microservices,
• the relationship between microservices and other architectures.

So far, no other recent study has been conducted to organize the topic of microservice
analysis. Thus, we compile a mapping study of the most relevant and recent microservice
analysis research from six scientific databases in the last 3 years.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 outlines the research methods we used to collect and analyze the current lit-
erature, including the definition of our research questions. In Section 4, we discuss our
analysis of the works we identified. Section 5 contains our discussion of the results and
the answers to our research questions. Section 6 discusses threats to validity. Finally, we
conclude in Section 7.

2. Related Work

Microservices emerged in 2014 (when Lewis and Fowler first defined the microservice-
based architectural style) [3]. Since then, microservices have been steadily increasing
in popularity. Researchers focused on deriving Systematic Mapping Studies (SMS) on
microservices in different aspects of analysis for their architecture.

Alshuqayran et al. conducted a study in [4] on 33 articles published between 2014
and 2016 of microservices architectures and their implementation. They focused on iden-
tifying architectural challenges, the architectural views, and quality attributes related to
microservice systems. Although the authors paid attention to the qualitative and quanti-
tative methods, they did not consider other architectural considerations of microservice
architecture, such as architecture degradation challenges and root cause analysis.

Pahl et al. selected 21 articles published over 2014 and 2015 to construct a characteri-
zation framework to classify and compare microservice-centric articles in [5]. This study
resulted in a knowledge base of current research approaches, methods, techniques, best
practices, and microservice architecture experiences. Following a common ontology in [6],
these framework characteristics were categorized by three central concepts (computational
entity, purpose, and quality).

Both of these above studies reveal that microservices research is still in a formative
stage. More experimental and empirical evaluation of the benefits is needed to fill wide
gaps between the current industry level and academia. Moreover, a weak research dataset
did not consider crucial attributes for architecture analysis, such as security and dynamic
analysis aspects.

Appl. Sci. 2021, 11, 7856 3 of 27

Since microservices come from practitioners and research comes later, Soldani et al.
in [3] aimed at complementing the academic studies with a systematic analysis of the
industrial gray literature on the topic. They performed a deep analysis on classifying the
technical and operational pains and gains of microservices as recognized by industrial re-
searchers and practitioners working day-to-day with microservices. This analysis included
51 selected industrial studies published from 2014 until the very end of 2017. It showed that
the understanding of the pains and gains of microservices is quite mature in the industry,
but academia has much to learn from the industry on the topic. The identified drawbacks
are mainly related to the intrinsic complexity of microservice-based applications, while the
gains relate to peculiar properties of microservice-based architectures.

Continuing to compare industrial and researching different views, Di Francesco et al.
in [7] selected 71 primary studies up to 2016. They extended it in [8] to include 103 relevant
papers until the beginning of May 2017. Their objective is to identify, classify, and evaluate
the focus for industrial adoption of existing research in architecting with microservices
from a researcher’s and practitioner’s point of view. This work contributes with (1) a classi-
fication framework for research studies on architecting with microservices, (2) a systematic
map of current research of the field, and (3) an evaluation of the potential for industrial
adoption of research results. Finally, the authors investigated the tradeoff between flexi-
bility and complexity calls for intensive interactions; then, they showed that significant
microservice-based systems must consist of much larger numbers of microservices than
the small examples covered by the publications so far.

Taibi et al. [9] organized different microservice patterns in a catalog of patterns. They
selected 42 papers published between 2014 and 2016. They created a three-layered cata-
log of patterns consisting of Data Storage Patterns, Deployment Strategies and Patterns,
and Orchestration and Coordination Architecture Patterns. This catalog shows some pat-
terns that were clearly used for migrating existing monolithic applications (service registry
pattern) and others for migrating existing SOA applications (hybrid pattern), adopting the
API-Gateway pattern in the orchestration layer to benefit from microservice architectures
without refactoring. However, this study considered case studies suitable patterns without
considering the quality attributes that may impact such decisions. Therefore, there is a lack
of understanding of how to adopt a microservice architecture style in practice.

DevOps tries to support developers with a set of continuous delivery practices and
tools to continuously deliver value, increasing delivery efficiency and reducing the time
intervals between releases [10]. Microservices emerge as an architectural style. How-
ever, in short order, they extended into deployment and operations as a DevOps style.
The above studies showed a lack of tool support to automate and facilitate cloud microser-
vice and deployment.

Taibi et al. extended their former study [9] to put more focus on how to continuously
deliver value in a DevOps pipeline in [10]. This extension includes 23 articles published
in the same period between 2014 and 2016. They focused on analyzing the different mi-
croservice architectural styles to map existing tools and techniques adopted in the DevOps
context. They considered the four quality attributes (availability, modifiability, perfor-
mance, and testability) as well. For that reason, their study focused on a set of tools that
enables continuous integration, test automation, rapid deployment, and a synchronized
environment. Additionally, they identified phase-based techniques as follows: Planning
and Coding Techniques, Testing Techniques, Release Techniques, Deployment Techniques,
and Operation and Monitoring Techniques.

Waseem et al. in [11] continued in considering DevOps in microservices architec-
ture. They selected 47 articles published from 2015 to 2018. This study aimed to identify
problems, solutions, challenges, patterns, qualities attributes, tools, application domains,
and research opportunities in the context of microservice architecture in DevOps. They
classified this study into three major themes: “microservices development and operations
in DevOps”, “approaches and tool support in DevOps”, and “microservice architecture
migration experiences in DevOps”. In addition, they identified 50 tools that support

Appl. Sci. 2021, 11, 7856 4 of 27

building such architecture-based systems in DevOps, for instance, GitHub as a version
control system, Jenkins as a continuous integration server, and Puppet as a configuration
management system, which are the most popular tools.

The aggregated research questions shown in Table 1 show that the above studies have
covered work on microservices relating to the challenges and techniques of developing mi-
croservices. However, there has not been a work to cover techniques relating to analyzing a
microservice system as it currently exists, and while the design of microservice architecture
has been covered in these studies, the reconstruction and analysis of that architecture have
not. Furthermore, these studies have not yet covered the most recent years, with the latest
study covering up to 2018. It is these edges that we aim to address with our mapping study.

The audience of our study consists of both researchers interested in investigating the
microservices architectural style and practitioners that are willing to understand and adapt
existing research on microservice architecture.

Table 1. Related Work Research Questions.

Reference Research Questions

[3]
How much evidence of microservices experimentation from industry is available online?
What are the technical and operational “pains” of microservices?
What are the technical and operational “gains” of microservices?

[4]
What are the architectural challenges that microservices systems face?
What architectural diagrams/views are used to represent microservices architectures?
What quality attributes related to microservices are presented in the literature?

[5]

What are the main practical motivations behind using microservices?
What are the different types of microservice architectures involved?
What are the existing methods, techniques and tool support to enable microservice architecture develop-
ment and operation?
What are the existing research issues and what should be the future research agenda?

[7,8]

What are the publication trends of research studies about architecting with microservices?
What is the focus of research on architecting with microservices?
What is the potential for industrial adoption of existing research on architecting with microservices?

[9] Which are the different microservices-based architecture patterns?
Which advantages and disadvantages have been highlighted for these patterns?

[10]

Which are the different microservices-based architectural styles?
What are the differences among the existing architectural styles?
Which advantages and disadvantages have been highlighted in implementations described in the literature
for the identified architectural styles
What are the different DevOps-related techniques applied in the microservices context?

[12]

What is the frequency and type of published research on microservices in DevOps?
What are the existing research themes on microservices in DevOps and how can they be classified and
mapped?
What problems have been reported when implementing microservices in DevOps?
What solutions have been employed to address the problems?
What challenges have been reported when implementing microservices in DevOps?
What methods are used to describe microservices in DevOps?
What microservices design patterns are used in DevOps?
What quality attributes are affected when employing microservices in DevOps?
What tools are available to support microservices in DevOps?
What are the application domains that employ microservices in DevOps?

3. Methods and Materials

The motivation behind this study was to understand the current landscape of how
microservices are analyzed. We aimed to identify and assess the current methods in use
and recognize the specific goals that fall under the purview of microservice analysis. We
also desired to know whether the analysis of microservice architecture was related to other
architectures or if it was too different for existing techniques to be reused. To this end, we
defined these research questions:

RQ1 What methods and techniques are used in microservice analysis?
RQ2 What are the problems or opportunities that are addressed using microservice analy-

sis techniques?
RQ3 Does microservice analysis overlap with other areas of software analysis, or are new

methods or paradigms needed?
RQ4 What potential future research directions are open in the area of microservice analysis?

Appl. Sci. 2021, 11, 7856 5 of 27

To perform this study, we used the guidelines for software engineering mapping
studies proposed by Petersen et al. [13]. The set of research questions above defined the
bounds and goals of the study. Next, we crafted a query to search for relevant works to
answer these questions, manually filtering out results we found not applicable, with the
inclusion and exclusion criteria defined below. Finally, we analyzed the remaining results
and extracted a categorization of the works to answer our research questions.

Next, we defined our query. The primary terms are “microservice” or “microservices”.
We chose secondary terms to identify those results that addressed “analysis” or “analyzing”
and architectural challenges in microservices. In particular, for architectural challenges,
we searched for works that address issues of “architecture degradation”, equivalently called
“architecture erosion” or “architecture degeneration” in the literature. Next, we considered
works on “architecture reconstruction” of microservice systems. We further identified works
that addressed “technical debt” in microservices, as this is closely linked to changes in the
architecture. Thus, our query was structured as follows:

("microservice" OR "microservices")
AND

("analysis" OR "analyzing" OR "architecture reconstruction"
OR "architecture degradation" OR "architecture erosion"
OR "architecture degeneration" OR "technical debt")

To obtain the most recent and relevant results, and to narrow the scope of the research,
we limited the search results only to the years 2018–2021. We applied this query to six major
indexing sites: the ACM Digital Library, IEEE Xplore, SpringerLink, Elsevier ScienceDirect,
MDPI, and Wiley.

From the initial results, we manually vetted the works further based on their actual
relevance. Specifically, we applied the following inclusion criteria to determine if a work
belonged in the study:

1. Papers that performed program analysis on microservice-based systems in some
capacity with the goal of extracting some information about the system.

2. Papers with analysis that was designed for or was being discussed in the context of
microservices specifically.

3. Papers that discussed and addressed challenges associated with microservice analysis.
4. Papers that described a benchmark microservice system intended for use as a testbed.
5. Papers with full text available in the selected databases.
6. Papers published in last three years (2018–2021).

We further applied the following exclusion criteria to eliminate works not relevant:

1. Papers that presented tools or methods designed to directly assist or participate in the
operation of the microservice system (as opposed to strictly analyzing and extracting
information from it).

2. Papers describing a specific implementation of a real-world microservice system not
intended as a benchmark.

3. Papers without specific output, suggestions, or opinions regarding microservice
analysis without experiments or robust proposed methods.

4. Papers without full text available in the selected databases.
5. Papers not presented in the English language.
6. Papers not from peer-reviewed sources.

The initial and manually filtered search results of the query are shown in Table 2.

Appl. Sci. 2021, 11, 7856 6 of 27

Table 2. Search results from the query applied across scientific indexers, all results and filtered results
assessed in this study. Refer to Table 3 for specific works and classification.

Indexer All Search Results Filtered Works Used in This Study

ACM DL 785 11
IEEE Xplore 364 17

ScienceDirect 650 6
SpringerLink ∗ 368 19

MDPI 28 1
Wiley 13 1

Total 2208 55

* Limited to available full texts.

Table 3. Selected paper categorization.

Approaches and Tools Challenges and Goals

References

Stat
ic

Analy
sis

Dynam
ic

Analy
sis

Gra
ph-B

as
ed

Analy
sis

M
odel-

Bas
ed

Analy
sis

Patt
er

n-B
as

ed
Analy

sis

Arch
ite

ctu
ra

l Analy
sis

M
icr

ose
rv

ice
M

ig
ra

tio
n

SAR

Tec
hnica

l Deb
t Analy

sis

Quali
ty

Attr
ib

ute
Analy

sis

Fau
lt

Analy
sis

Evolu
tio

n

Surv
ey

s

Cerny et al. [14] 3 3 3
Baresi [15] 3 3
Saidani [16] 3 3
Kamimura et al. [17] 3 3
Furda et al. [18] 3 3
De Alwis et al. [19] 3 3 3
De Alwis et al. [20] 3 3 3
Matias et al. [21] 3 3 3
Soldani et al. [22] 3 3 3
Eski et al. [23] 3 3 3 3
Ren et al. [24] 3 3 3 3
Ma et al. [25] 3 3 3 3
Walker et al. [26] 3 3 3 3
Walker et al. [27] 3 3 3 3
Walker et al. [28] 3 3 3 3
Pigazzini et al. [29] 3 3 3 3
Marquez et al. [30] 3 3 3 3
Tighilt et al. [31] 3 3 3
Kecskemeti et al. [32] 3 3
Jin et al. [33] 3 3
Kleehaus et al. [34] 3 3 3
Jiang et al. [35] 3 3
Somashekar et al. [36] 3 3
Brondolin et al. [12] 3 3
Ravichandiran et al. [37] 3 3
Chen et al. [38] 3 3 3
Bogner et al. [39] 3 3 3
Samardzic et al. [40] 3 3 3
Du et al. [41] 3 3
Meng et al. [42] 3 3
Jin et al. [43] 3 3
Zuo et al. [44] 3 3
Zhou et al. [45] 3 3 3
Guo et al. [46] 3 3 3
Brandon et al. [47] 3 3 3
Christoforou et al. [48] 3 3
Nunes et al. [49] 3 3
Li et al. [50] 3 3
Stojanovic et al. [51] 3 3
Guan et al. [52] 3 3
Liu et al. [53] 3 3
Meng et al. [54] 3 3
Wu et al. [55] 3 3
Ma et al. [2] 3 3 3
Sun et al. [56] 3 3
Rademacher [57] 3 3 3
Khazaei et al. [58] 3 3
Chondamrongkul et al. [59] 3 3
Klinaku et al. [60] 3 3
Mendonca et al. [61] 3 3
Mczara et al. [62] 3 3
Toledo et al. [63] 3 3 3 3
Cerny et al. [1] 3 3
Auer et al. [64] 3 3
Bogner et al. [65] 3 3 3

Appl. Sci. 2021, 11, 7856 7 of 27

4. Review of the Selected Studies

After filtering our results down to papers relevant to microservices and the scope of
this study, we read and organized them according to the goals and methods that were
most common among them. We considered the papers based on two different perspectives:
approaches and tools and challenges and goals. The specific perspective categories are not
exclusive, as many papers use a combined approach to address some goals. The cate-
gories we identified are summarized in Table 3 also showing which papers fit in which
category. In the remainder of this section, we describe the particular categories, grouped
by the perspectives.

4.1. Approaches and Tools

The papers we assessed used a variety of methods and techniques to reach their
goals. In particular, we have identified common approaches to static and dynamic analysis.
Static analysis considers examining the application source code without the need to run
the system. On the other hand, dynamic analysis requires the system to run to extract
information. In addition, some papers also combined static and dynamic analysis for
their goals. Another identified approach bases on model-based analysis. In this approach,
models are constructed as the system focal point to understand the system or to use the
model by automated tools to derive details about the system. Furthermore, what is also
common across researchers is to use graph-based analysis to represent the microservice-
based system architecture in the form of a graph and then operate with the graph rather
than with a complex system. Finally, we found another rather common approach based on
patterns. However, it is always combined with another approach. Both the model-based
and graph-based analysis introduce an abstraction or an intermediate system representation
to capture certain system concerns. Although there might be an overlap or a graph can be
understood as a model, we consider both categories separate.

4.1.1. Static Analysis

Static analysis involves examining the source code or bytecode of the application
without deploying them. What was most interesting to note about papers that used static-
code analysis was their frequent use to gather information about microservice architecture.
In an article from Marquez et al. [30], the authors analyzed source code from 17 different
microservice systems on GitHub by reviewing each system’s documentation and exam-
ining the structure of the source code to find any common patterns. From this analysis,
the authors obtained a set of availability tactics, also known as resiliency patterns. These
patterns are meant to provide predefined designs to best counter common problems in the
architecture. An article by Tighilt et al. [31] performs a similar analysis with 67 microservice
systems and obtains a set of antipatterns from their results. In this situation, their use of
static-code analysis also allowed them to identify concrete refactoring solutions that would
counter these antipatterns. A paper by Pigazzini et al. [29] also uses static-code analysis for
improving microservice architecture by implementing detection methods for three different
microservice smells in a pre-existing tool called Arcan. Baresi et al. [15] iteratively map
OpenAPI specifications to concepts in reference vocabulary, which are computed to be the
best matches. Then each candidate microservice, one per reference concept, is defined by
its operations and their parameters, complex types, and return values. Saidani et al. [16]
use static analysis to identify candidate microservices while considering structural depen-
dencies of the source code. First, an empty set of microservices is created. Next, each class
is assigned a microservice. Lastly, a genetic algorithm called NSGA-II is used to determine
the best tradeoff between cohesion and coupling. The result is a tool called MSExtractor
that is shown to outperform recent extraction approaches. A paper by Walker et al. [26]
uses static-code analysis, both source code and bytecode, as well as other dependency and
application analysis to construct bounded contexts of the different views—or sets of related
artifacts that cover a concern of the architecture of the system—for each microservice.
Then it aggregates them into a full-scope centralized perspective for each view, which

Appl. Sci. 2021, 11, 7856 8 of 27

consists of all the microservices aggregated into a mesh. The same principle was later
extended to detect code smells searching for patterns [27,28]. Kamimura et al. used source
code [17] to extract microservice candidates from monolith applications. The authors used
the SarF clustering method [66] to eliminate specialists’ manual effort in analyzing different
architectural views. Furda et al. [18] used static analysis to identify possible data leaks
among microservices while migrating from monolithic applications.

4.1.2. Dynamic Analysis

Dynamic or runtime analysis is an alternative to static-code analysis. For instance,
two papers use a black-box dynamic analysis to gather results. This meant they focused on
the measurable results of the application rather than the source code, with a framework
proposed by Brondolin et al. [12] collecting data based on low-level performance (e.g.,
cycles, Instruction Retired (IR) events, cache references, cache misses, and power consump-
tion), application performance (e.g., CPU usage, execution time) and network activity
(e.g., number of requests, bytes sent and received, and average latency) to better monitor
the transparency, performance, and accuracy of cloud-based microservice applications.
Somashekar et al. [36] also take this black-box approach to evaluate various optimization
algorithms for microservice systems, which are meant to minimize the tail latency of the
given microservice application deployment. By taking this approach, the authors find out
which optimization algorithms are the most efficient for reducing a system’s latency. An ar-
ticle by Bogner et al. [39] proposes a dynamic approach to calculate a set of 58 service-based
maintainability metrics proposed in scientific literature using data gathered at runtime.
A software architecture recovery framework developed by Kleehaus et al. [34] known
as MICROLYZE works towards its goal mainly by gathering infrastructure information
about a microservice-based system using both a service discovery tool and a distributed
tracing solution, then monitoring incoming requests on the system and mapping them to
business processes. Kecskemeti et al. [32] incorporate several techniques in the process
of microservice creation. First, a recipe-based generic image creation service is presented
that can create VM and container images crafted for particular cloud systems. Next, a dy-
namic, live-evaluation-based image size optimization technique is used to create a family
of images based on the previous monolithic service. Lastly, this image family is turned
into a set of microservices within the ENTICE environment. Du et al. [41] use dynamic
analysis and machine learning to build an anomaly detection system consisting of three
modules, monitoring, data processing, and fault injection. The monitoring module col-
lects performance data from the target system, which is processed by the data processing
module to detect anomalies. Lastly, the fault injection module simulates service faults and
gathers datasets of performance data representing the normal and abnormal conditions
which are then used to train the machine learning models. Ravichandran et al. [37] also
used the system’s resource metric to evaluate resource behavior in autoscaling systems of
microservices to discover security anomalies. The authors put the mechanism to the test
on the SAVI testbed and observed that it could successfully detect anomalous application
behavior [67]. Chen et al. [38] leveraged resource metrics to find anomalies in the streaming
of microservice systems.

There are other forms of dynamic analysis commonly seen in papers on microservices.
Two common specializations are log analysis and analysis of execution traces. A proposed
framework by Zuo et al. [44] uses both techniques to detect anomalies in a system, referring
to logs as temporal data and query traces as spatial data. With this framework, a system’s
execution logs are first processed with an online template extraction method to obtain
service execution behaviors. They use the information gathered from logs alongside queries
being traced from a user’s frontend call all the way to queries made on a system backend,
which is handled with tools such as Dapper, Zipkin, and Osoprofiler. The information
collected from both log analysis and query traces is then used to unveil a system’s hidden
systematic status, which is then used in an anomaly detector based on a one-class classifier.
Jiang et al.’s proposed scheme [35] uses multiple trackers on logs, sensors, and internal

Appl. Sci. 2021, 11, 7856 9 of 27

metrics to set up an intelligent microservice monitoring scheme, which can help keep track
of anomalies in a system and warn clients of these anomalies before they develop into
failure cases. An article by Samardzic et al. [40] uses log analysis as well, basing its results
on runtime logs collected from six real-world microservices commonly used in the retail
domain to determine how microservice runtime performance degrades. An algorithm
proposed by Jin et al. [43] relies on execution traces. It first screens a potential anomalous
time period during a system’s runtime. Then, it generates a method invocation chain of
the system. The proposed framework then traces back through the anomalous nodes in
the invocation chain to determine the most likely root causes. Jin et al. [33] proposed a
method based on functionality-oriented microservice extraction (FoME) in their study,
which monitors the program’s dynamic behavior and clusters execution traces to group
source code entities. A tool built by Meng et al. [42] uses mining system call patterns to
diagnose faults in a microservice system. First, the system calls are collected into sequences,
which are then clustered into sequence patterns. Then a GRU-based neural network is
adopted to model a sequence pattern to predict the future system call. Faults are then
identified by comparing the predicted system call to the actual one.

4.1.3. Combined Dynamic and Static Analysis

Some papers use a combination of static and dynamic analysis to achieve their results.
A technique used by De Alwis et al. [19] to discover potential microservices within enter-
prise system components first statically analyzed the system to determine the business
objects it manipulates, then executes the system to generate and extract data related to
system execution, such as logs and traces. A paper by Matias et al. [21] uses this hybrid
static-dynamic approach to determine boundaries of microservices decomposed from a
monolithic system. First, they statically analyze a system and use the collected informa-
tion to generate a graph of the system. Then, by monitoring the system at runtime to
gather operational data, they identify how the dependencies are exercised during execu-
tion, and gain an understanding of how the system is actually used. Another article by
De Alwis et al. [20] uses the static-dynamic hybrid to modularize monolithic enterprise
systems for applications in Industrial Internet of Things networks, then extracts crucial
dependencies from these analysis methods. Eski et al. [23] analyzed static codes using
both static and dynamic analysis to construct a software system as a graph that shows
different relations and couplings between the classes to assist the migration of monolithic to
microservice architecture. Ren et al. [24] also address the migration of legacy monolithic ap-
plications and their data to microservices architecture. They employed static and dynamic
analysis to achieve the static structure in addition to runtime behavior characteristics of a
monolithic application. Soldani et al. [22] combined static and dynamic mining of informa-
tion of a microservice system to obtain a methodology that identifies architectural smells.
The authors used Kubernetes deployment files instead of source code for static mining.

4.1.4. Model-Based Analysis

Another common analysis technique we found was model-based analysis. These
models were meant to be understood more by automated systems and researchers than by
developers. In an article made by Rademacher et al. [57] a modeling language is created
that is meant to systematize Software Architectural Reconstruction (SAR) of microservice-
based systems. Another article by McZara et al. [62] models the dependencies between
microservices using a design structure matrix, commonly used as a simple representation of
a complex application. This matrix can then be analyzed to determine which microservice
dependencies should be prioritized to build a system with higher resilience against errors.
Chondamrongkul et al.’s proposed framework [59] looks at a design model of a microser-
vice system that an automatic security analysis system can analyze to determine weak
points and show how attacks may occur on the system. An article by Mendonca et al. [61]
shows Continuous-Time Markov Chain (CTMC) models of various developer resiliency
patterns, which are used to make a system more resilient against errors and failure states.

Appl. Sci. 2021, 11, 7856 10 of 27

Then analyzes these models using a probabilistic model checker known as PRISM. In a
study by Khazaei et al. [58], the authors first creates a microservice platform on Amazon
EC2 cloud using Docker, then use the results from experiments run on this platform to
establish a tractable analytical performance model that can be used to perform what-if
analysis and capacity planning in a systematic manner for large scale microservices with
a minimum amount of time and cost. Stojanovic et al. [51] proposed a method to assess
migration of monolith application into microservices where it analyzes data-flow diagram
and identifies primitive functions that communicate with each other using data stores.
Sun et al. [56] use both model-based analysis and static analysis in their paper about
decomposing monolithic Internet of Things systems into microservices, with both a top-
down approach via analysis of the system’s domain model and a bottom-up approach
via static analysis of source code. Klinaku et al. in [60] uses model-driven architectural
simulator called Palladio [68]. It helps in analyzing and predicting quality attributes of
system architectures.

4.1.5. Graph-Based Analysis

Another common technique we found was graph-based analysis, representing the
architecture of a microservice-based system in the form of a graph. Graph-based analysis
can fall into either static or dynamic analysis categories based on the source of graph
creation. For example, if the graph is created from the source code, it is a static analysis.
In contrast, creating the graph from logs or network connections is dynamic analysis.
A representation of microservices based on a graph has an advantage in easy visualization
and being able to naturally represent the graph-like connections between the services.
Graph-based analysis was used most commonly in papers to handle root cause analysis,
with papers by Brandon et al. [47], Wu et al. and Meng et al. [54,55] creating graphs based
on a microservice system in an erroneous state, using nodes representing the clients, hosts,
databases, etc. and then tracing back through the created graph to determine an error’s most
likely root causes. An article by Guan et al. [52] also uses graph-based analysis for handling
root cause analysis by first generating a causal graph of the system using an application
called Microscope. Their proposed algorithm for Root Cause Analysis then traverses over
the created graph. An article by [46] first describes gathering span logs from an execution
trace of a system, then using this data to assemble a graph with traces, paths, and business
flows. This graph is meant to make it easier for developers to understand the architecture
of their microservice systems and diagnose future problems. Ma et al. [2] create a similar
graph of a microservice system meant to visualize microservices. An article by Li et al. [50]
on the other hand, primarily breaks down a monolithic architecture into a data-flow
diagram (a specific kind of graph) and uses the diagram to determine the best candidates
for a microservice translation. A tracing and analytics tool called JCallGraph developed
by Liu et al. [53] uses graph-based analysis as a tool for developers who need to monitor
and debug their systems, which works by tracing the invocations of microservices by other
microservices in a system and assembling an invocation graph representation of the system.
Walker et al. [27,28] achieve their goal of code smell detection by performing graph-based
static analysis. First, a graph is generated that shows the different interactions between
the microservices by exploring each microservice for a connection to other microservices.
The dependency management tools for each microservice and the application configuration
are then analyzed and processed to detect if any of 11 selected microservice smells are
detected. Similarly, Walker et al. [26] use this same approach to extract system architecture.
Christoforou et al. [48] achieve their goal of assisting with migration to microservices by
identifying key concepts and organizing them as a Multi-Layer Fuzzy Cognitive Map.
Static analysis is performed on the model to allow the identification of strong concepts by
determining the complexity of the graph, the weight and number of edges of each node,
and the tendency of cycles. Next, dynamic analysis is performed on the model during
execution through simulations of manually configured scenarios. This allows the concepts
identified by the static analysis to be ranked based on their significance. Nunes et al. [49]

Appl. Sci. 2021, 11, 7856 11 of 27

use an approach based on static analysis of monolithic source code to develop a text-call
graph. Next, the call graph is used to generate a dendrogram, which is then cut into a set of
clusters. These clusters are then used for visualization and modeling to determine the best
decomposition. Eski et al. [23] analyzed the way to migrate systems from monolithic to
microservices architecture. They applied graph clustering techniques to the analysis results
to identify microservice candidates. Ren et al. [24] approached the migration of legacy
monolithic applications to a microservices architecture-based one. They represented the
analysis results into graphs with the degree of dependence between functions. After that,
they cluster these functions to achieve the required migration. Ma et al. [25] proposed
the technique GMAT (Graph-based Microservice Analysis and Testing), which creates a
service dependency graph to visualize microservices and analyze error root detection using
a combination of static and graph-based analysis.

4.1.6. Pattern-Based Analysis

Many of the articles we processed considered identifying development
patterns [27,29–31,61,62]. Pattern-based analysis mostly employs static analysis to rec-
ognize specific patterns in the source code [27,29,31]. Moreover, architectural patterns
and mathematical model checking approaches have also been explored in related stud-
ies [30,61,62]. Pigazzini et al. [29] demonstrated the detection of three code smells in
microservices: Cyclic Dependency, Hardcoded Endpoints, and Shared Persistence. Their
approach involves static analysis of source code to match predefined patterns to recognize
those smells. The authors validated their works on five open-source projects and further
discussed the roadmap for implementing the next set of smells. A similar study was
conducted by Walker et al. [27,28] where the authors identified 11 microservice-specific
code smells using static analysis. They also used several adjustable threshold values to
change the flexibility of pattern matching. They presented an open-source tool MSANose to
demonstrate their approach. Tight et al. [31] proposed a catalog of 16 microservice antipat-
terns. The authors grouped these antipatterns into four categories: design, implementation,
deployment, and monitoring. Their work is based on an analysis of 67 open-source projects
and 27 related studies. Márquez et al. [30] focused on availability tactics that provide archi-
tectural solutions to address several security concerns. They examined the source code and
documentation of 17 open-source applications and identified 5 uses of availability tactics.
Moreover, they introduced a template or pattern for characterizing these availability tactics.
Mendonca et al. [61] examined resiliency patterns in service-to-service interactions, more
specifically, retry and circuit breaker patterns. They presented a probabilistic model checker
to investigate the course of resiliency patterns as continuous-time Markov chains (CTMC).
McZara et al. [62] modeled an outage-impacted microservice system, concentrating on the
DevSecOps domain. They used an existing dependency analysis pattern called a Design
Structure Matrix (DSM) to identify critical links among the microservices.

4.1.7. Tools

This section summarizes the tools we have identified across assessed papers. These
studies either developed new tools or used existing tools for their analysis. Table 4 enu-
merates the tools that we found across the papers. Arcan is an existing static analyzer tool
that has been used by Pigazzini et al. [29] to detect code smells. For a similar purpose,
Walker et al. developed a new tool MSANose [27] that can identify 11 microservice-specific
code smells. The tool MSExtractor was presented by Saidani et al. [16] to decompose mono-
lithic applications into microservices. Kleehaus et al. introduced the tool MICROLYZE,
which can recover software architecture by mapping infrastructure information with busi-
ness processes. Dapper, Zipkin, and Osoprofiler are exiting query tracing tools that were
used by Zuo et al. [44] to trace calls from the application’s frontend to the backend. Micro-
scope is an existing graph generation tool that was used by Guan et al. [52] for root cause
analysis. JCallGraph is a newly developed tool by Liu et al. [53] for tracing and monitoring
using the graph-based approach. µTOSCA is proposed and developed by Saldana et al. [22]

Appl. Sci. 2021, 11, 7856 12 of 27

to analyze and detect architectural smells. Klinaku et al. [60] used the existing tool Palla-
dio [68] to conduct a case study to analyze the performance of microservice applications.

Table 4. Identified tools.

Tool Reference Newly Developed Purpose

Arcan [29] No Code smells detection
MSExtractor [16] Yes Monolithic decomposition

MSANose [27] Yes Code smells detection
MICROLYZE [34] Yes Architecture reconstruction

Dapper [44] No Query tracing
Zipkin [44] No Query tracing

Osoprofiler [44] No Query tracing
Microscope [52] No Graph generation
JCallGraph [53] Yes Tracing and analytics
µTOSCA [22] Yes Architectural smells detection
Palladio [68] No Performance analysis

4.2. Challenges and Goals

We found that current research, regardless of the approach used, often addresses
multiple overarching categories. Across the assessed papers, various challenges and goals
were approached. We first identified the goal of architectural analysis, taking into account
pre-existing microservices system and intends to improve its qualities or detect an issue.
Software architecture reconstruction is a related goal intending to explain the existing
system. Migration from monolithic systems to microservices is also common. Another
challenge gaining popularity is technical debt analysis, attempting to identify inadequate
solutions applied in the system, which will lead to system quality deterioration. We iden-
tified works addressing challenging system qualities, including security or performance.
Other works targeted fault analysis and often specifically root cause analysis. Finally, we
identified surveys intending to identify state-of-the-art practices related to microservice
analysis. These challenges are described in the following text.

4.2.1. Architectural Analysis

Most of these papers use architectural analysis to address a specific goal within pre-
existing microservice architectures, such as improving security or detecting faults. This
is often done by creating tools or frameworks that take a white-box approach to ana-
lyze the architecture. Some papers, however, do not focus on analyzing the architectures
of microservices. The scopes of these papers tend to be broader, and most of them do
not present a new tool or framework. However, of those that do, the approach is often
black-box and serves goals not specific to a single microservice, such as identifying the
optimal configuration for a microservice application. A few papers discussed key differ-
ences between analyzing microservice architecture in comparison to other architectures.
Cerny et al. [14] discuss some pitfalls that traditional code analysis has with addressing
microservice systems, namely that it overlooks important enterprise development frame-
work constructs, which are key for building enterprise microservice systems. Some papers
treat the relationships between Service-Oriented Architecture (SOA) and microservices
differently. For instance, Brandon et al. [47] does not necessarily distinguish differences
between SOA and Microservices since the paper’s proposed approach of graph-based root
cause analysis can be used on both types of systems. Cerny et al. [1] discusses the key
differences between SOA, microservices, and Self-Contained Systems (SCS). One of the
major differences it mentioned was that services are brought to production independently
of each other in a microservice architecture, whereas this is not the case with most SOA
solutions. Toledo et al. [63] begins by comparing SOA and microservice architectures.
For example, there are concepts and techniques from microservice architecture that were
borrowed from SOA, such as scalability. Microservices, however, differ in their emphasis

Appl. Sci. 2021, 11, 7856 13 of 27

on service granularity and the fact that they have two types, functional or infrastructure,
while SOA can have several types. Serverless architecture has also been studied in the
context of microservices.

4.2.2. Migration to Microservices

Some works aim to provide tools to assist in the process of migrating from monolithic
or service-based architectures to microservice-based ones. Baresi et al. [15] aim to aid
in identifying potential microservice candidates by using OpenAPI specifications and
reference vocabulary to identify potential candidate microservices. Saidani et al. [16] intro-
duce MSExtractor, a novel approach that uses a non-dominated sorting genetic algorithm
(NSGA-II) to decompose an object-oriented application into cohesive, loosely coupled
microservices. This tool uses static-code analysis to determine a decomposition that is
optimized with respect to two objective functions: cohesion and coupling [24]. A systematic
methodology proposed by Li et al. [50] identifies clusters accessing the same datastore
and merges them with duplicate processes to create candidates for new microservices.
Kecskemeti et al. [32] propose a methodology based on dynamic analysis to divide a
monolithic service into smaller microservices, increasing the elasticity of large applications
and allowing more flexible composition with other services. Sun et al. [56] aim to create
a better framework, based on model analysis that decomposes a monolithic IoT system
into a microservice-based IoT system. A case study performed on an unmanned aerial
vehicle (UAV) system shows that the UAV can be dynamically reconfigured to handle
runtime changes. Research done by Dealwis et al. [19] develops a technique that uses
static and dynamic analysis to support the re-engineering of an enterprise system based
on the fundamental mechanisms for structuring its architecture. Now, two years later,
Deals et al. [20] present a software modularization technique for enterprise systems to
support the discovery of fine-grained microservices, which can be extracted and embedded
to run on Industrial Internet of Things network nodes. Eski et al. in [23] reached a success
rate of their migration approach of 89% when they measured similarity between candidates
and actual services. They recommend an improvement of assigning weights to graph edges
to increase the accuracy of extraction and determining thresholds for sub-clustering the
constructed graph. Ren et al. [24] employed static and dynamic analysis to cluster the
system functions for achieving the required migration. Finally, they performed experiments
to verify the performance and scalability of their approach, and the experimental results
show that the proposed method can efficiently migrate legacy applications.

Creating new tools and methods to assist in deciding if migration to a microservice-
based architecture would be beneficial is also a common research direction. Christoforou et al. [48]
propose the first Decision Support System to support migration to microservice-based
systems using a graph-based method. The resulting tool assists in determining if the
system meets the conditions to migrate and will actually benefit from it. Similarly, the pa-
per by Auer et al. [64] surveys developers to create a framework to assist companies in
determining if they should migrate their monolithic system to a microservice-based one.
Cerny et al. [14] explain the potential pitfalls of converting a system from a monolithic
architecture to a microservice architecture while also discussing the value of static-code
analysis in microservice systems. Nunes et al. [49] aim to assist the decomposition of mono-
lithic applications to microservice-based ones by proposing the decomposition be done by
identifying where a business transaction is divided into several transactional contexts. This
identification of transactional contexts groups domain entities by where they are executed
instead of by their structural domain inter-relationships, allowing developers to determine
the impacts of decomposition. The research goal of Matias et al. [21] is to determine the
best ways to set boundaries on microservices decomposed from a monolithic enterprise
system through static and dynamic analysis of the system. Furthermore, Stojanovic et al.
proposed a structured system analysis to assist system migration to microservices [51].
Jin et al. demonstrated a method of migration from monolith to microservices using the
functionality of execution trace [33], whereas Kamimura et al. [17] proposed this migra-

Appl. Sci. 2021, 11, 7856 14 of 27

tion using source code analysis. Furda et al. [18] described an approach to identify data
interference defects while migrating from monolithic to microservices. They explain the
data interference problem based on information flow control theory that can cause data
leaks among the microservice components. Furthermore, they developed a tool for PHP
applications to demonstrate their proposed solution using static-code analysis.

4.2.3. Software Architecture Reconstruction (SAR)

In some studies, the main goal is microservice architectural reconstruction, which
involves monitoring service interaction as the architecture grows and evolves over time.
A framework proposed by Kleehaus et al. [34] uses dynamic analysis to facilitate the
reconstruction of an microservice system’s architecture with service discovery tools and to
keep track of how new microservices emerge over time. Rademacher et al. [57] systematize
the reconstruction of an MSA-based system’s architecture by first gathering architecture
information from architecture-related artifacts or views, then transforming these views
into a canonical representation of a system by storing it into a database. Walker et al. [26]
propose a method for automatically completing Software Architectural Reconstruction
(SAR) of a microservice system through code analysis and demonstrating it on a case study
on an existing microservice benchmark application. Furthermore, the work of Ma et al.
can visualize architecture in addition to performing root cause analysis using static-code
analysis [25].

4.2.4. Technical Debt Analysis

Another goal commonly found in papers is identifying and resolving cases of technical
debt, the extra work that results from choosing a sub-optimal solution. Toledo et al. [63]
propose techniques to assist in detecting and solving cases of architectural, technical debt
across different stages of development in microservice-based applications through a survey
of employees at companies who work with microservices. The paper by Pigazzini et al. [29]
defines a detection strategy for known code smells that degrade the development of a
system, such as shared persistence, hardcoded endpoints, and cyclic dependency. This
strategy is based on static-code analysis and makes use of a dependency graph generated
by Arcan.

4.2.5. Microservice Evolution

Microservice architecture is notable for being one that facilitates a rapid pace of devel-
opment, leading to a quickly evolving architecture. Thus, tools and techniques are needed
to manage this rapid evolution, both to verify that the current state of the architecture is
acceptable and to ensure that the system remains maintainable and sustainable throughout
the evolutionary process.

To this end, several techniques exist in the literature for addressing architecture
evolution. As mentioned above, several works aim to perform Software Architectural
Reconstruction on microservice systems, and these techniques also apply to evolution.
Kleehaus et al. [34] specifically seek to address issues of continuing documentation of new
and evolving microservices that emerge during development. The approach proposed
by Rademacher et al. [57] similarly addresses the evolution of the microservice system
using SAR and further develops it by integrating SAR with their previously developed
microservice-specific modeling language, which allows for easier documentation and
representation of microservice architecture. The SAR performed by Walker et al. [26]
follows four specific architectural views, each of which provides a different viewpoint of
how a microservice system evolves: the service viewpoint shows how the services and
their relationships evolve, the domain viewpoint shows how the domain model used by
microservices evolves, the technology viewpoint demonstrates changes in the technology
stack used in the system, and the operational viewpoint shows users how their system
evolves in its deployment. Relatedly, Ma et al. [2] construct a service dependency graph
among microservices to visualize the evolution of architectural change, and they further

Appl. Sci. 2021, 11, 7856 15 of 27

protect the evolution process by providing a mechanism to retrieve existing microservices
that suit user needs to prevent unnecessary development as well as suggest test cases for
regression testing to prevent damaging changes.

One threat to the sustainable evolution of microservices is poor coding design. Sev-
eral works seek to address this aspect of evolution. For example, microservice antipat-
terns threaten to invalidate the benefits gained using microservice in the first place,
and Tighilt et al. [31] analyze existing literature to identify a catalog of 16 microservice
antipatterns, the definitions of which can be used to combat poor microservice design.
Walker et al. [27,28], and Pigazzini et al. [29] take this further and propose methods of
automatically detecting selected microservice antipatterns or code smells using static-
code analysis. Works identifying technical debt are also closely related to the concept
of antipatterns, and the surveys performed by Bogner et al. [65] and Toledo et al. [63]
and the solutions they proposed show promise for preventing technical debt from crip-
pling microservice evolution. Soldani et al. developed a tool, µTOSCA, to identify and
resolve architectural smells [22]. µTOSCA uses the Kubernetes deployment file to resolve
architectural smells using the developed tool µFRESHENER via refactoring.

Beyond issues relating to architecture and antipatterns, a number of metrics exist
that indicate the health of a microservice system. These metrics provide a key insight
into how maintainable a microservice system is. Bogner et al. [39] analyze runtime data
of microservices to calculate several maintainability metrics relating to the microservice
coupling, cohesion, complexity, and size. Samardzic et al. [40] take a different approach;
they analyze performance metrics to identify performance degradation in microservices,
a key indication that the current design is not sustainable.

4.2.6. Quality Attribute Analysis

Addressing system quality concerns is another common goal. Among the most
common quality aspects, we identified security and performance. However, maintainability
was also addressed [39].

Marquez et al. [30] use static-code analysis to systematically identify and character-
ize architectural tactics with regards to security in existing microservices-based systems.
The tactics identified include preventing single dependency or setting timeouts and address-
ing security concerns such as code reuse, denial of service, or traffic between microservices.
Chondamrongkul et al. [59] use model-based analysis of a system to automatically iden-
tify security threats according to a collection of formally defined security characteristics
such as denial of service or man in the middle attacks. This provides an insightful result
that is used to demonstrate how the attack scenarios may happen using linear temporal
logic. Klinaku et al. in [60] conducted a case study using Palladio [68] to analyze the
performance of microservice applications. They assessed the scalability, elasticity, and cost-
efficiency aspects of a cloud-based microservice application. The authors highlighted that
Palladio predicts the application performance with sufficient accuracy. However, several
workarounds were needed and not automated for all the chosen scenarios when assessing
these aspects.

As the number of microservices increases, the system becomes complex, and thus,
it is essential to analyze the performance to identify bottlenecks in the system. Most of
the studies involving performance investigation employ the dynamic analysis approach.
Brandon et al. [12] described a black-box monitoring approach to analyze the performance
of microservice-based applications. Their monitoring approach focused on architectural
metrics, power consumption, application performance, and network performance of cloud-
native applications that are deployed using Kubernetes. The authors used kernel-level
instrumentation and user-space monitoring agent to collect metrics from Kubernetes work-
loads, and they developed a user interface to visualize the metrics. Somashekar et al. [36]
investigate optimization techniques and dimensionality reduction strategies for tuning
microservices applications. They demonstrated 23% latency performance improvement by
configuration tuning. The authors developed an automated optimization framework that

Appl. Sci. 2021, 11, 7856 16 of 27

can adopt any optimization algorithm such as genetic algorithms, Bayesian optimization,
etc. Samardžić et al. [40] analyzed run time logs of six microservices in the retail area to
explore performance degradation in microservices. They examined log entries to detect
events and dependencies among the time series data. Jiang et al. [35] discussed how to
combine the push-pull mode with SpringBoot-based microservices and then constructed
a high-performance intelligent monitoring system. Khazaei et al. [58] described a perfor-
mance analysis model to recognize critical components among Docker containers deployed
in the Amazon EC2 cloud. From their experimental results, the authors provided a what-if
analysis to minimize deployment costs and time.

Bogner et al. [39] considered dynamic analysis for maintainability. They suggested that
static analysis does not fit decentralized systems. In their work, they used 23 maintainability
metrics to reason about maintainability. However, their experiments need a broader
assessment. Ravichandiran et al. also used dynamic resource analysis to find anomalies in
security in autoscaling systems [37].

4.2.7. Fault Analysis

Analyzing faults seems to be the most common goal and direction of existing research.
As microservices have become more common in recent years, finding new ways to detect
and prevent faults in them is becoming increasingly important. A novel scheme based on
static-code analysis introduced by Ma et al. [2] uses a graph-based method to visualize a
microservice-based system. The scheme proposed generates service dependency graphs
that enable developers to analyze dependency relationships between microservices and
between services and scenarios. Guo et al. [46] use dynamic analysis in the form of a
graph-based method to trace through the executions of requests and better diagnose
various problems in microservice architectures. Various architectural tactics identified by
Marquez et al. [30] solve security-related faults or prevent them from occurring in the first
place. A benchmark for microservice architecture analysis proposed by Zhou et al. [45]
uses execution traces to improve current industrial practices of debugging by replicating
fault cases. Zuo et al. [44] provide a new general anomaly detection service based on
dynamic analysis to assist in system management, using abnormal log statements to detect
suspicious events and preventing failure states. An anomaly detection system provided by
Du et al. [41] detects and diagnoses anomalies by addressing the problems of determining
which metrics should be monitored and evaluating whether the behaviors of the application
are actually anomalous or not. Meng et al. [42] propose Midiag, a sequential trace-based
fault diagnosis framework that mines the patterns of microservices’ system call sequences.
Midiag generates predicted system calls gathered from sequence patterns based on previous
system calls and compares them to the actual ones to identify possible faults. Liu et al. [53]
provide a graph-based form of visual aid to developers who need to monitor and debug
microservice systems, which often have tens of thousands of services. Ma et al. [25]
developed a graph-based tool called GMAT that assists developers in identifying errors.

One specific concern when handling faults is performing root cause analysis when
the issues arise. The paper by Brandon et al. [47] proposes a method to make it easier for
developers to manage interactions between services as well as assist in detecting anomalies
such as stressed hosts or stressed endpoints. Based on dynamic analysis, the method
proposed is shown to be 19.41% more effective than a machine learning method at classify-
ing the state of an anomaly to its root cause. A new experimental framework presented
by Wu et al. [55] aims to better localize root causes of failures in microservice systems
and detects performance issues by correlating their symptoms with system resource use.
Jin et al. [43] propose an algorithm to detect time-consuming anomalies in a microservice ar-
chitecture that is based on dynamic analysis of execution traces with a root cause approach
in mind. Meng et al. [54] establish a new framework to find failure cases in microservice
systems tested with real-world failure tickets. Guan et al. [52] design and implement a
prototype to perform graph-based analysis on a microservice system in an anomalous state
and determine the top candidates for the root cause of the anomaly.

Appl. Sci. 2021, 11, 7856 17 of 27

4.2.8. Surveys

Several works seek to describe the state of the art and state of practice regarding
microservices and their analysis. Both Toledo et al. [63] and Auer et al. [64] have conducted
surveys for this purpose, with the former survey conducted among employees working
with microservices to determine the most critical architectural technical debts, and the
latter conducted among developers to create an assessment framework on whether or
not a system should make the switch from monolithic to microservice-based architecture.
Cerny et al. [14] conducted a survey as well, focused on determining whether traditional
static-code analysis is fit for use in the microservice architecture. Zhou et al. [45] first use
an empirical survey to gather information on challenges faced by developers and then
evaluates the effectiveness of execution tracing for the purpose of debugging, using a
benchmark the authors developed. Finally, a mapping study by Cerny et al. [1] is meant
to gather and analyze existing research on microservices. Bogner et al. [65] created a
survey based on questionnaire responses from 60 software professionals. They focused
on processes, tools, and metrics used in the industry and the maintainability-related
treatment of systems based on service orientation. They concluded that standard and
systematic techniques have benefits for maintainability and leakage due to the absence
of both architecture-level development mechanisms and the quality assurance of service-
oriented approaches. The results proposed that industrial quality must be improved to
avoid problems in long-living service-based software systems.

5. Results and Discussion

After assessing the identified literature and categorizing both the approaches and
goals, we can answer the questions raised at the beginning of our study. The below
subsections summarize and interpret the knowledge from the previous section.

5.1. RQ1: Methods and Techniques Used

There were several interesting things to note about the common trends among the
types of methods. Of the two main methods of analysis, dynamic analysis is used more
often than static analysis. Using dynamic techniques, several different approaches become
feasible that cannot be done via static techniques, for example, performance analysis and
optimization techniques as well as other metrics-based analyses [12,32,36,39,40]. A specific
subset of dynamic techniques is commonly applied to fault analysis and root cause analysis:
log analysis and execution trace analysis are perfect for this task, as they examine traces
directly related to program execution [35,40,42–44].

Most papers that used static analysis as their main method tended to do so to gather
information specifically about the architecture. These techniques depend on analyzing
statically defined artifacts to reconstruct an architectural view of a system, mainly analyzing
source code [16,26,28,30], but also other artifacts, such as OpenAPI specifications [15].
Static analysis is applicable to other goals as well, such as anti-pattern or code smell
detection [26,28,29].

An approach used less often is that of model-based analysis, in which a specific model
is built to represent the microservice system. This can range from modeling dependen-
cies and architecture of microservices [56,57,62] to developing security models [59] or
performance [60] and resilience models [58,61].

Like model-based techniques, graph-based analysis depends on representing the mi-
croservice system as a graph and then analyzing that structure, exploiting microservices’
natural graph-like connections. Graph-based techniques are commonly used for detecting
faults or performing root cause analysis [47,52,54,55], as well as performing monolith-
to-microservice migration by representing an existing monolith as a graph that can be
segmented into microservices [23,24,48,49]. However, it can also be used in tracing pat-
terns [27,28]. Finally, graph-based methods are also used in monitoring and visualization
systems [2,26,53].

Appl. Sci. 2021, 11, 7856 18 of 27

Another approach is pattern-based analysis that mostly employs static analysis to
recognize specific patterns in the source code [27–29,31] and architectural patterns [30].
However, it can use graphs as well [27,28]. This approach also involves mathematical
model checking techniques to evaluate microservice systems [30,61,62].

The summary of our findings relating to RQ1 is shown in Table 5.

Table 5. Works relevant to RQ1.

Method References Total

Static analysis [14–26,28–31] 17

Dynamic analysis [12,19–24,32–46] 22

↪→ Log analysis [35,40,44,46] ↪→ 4

↪→ Execution trace analysis [33,35,43,44] ↪→ 4

Graph-based analysis [2,25–28,46–50,52–55] 14

Model-based techniques [51,56–62] 8

Pattern-based analysis [27–31,61,62] 7

5.2. RQ2: Goals Addressed by the Papers

The main goal we found was that of fault analysis, either by detecting and prevent-
ing faults [2,30,41,42,44–46,53], or determining their origin through root cause
analysis [43,47,52,54,55]. It is apparent that identification of the cause is important, espe-
cially given that microservices run large enterprise systems. Failures in such systems has
major economic impacts, whether the users cannot access it or the cloud resource demands
peak due to an error. Still, it is a challenge to perform detection in real time, and many
challenges remain, as we discuss later when answering RQ4.

Another common topic addressed was migration to microservice-based
architectures either by providing tools to decompose monolithic architectures into
microservices [15,16,19,32,50,56] or to assist in deciding if migration is beneficial and
feasible [21,48,49,64]. Although we could assume a silver bullet by now when it comes to
the design of microservice systems, there is no perfect guidance for engineers managing
legacy systems.

Identifying or resolving technical debt in a microservice architecture [29,39,63] is an
interesting research direction of significant impact. We expect this specific research to
grow significantly in the next few years as consequences of system evolution impact the
operational budget.

Other goals involve analysis of the software architecture [14,28]. Several works dis-
cuss the inherent challenges in analyzing microservices versus other architectures such
as monolithic systems, or SOA [1,63]. Several works propose methods of software archi-
tecture reconstruction on microservice systems [26,34,57], which is especially important
to help reason about the system. Software architecture can be represented through var-
ious views serving that represent the system slightly differently, meeting the needs of
distinct stakeholders.

Overlapping with technical debt and architecture analysis is the goal of streamlining
and protecting the process of microservice evolution. Works performing SAR [26,34,57]
combat evolutionary problems by providing the user with an up-to-date view of system
architecture, giving insights that can prevent architectural degradation. Antipatterns
and code smells that threaten sustainability have also been addressed [27–29,31], as has
the issue of accumulating technical debt [63,65]. In addition, some works improve the
evolutionary outlook of a system by addressing maintainability metrics [39] or performance
degradation [40].

It is quite common to see research addressing various quality concerns of microservices
such as security [30,59] or performance [12,35,36,39,40,58]. We must recall that software

Appl. Sci. 2021, 11, 7856 19 of 27

architecture is the frame for various software qualities. The primary reason to use cloud-
native systems might be the performance for some. At the same time, security cannot be
omitted. However, there are many other aspects to this not mentioned directly, such as
maintainability, which drives the whole category of evolution.

Finally, many works [1,14,63–65] have performed survey on the state of the art on
related topics. Table 6 summarizes specific goals assessed in this study.

Table 6. Works relevant to RQ2.

Goal References Total

Microservice migration [15–21,23,24,32,33,48–51,56,64] 17

Technical debt identification [29,39,63] 3

SAR [25,26,34,57] 4

Architectural analysis [1,14,28,47,63] 5

Quality attribute analysis [12,30,35–40,58–60] 11

Evolution analysis [2,22,26–29,31,34,40,57,63,65] 12

Fault analysis [2,30,38,41–47,54,55] 14

↪→ Root cause analysis [43,47,54,55] ↪→ 4

Survey works [1,14,45,63–65] 6

5.3. RQ3: Relationship between Microservices and Other Architectures

We found that microservices share more differences than similarities with other ar-
chitectures. Works considering related architectures are referenced in Table 7. The most
related architectural style is Service-Oriented Architectures (SOA) because microservice
architectures borrow many characteristics from SOA, such as the emphasis on scalability
and the concept of service availability and responsiveness. Unlike SOA, however, individ-
ual services in microservice architectures are brought to production independently and are
more granular [63]. It is also worth noting that while graph-based methods of performing
root cause analysis can be used in both microservice architectures and SOA [47], many
traditional methods of code analysis are not sufficient for microservice architectures [14].

The greatest concern of much research towards static-code analysis is that microser-
vices are distributed. Thus, it is rather common to observe static-code analysis in monolith-
like systems since the system is homogeneous and often comes with one codebase. On the
other hand, microservices, as opposed to monoliths, are heavily distributed and hetero-
geneous, and thus the argument might sound valid. However, still static-code analysis is
applied to individual system modules; in addition, with sufficient cross-platform support,
it is possible to derive a holistic view of system architecture of microservices solely by
static-code analysis [26].

However, what seems lacking in nearly all works we assessed is consideration of
other recent architectural advancements such as serverless or micro-frontends [64]. Of
course, one can object that this study searched for microservices, but the argument by
Auer et al. [64] remains valid: if researcher and practitioner do not understand the benefits
of these new architectural advancements, they are possibly decreasing productivity or
increase technical debt. This could be seen as similar to using SOA to develop a new system.

Table 7. Works relevant to RQ3.

Other Architecture References Total

Service-Oriented Architecture [14,47,63] 3
Serverless and Micro-Frontends [64] 1
Monoliths [15,16,19–21,23,24,32,48–50,56,64] 13

Appl. Sci. 2021, 11, 7856 20 of 27

5.4. RQ4: Future Research Directions

We have assessed the identified literature for future work and open challenges. This
section mentions our observations on static analysis, dynamic analysis, anomaly detection,
prediction, migration from monoliths to microservices, and other topics we found open for
research, such as visualization, architecture evolution, and benchmarks.

The first significant conclusion we make is that all forms of static analysis seemed
under-represented in the current literature. There is currently a greater focus on forms
of dynamic analysis when analyzing microservices, leaving a gap for targeting statically
defined artifacts. This kind of analysis can be done earlier in the development pipeline as
the system does not need to be deployed for the analysis to take place, and it is less prone
to false positives that may plague dynamic sources of information. However, the greatest
challenge to address is to cope with distributed system nature and heterogeneity of system
modules that may include distinct platforms, different versions and dependencies, or dif-
ferent development styles. Thus, future tools cannot just naively only consider Java as is
the case for many works. Rather, a broad spectrum of languages such as Python, NodeJS,
Go, C++, etc., must be considered to be well.

The large amount of research involving graph-based architectural analysis has opened
up many new avenues for future research. One such avenue could be using graph-based
static-code analysis to identify the potential for architectural degradation early on. Deriving
the system into a graph brings needed abstraction. Such an approach could be beneficial
when resolving degradation, which is difficult to prevent, or at least it could identify it
early on.

With respect to dynamic analysis, we found multiple obstacles. There is considerable
data collection overhead to collect metrics. In fact, a huge number of traces are produced
at runtime, which makes it challenging to capture the required information in real time.
In particular, the trace data need to be efficiently processed to produce aggregated trace
representations of different levels of quality, and such detailed information of specific traces
might need to be available on-demand. Even if we manage that, we need to store the data
and analyze them. Thus, research must consider tracing microservices at a massive scale.
This is rarely the case because of lacking benchmarks, which we mention later. Researchers
questioned which metrics should be monitored and whether the metrics’ accuracy or their
impact on performance has been considered at large scales.

Dynamic analysis is often involved in anomaly detection and especially root cause
analysis. In this context, Brandon et al. [47] highlighted the need for taking into account a
time dimension, where the evolution of the system during a time window can be compared
instead of single snapshots. However, what remains a challenge is the comparison between
generated graphs representing the snapshots. This can be parallelized, but the search
space and the response time need to be reduced for real-time processing. They proposed
one way to address by transforming graphs into vectors to feed machine learning models
dealing with anomaly detection, but this was just their vision for future work. Given
machine learning, multiple works suggested the use of machine learning in this context,
while statistical analysis can also be used for root cause analysis. We also found little
relevant research on using machine learning as a primary method for microservice analysis.
The only notable work that used machine learning as a primary method of analysis was
written by Jin et al. [43], where a Robust Component Principal Analysis algorithm was
used alongside dynamic analysis to detect anomalies. Zhou et al. [45] briefly mention
the potential of using machine learning-based algorithms for improving fault localization.
Other than the mentions in these articles, there were not any other notable instances of
machine learning used as a primary method.

One outstanding challenge is prediction. For instance, since tuning configuration
parameters can improve latency [36], researchers could look at the prediction of calls.
Prediction of future system call could predict possible faults and learn from comparing the
predicted system call and the actual to find specific patterns. Predictive models could help

Appl. Sci. 2021, 11, 7856 21 of 27

to detect potential system bottlenecks and system capacity saturation for timely reactions
to better handle such situations [12].

A trendy research topic is migration from monolithic applications to microservices.
Since microservice-based applications have many desirable characteristics, a wide array
of tools and methods that aid in the migration process would be extremely desirable.
Further research into a way to accurately automate the process of decomposition with
minimal impact by identifying potential candidate microservices would be of extreme
significance for the industry. This would be beneficial because the current automated
decomposition methods are either inaccurate or could have significant repercussions on
the system, and human analysis is extremely time-consuming and sometimes leads to
nowhere. A better-automated tool would allow companies to focus resources on further
developing and improving their architecture.

One specific problem in microservice migration has many names and deals with
accurate system decomposition, service boundaries, or proper service cuts. Some suggest
that there are too many characteristics (e.g., non-functional requirements [50]) to take
into account and propose the task for artificial intelligence. However, it can be a dynamic
problem of continuous microservice system re-modularization. The situation is complicated
by new advancements such as serverless or micro-frontends; should they be considered,
or does migration from monoliths ultimately lead to technical debt? Perhaps the core
challenge is understanding how to develop microservice systems. Alternatively, perhaps
we need better evaluation metrics to answer this challenge.

One of the topics with great potential is software architecture reconstruction, especially
its automation. Current approaches use static or dynamic analysis, but joint forces are
inevitable since one deals well with decentralization and the other with a white-box view.
Such system architecture can help with consistency checking and be the core artifact to refer
to when dealing with evolution and technical debt. One challenge is proper visualization
of the architecture or its perspectives.

In the context of visualization, researchers challenged proper execution trace visual-
ization or improved fault localization. Others challenged visualization for data-flow across
the system, recognizing reads and writes. Furthermore, it could be used for modeling and
simulation of an actual microservices-based application.

With respect to technical debt, metrics for measuring debt are needed to quantify
costs and benefits and support prioritization and decision-making. More investigation is
needed on the relationship and composition between microservices availability tactics and
microservices patterns. And some take the ambitious future goal to define an exhaustive
and uniform catalog of microservices antipatterns.

Finally, one of the greatest deficiencies in related research is the lack of benchmarks [45].
We need more microservice data sets to test the systems. These specifically need to represent
industrial settings [45]. Furthermore, to support advancements, unification could occur,
and researchers should develop theme-specific benchmarks, such as a unified benchmark
for fault injections and anomaly detection where approaches can compare easily, similar to
what is common in other disciplines.

6. Threats to Validity

Mapping studies usually suffer from several threats to validity that need to be ad-
dressed. We tried to eliminate the effect of these threats on the quality of the results and
the study’s outcome. We discuss the validity threats from the perspective of Wohlin’s
taxonomy [69]. It includes four potential threats, i.e., external validity, construct validity,
internal validity, and conclusions validity.

6.1. Construct Validity

Construct validity considers the investigated area with respect to the research ques-
tions. The primary term microservice and its immediate extension microservices used to

Appl. Sci. 2021, 11, 7856 22 of 27

conduct this study are combined with secondary terms as specified in Section 3. All the
primary and secondary terms are commonly recognized to be used as search strings.

A possible threat to the validity of our work is omitting relevant research from our
review. We have tried to eliminate the effect of this threat by selecting and examining
several search strings and conducting pilot searches for several papers. To ensure we found
all related work from our initial search, we designed our query to be as broad as possible.

However, another perspective must be considered. Our study employed six major
research databases, namely ACM Digital Library, IEEE Xplore, SpringerLink, ScienceDirect,
MDPI and Wiley, although the authors had limited SpringerLink access to indexed full
texts. Potentially, more papers can be indexed and published by other publishers, which
we did not include. The analyzed sample only considered peer-reviewed articles published
by journals or conferences to ensure the objectivity and reliability of the information
sources. It does not include reprints of the papers submitted to or accepted in journals and
conferences published by arXiv.org, researchgate.net, or individual personal pages. These
reprints might contain novel ideas, methods, and new challenges relevant to the scope of
analyzed papers.

6.2. Internal Validity

Internal validity challenges the methods employed to study and analyze data (e.g.,
the types of bias involved).

The study search perspective aims to assure we gathered all related papers on the se-
lected topic. We searched through common publication databases indexing peer-reviewed
literature (excluding gray literature). With regard to reliability and reproducibility, we
defined search terms and applied procedures that others can replicate.

The next potential threat is related to the paper’s inclusion and exclusion due to its
scope. Due to the broad range of papers on microservices and the wide variety of research
goals and aims, we have spent a lot of time scanning and reading the selected papers
to ensure that the papers are within the scope of the study. The selection criteria are
detailed in Section 3. For example, we excluded papers without specific output, giving
suggestions or opinions regarding microservice analysis without experiments or robust
proposed methods, or literature focused on analysis outside the scope of architecture, its
design, or evolution. Other microservice-related questions were covered by several studies
related to other microservice aspects, such as [3,5,9–11,70].

One potential threat is a data extraction bias. The source of this bias could be the extrac-
tion process when just one person extracts the information from the papers. To mitigate the
effect of this threat, we distributed the data extraction among the different authors. More-
over, we had multiple authors review each search result and double-check other authors’
extraction. Part of this process was the use of shared spreadsheets for rating and result
verification. This included permissive analysis of the works’ title, abstract, and keywords,
followed by a more in-depth examination of the full text with extracts and categorization.

To address concerns related to categorization/classification bias, we have developed a
mind map circulated across all authors for discussion, comments, and extension. The cate-
gorization is not exclusive and cannot be. It represents our view on the identified literature,
and other alternative categorizations could be developed given the overlapping perspectives.

Data synthesis bias may affect the interpretation of the results. To mitigate this threat,
the synthesis of the collected data was performed by multiple authors in multiple iterations
with review sessions.

6.3. External Validity

External validity concerns knowledge generalization. In this study, we collected in-
formation to form a large scope of online sources. Our results and observations apply
to microservices. However, they might be partially applicable to other system architec-
tures. We analyzed and categorized given works based on the scope of research within
the field or microservices, and thus our categorization cannot be implicitly generalized.

Appl. Sci. 2021, 11, 7856 23 of 27

In addition, there is a risk of potentially impacting generalization within the microservices
field, with possibly missing related work. In particular, our observations are a result of a
peer-reviewed literature search published between 2018–2021 at 6 indexing sites.

6.4. Conclusions Validity

Conclusions validity concerns whether the conclusions are based on the available
data. We had multiple authors involved in addressing this threat, double-checking the
publication’s rating and extracts to limit author bias, extraction bias, and interpretation
bias. The conclusions result from several brainstorming sessions. Moreover, they were
independently settled by all authors.

7. Conclusions

Microservices present a unique challenge for analysis due to their decentralized,
independent nature. Due to this, a variety of unique methods have been developed to
extract information from these independent services for a variety of end goals. In this
study, we have performed a systematic mapping study to assess the current state of the
recently published literature regarding methods of microservice analysis.

It first examined the works to discover and categorize five approaches and techniques
that have been applied for microservice analysis. Next, it identified the problems and
challenges these approaches were being used to address into seven categories with an
additional category for surveys. Finally, it discussed the relationship between current and
advancing architectures and the potential for future research directions in this area.

This study contributes to an understanding of the current literature surrounding
microservice analysis. In particular, the identified most common methodologies currently
in use include graph-based analysis and dynamic analysis. It also identified the most
common goals of such analysis to be applied primarily to fault analysis and several others.

Although some might think that microservice architecture is well-established with
well-known properties and design practice, it is still a challenge to properly divide the
system into microservices, and broad research suggests various migration strategies but
still admits there is space for improvements.

This study has shown that the influence and impact of microservice architecture have
expanded greatly since its inception. Earlier studies have identified issues relating to
the design and development of microservices, and our study shows that interest in this
architectural style has expanded beyond into methods of structural analysis of microservice-
based systems. The field of microservice analysis is still open to new innovations and
methodologies, with a high potential reward for a more robust support environment
for microservices.

Our original intent is to address the issues of centralized architectural design and
architectural degradation. The first is addressed by various attempts, mostly leading into a
software architecture reconstruction using graph-based or model-based approaches while
combining static and dynamic analysis to extract information. The other spins around the
same architectural view but adds patterns, especially antipatterns, that indicate a bad smell
in the design, possibly leading to technical debt or degradation.

One valuable outcome of this study is the roadmap into the research that can serve
researchers and an index to advancement or practitioners on assessing what is yet accom-
plished and which tools can be used. Still, many remaining challenges were identified
for further advancement in the discipline. However, we believe that a robust architec-
ture reconstruction is one of the core goals that need more research to better face system
understanding, centralized perspectives, and system evolution and to avoid degradation.

The limitations of this work were discussed in a section on threats to validity, and cer-
tainly, a broader picture could be given in the future to address other architectures such as
peer-to-peer systems or serverless.

Appl. Sci. 2021, 11, 7856 24 of 27

Author Contributions: Conceptualization, V.B., T.C., D.D., A.A.M. and A.S.A.; methodology, V.B.,
D.D. and T.C.; validation, V.B., K.F., P.T. and M.B.; investigation, V.B., A.S.A., A.A.M., D.D., E.J. and
M.C.; resources, V.B., A.S.A., A.A.M., D.D., A.L., E.J. and M.C.; data curation, V.B., A.S.A., A.A.M.,
D.D., A.L., E.J., M.C. and T.C.; writing—original draft preparation, V.B., A.L., E.J. and M.C.; writing—
review and editing, V.B., T.C., A.S.A., A.A.M. and D.D.; visualization, V.B. and T.C.; supervision, V.B.
and T.C.; project administration, T.C.; funding acquisition, T.C. All authors have read and agreed to
the published version of the manuscript.

Funding: This material is based upon work supported by the National Science Foundation under
Grant No. 1854049 and a grant from Red Hat Research https://research.redhat.com.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cerny, T.; Donahoo, M.J.; Trnka, M. Contextual Understanding of Microservice Architecture: Current and Future Directions.

SIGAPP Appl. Comput. Rev. 2018, 17, 29–45. [CrossRef]
2. Ma, S.P.; Fan, C.Y.; Chuang, Y.; Liu, I.H.; Lan, C.W. Graph-based and scenario-driven microservice analysis, retrieval, and testing.

Future Gener. Comput. Syst. 2019, 100, 724–735. [CrossRef]
3. Soldani, J.; Tamburri, D.A.; Van Den Heuvel, W.J. The pains and gains of microservices: A systematic grey literature review.

J. Syst. Softw. 2018, 146, 215–232. [CrossRef]
4. Alshuqayran, N.; Ali, N.; Evans, R. A systematic mapping study in microservice architecture. In Proceedings of the 2016 IEEE

9th International Conference on Service-Oriented Computing and Applications (SOCA), Macau, China, 4–6 November 2016;
pp. 44–51.

5. Pahl, C.; Jamshidi, P. Microservices: A Systematic Mapping Study. In Proceedings of the 6th International Conference on Cloud
Computing and Services Science, Rome, Italy, 23–25 April 2016; pp. 137–146.

6. Pease, A.; Niles, I.; Li, J. The suggested upper merged ontology: A large ontology for the semantic web and its applications. In
Proceedings of the Working Notes of the AAAI-2002 Workshop on Ontologies and the Semantic Web, Edmonton, AB, Canada,
28–29 July 2002; Volume 28, pp. 7–10.

7. Di Francesco, P.; Malavolta, I.; Lago, P. Research on architecting microservices: Trends, focus, and potential for industrial adoption.
In Proceedings of the 2017 IEEE International Conference on Software Architecture (ICSA), Gothenburg, Sweden, 3–7 April 2017;
pp. 21–30.

8. Di Francesco, P.; Lago, P.; Malavolta, I. Architecting with microservices: A systematic mapping study. J. Syst. Softw. 2019,
150, 77–97. [CrossRef]

9. Taibi, D.; Lenarduzzi, V.; Pahl, C. Architectural Patterns for Microservices: A Systematic Mapping Study. In Proceedings of the
8th International Conference on Cloud Computing and Services Science, Madeira, Portugal, 19–21 March 2018; pp. 221–232.

10. Taibi, D.; Lenarduzzi, V.; Pahl, C. Continuous architecting with microservices and devops: A systematic mapping study. In
International Conference on Cloud Computing and Services Science; Springer: Berlin/Heidelberg, Germany, 2018; pp. 126–151.

11. Waseem, M.; Liang, P.; Shahin, M. A systematic mapping study on microservices architecture in devops. J. Syst. Softw. 2020,
170, 110798. [CrossRef]

12. Brondolin, R.; Santambrogio, M.D. A Black-Box Monitoring Approach to Measure Microservices Runtime Performance. ACM
Trans. Archit. Code Optim. 2020, 17. [CrossRef]

13. Petersen, K.; Vakkalanka, S.; Kuzniarz, L. Guidelines for conducting systematic mapping studies in software engineering: An
update. Inf. Softw. Technol. 2015, 64, 1–18. [CrossRef]

14. Cerny, T.; Svacina, J.; Das, D.; Bushong, V.; Bures, M.; Tisnovsky, P.; Frajtak, K.; Shin, D.; Huang, J. On Code Analysis Opportunities
and Challenges for Enterprise Systems and Microservices. IEEE Access 2020, 8, 159449–159470. [CrossRef]

15. Baresi, L.; Garriga, M.; De Renzis, A. Microservices Identification Through Interface Analysis. In Service-Oriented and Cloud
Computing; De Paoli, F., Schulte, S., Broch Johnsen, E., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 19–33.

16. Saidani, I.; Ouni, A.; Mkaouer, M.W.; Saied, A. Towards Automated Microservices Extraction Using Muti-objective Evolutionary
Search. In Service-Oriented Computing; Yangui, S., Bouassida Rodriguez, I., Drira, K., Tari, Z., Eds.; Springer International
Publishing: Cham, Switzerland, 2019; pp. 58–63.

17. Kamimura, M.; Yano, K.; Hatano, T.; Matsuo, A. Extracting candidates of microservices from monolithic application code.
In Proceedings of the 2018 25th Asia-Pacific Software Engineering Conference (APSEC), Nara, Japan, 4–7 December 2018;
pp. 571–580.

18. Furda, A.; Fidge, C.; Barros, A. A practical approach for detecting multi-tenancy data interference. Sci. Comput. Program. 2018,
163, 160–173. [CrossRef]

https://research.redhat.com
http://doi.org/10.1145/3183628.3183631
http://dx.doi.org/10.1016/j.future.2019.05.048
http://dx.doi.org/10.1016/j.jss.2018.09.082
http://dx.doi.org/10.1016/j.jss.2019.01.001
http://dx.doi.org/10.1016/j.jss.2020.110798
http://dx.doi.org/10.1145/3418899
http://dx.doi.org/10.1016/j.infsof.2015.03.007
http://dx.doi.org/10.1109/ACCESS.2020.3019985
http://dx.doi.org/10.1016/j.scico.2018.04.006

Appl. Sci. 2021, 11, 7856 25 of 27

19. De Alwis, A.A.C.; Barros, A.; Fidge, C.; Polyvyanyy, A. Availability and Scalability Optimized Microservice Discovery from
Enterprise Systems. In On the Move to Meaningful Internet Systems: OTM 2019 Conferences; Panetto, H., Debruyne, C., Hepp, M.,
Lewis, D., Ardagna, C.A., Meersman, R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 496–514.

20. De Alwis, A.A.C.; Barros, A.; Fidge, C.; Polyvyanyy, A. Microservice Remodularisation of Monolithic Enterprise Systems for
Embedding in Industrial IoT Networks. In Advanced Information Systems Engineering; La Rosa, M., Sadiq, S., Teniente, E., Eds.;
Springer International Publishing: Cham, Switzerland, 2021; pp. 432–448.

21. Matias, T.; Correia, F.F.; Fritzsch, J.; Bogner, J.; Ferreira, H.S.; Restivo, A. Determining Microservice Boundaries: A Case
Study Using Static and Dynamic Software Analysis. In Software Architecture; Jansen, A., Malavolta, I., Muccini, H., Ozkaya, I.,
Zimmermann, O., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 315–332.

22. Soldani, J.; Muntoni, G.; Neri, D.; Brogi, A. The µTOSCA toolchain: Mining, analyzing, and refactoring microservice-based
architectures. Softw. Pract. Exp. 2021, 51, 1591–1621. [CrossRef]

23. Eski, S.; Buzluca, F. An Automatic Extraction Approach: Transition to Microservices Architecture from Monolithic Application.
In Proceedings of the 19th International Conference on Agile Software Development: Companion, Porto, Portugal, 21–25 May
2018; Association for Computing Machinery: New York, NY, USA, 2018. [CrossRef]

24. Ren, Z.; Wang, W.; Wu, G.; Gao, C.; Chen, W.; Wei, J.; Huang, T. Migrating Web Applications from Monolithic Structure to
Microservices Architecture. In Proceedings of the Tenth Asia-Pacific Symposium on Internetware, Beijing, China, 16 September
2018; Association for Computing Machinery: New York, NY, USA, 2018. [CrossRef]

25. Ma, S.P.; Fan, C.Y.; Chuang, Y.; Lee, W.T.; Lee, S.J.; Hsueh, N.L. Using service dependency graph to analyze and test microservices.
In Proceedings of the 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), Tokyo, Japan,
23–27 July 2018; Volume 2, pp. 81–86.

26. Walker, A.; Laird, I.; Cerny, T. On Automatic Software Architecture Reconstruction of Microservice Applications. In Information
Science and Applications; Kim, H., Kim, K.J., Park, S., Eds.; Springer: Singapore, 2021; pp. 223–234.

27. Walker, A.; Das, D.; Cerny, T. Automated Microservice Code-Smell Detection. In Information Science and Applications; Kim, H.,
Kim, K.J., Park, S., Eds.; Springer: Singapore, 2021; pp. 211–221.

28. Walker, A.; Das, D.; Cerny, T. Automated Code-Smell Detection in Microservices Through Static Analysis: A Case Study. Appl.
Sci. 2020, 10, 7800. [CrossRef]

29. Pigazzini, I.; Fontana, F.A.; Lenarduzzi, V.; Taibi, D. Towards Microservice Smells Detection. In Proceedings of the 3rd
International Conference on Technical Debt, Xiamen, China, 28 June 2020; Association for Computing Machinery: New York, NY,
USA, 2020; pp. 92–97. [CrossRef]

30. Márquez, G.; Astudillo, H. Identifying Availability Tactics to Support Security Architectural Design of Microservice-Based
Systems. In Proceedings of the 13th European Conference on Software Architecture—Volume 2; Association for Computing Machinery:
New York, NY, USA, 2019; pp. 123–129. [CrossRef]

31. Tighilt, R.; Abdellatif, M.; Moha, N.; Mili, H.; Boussaidi, G.E.; Privat, J.; Guéhéneuc, Y.G. On the Study of Microservices
Antipatterns: A Catalog Proposal. In Proceedings of the European Conference on Pattern Languages of Programs, Online, 1–4
July 2020; Association for Computing Machinery: New York, NY, USA, 2020. [CrossRef]

32. Kecskemeti, G.; Kertesz, A.; Marosi, A.C. Towards a Methodology to Form Microservices from Monolithic Ones. In Euro-Par
2016: Parallel Processing Workshops; Desprez, F., Dutot, P.F., Kaklamanis, C., Marchal, L., Molitorisz, K., Ricci, L., Scarano, V.,
Vega-Rodríguez, M.A., Varbanescu, A.L., Hunold, S., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2017;
pp. 284–295.

33. Jin, W.; Liu, T.; Zheng, Q.; Cui, D.; Cai, Y. Functionality-oriented microservice extraction based on execution trace clustering.
In Proceedings of the 2018 IEEE International Conference on Web Services (ICWS), San Francisco, CA, USA, 2–7 July 2018;
pp. 211–218.

34. Kleehaus, M.; Uludağ, Ö.; Schäfer, P.; Matthes, F. MICROLYZE: A Framework for Recovering the Software Architecture in
Microservice-Based Environments. In Information Systems in the Big Data Era; Mendling, J., Mouratidis, H., Eds.; Springer
International Publishing: Cham, Switzerland, 2018; pp. 148–162.

35. Jiang, Y.; Zhang, N.; Ren, Z. Research on Intelligent Monitoring Scheme for Microservice Application Systems. In Proceedings of
the 2020 International Conference on Intelligent Transportation, Big Data Smart City (ICITBS), Vientiane, Laos, 11–12 January
2020; pp. 791–794. [CrossRef]

36. Somashekar, G.; Gandhi, A. Towards Optimal Configuration of Microservices. In Proceedings of the 1st Workshop on Machine
Learning and Systems, Online, 26 April 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 7–14.
[CrossRef]

37. Ravichandiran, R.; Bannazadeh, H.; Leon-Garcia, A. Anomaly detection using resource behaviour analysis for autoscaling
systems. In Proceedings of the 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft), Montreal, QC,
Canada, 25–29 June 2018; pp. 192–196.

38. Chen, H.; Chen, P.; Yu, G. A Framework of Virtual War Room and Matrix Sketch-Based Streaming Anomaly Detection for
Microservice Systems. IEEE Access 2020, 8, 43413–43426. [CrossRef]

39. Bogner, J.; Schlinger, S.; Wagner, S.; Zimmermann, A. A Modular Approach to Calculate Service-Based Maintainability Metrics
from Runtime Data of Microservices. In Product-Focused Software Process Improvement; Franch, X., Männistö, T., Martínez-
Fernández, S., Eds.; Springer International Publishing: Cham, Swizterland, 2019; pp. 489–496.

http://dx.doi.org/10.1002/spe.2974
http://dx.doi.org/10.1145/3234152.3234195
http://dx.doi.org/10.1145/3275219.3275230
http://dx.doi.org/10.3390/app10217800
http://dx.doi.org/10.1145/3387906.3388625
http://dx.doi.org/10.1145/3344948.3344996
http://dx.doi.org/10.1145/3424771.3424812
http://dx.doi.org/10.1109/ICITBS49701.2020.00173
http://dx.doi.org/10.1145/3437984.3458828
http://dx.doi.org/10.1109/ACCESS.2020.2977464

Appl. Sci. 2021, 11, 7856 26 of 27

40. Samardžić, M.; Šajina, R.; Tanković, N.; Grbac, T.G. Microservice Performance Degradation Correlation. In Proceedings of the
2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO), Opatija, Croatia, 28
September–2 October 2020; pp. 1623–1626. [CrossRef]

41. Du, Q.; Xie, T.; He, Y. Anomaly Detection and Diagnosis for Container-Based Microservices with Performance Monitoring. In
Algorithms and Architectures for Parallel Processing; Vaidya, J., Li, J., Eds.; Springer International Publishing: Cham, Switzerland,
2018; pp. 560–572.

42. Meng, L.; Sun, Y.; Zhang, S. Midiag: A Sequential Trace-Based Fault Diagnosis Framework for Microservices. In Services
Computing—SCC 2020; Wang, Q., Xia, Y., Seshadri, S., Zhang, L.J., Eds.; Springer International Publishing: Cham, Switzerland,
2020; pp. 137–144.

43. Jin, M.; Lv, A.; Zhu, Y.; Wen, Z.; Zhong, Y.; Zhao, Z.; Wu, J.; Li, H.; He, H.; Chen, F. An Anomaly Detection Algorithm for
Microservice Architecture Based on Robust Principal Component Analysis. IEEE Access 2020, 8, 226397–226408. [CrossRef]

44. Zuo, Y.; Wu, Y.; Min, G.; Huang, C.; Pei, K. An Intelligent Anomaly Detection Scheme for Micro-Services Architectures With
Temporal and Spatial Data Analysis. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 548–561. [CrossRef]

45. Zhou, X.; Peng, X.; Xie, T.; Sun, J.; Ji, C.; Li, W.; Ding, D. Fault Analysis and Debugging of Microservice Systems: Industrial
Survey, Benchmark System, and Empirical Study. IEEE Trans. Softw. Eng. 2021, 47, 243–260. [CrossRef]

46. Guo, X.; Peng, X.; Wang, H.; Li, W.; Jiang, H.; Ding, D.; Xie, T.; Su, L. Graph-Based Trace Analysis for Microservice Architecture
Understanding and Problem Diagnosis. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering, Online, 8–13 November 2020; Association for Computing
Machinery: New York, NY, USA, 2020; pp. 1387–1397. [CrossRef]

47. Brandón, Á.; Solé, M.; Huélamo, A.; Solans, D.; Pérez, M.S.; Muntés-Mulero, V. Graph-based root cause analysis for service-
oriented and microservice architectures. J. Syst. Softw. 2020, 159, 110432. [CrossRef]

48. Christoforou, A.; Garriga, M.; Andreou, A.S.; Baresi, L. Supporting the Decision of Migrating to Microservices Through Multi-
layer Fuzzy Cognitive Maps. In Service-Oriented Computing; Maximilien, M., Vallecillo, A., Wang, J., Oriol, M., Eds.; Springer
International Publishing: Cham, Switzerland, 2017; pp. 471–480.

49. Nunes, L.; Santos, N.; Rito Silva, A. From a Monolith to a Microservices Architecture: An Approach Based on Transactional
Contexts. In Software Architecture; Bures, T., Duchien, L., Inverardi, P., Eds.; Springer International Publishing: Cham, Switzerland,
2019; pp. 37–52.

50. Li, S.; Zhang, H.; Jia, Z.; Li, Z.; Zhang, C.; Li, J.; Gao, Q.; Ge, J.; Shan, Z. A dataflow-driven approach to identifying microservices
from monolithic applications. J. Syst. Softw. 2019, 157, 110380. [CrossRef]

51. Stojanovic, T.D.; Lazarevic, S.D.; Milic, M.; Antovic, I. Identifying microservices using structured system analysis. In Proceedings
of the 2020 24th International Conference on Information Technology (IT), Zabljak, Montenegro, 18–22 February 2020; pp. 1–4.

52. Guan, Z.; Lin, J.; Chen, P. On Anomaly Detection and Root Cause Analysis of Microservice Systems. In Service-Oriented
Computing—ICSOC 2018 Workshops; Liu, X., Mrissa, M., Zhang, L., Benslimane, D., Ghose, A., Wang, Z., Bucchiarone, A., Zhang,
W., Zou, Y., Yu, Q., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 465–469.

53. Liu, H.; Zhang, J.; Shan, H.; Li, M.; Chen, Y.; He, X.; Li, X. JCallGraph: Tracing Microservices in Very Large Scale Container Cloud
Platforms. In Cloud Computing—CLOUD 2019; Da Silva, D., Wang, Q., Zhang, L.J., Eds.; Springer International Publishing: Cham,
Switzerland, 2019; pp. 287–302.

54. Meng, Y.; Zhang, S.; Sun, Y.; Zhang, R.; Hu, Z.; Zhang, Y.; Jia, C.; Wang, Z.; Pei, D. Localizing Failure Root Causes in a Microservice
through Causality Inference. In Proceedings of the 2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS),
Hang Zhou, China, 15–17 June 2020; pp. 1–10. [CrossRef]

55. Wu, L.; Tordsson, J.; Elmroth, E.; Kao, O. MicroRCA: Root Cause Localization of Performance Issues in Microservices. In
Proceedings of the NOMS 2020—2020 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 20–24
April 2020; pp. 1–9. [CrossRef]

56. Sun, C.A.; Wang, J.; Guo, J.; Wang, Z.; Duan, L. A Reconfigurable Microservice-Based Migration Technique for IoT Systems. In
Service-Oriented Computing—ICSOC 2019 Workshops; Yangui, S., Bouguettaya, A., Xue, X., Faci, N., Gaaloul, W., Yu, Q., Zhou, Z.,
Hernandez, N., Nakagawa, E.Y., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 142–155.

57. Rademacher, F.; Sachweh, S.; Zündorf, A. A Modeling Method for Systematic Architecture Reconstruction of Microservice-Based
Software Systems. In Enterprise, Business-Process and Information Systems Modeling; Nurcan, S., Reinhartz-Berger, I., Soffer, P.,
Zdravkovic, J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 311–326.

58. Khazaei, H.; Barna, C.; Beigi-Mohammadi, N.; Litoiu, M. Efficiency Analysis of Provisioning Microservices. In Proceedings of the
2016 IEEE International Conference on Cloud Computing Technology and Science (CloudCom), Luxembourg, 12–15 December
2016; pp. 261–268. [CrossRef]

59. Chondamrongkul, N.; Sun, J.; Warren, I. Automated Security Analysis for Microservice Architecture. In Proceedings of the 2020
IEEE International Conference on Software Architecture Companion (ICSA-C), Salvador, Brazil, 16–20 March 2020; pp. 79–82.
[CrossRef]

60. Klinaku, F.; Bilgery, D.; Becker, S. The Applicability of Palladio for Assessing the Quality of Cloud-Based Microservice
Architectures. In Proceedings of the 13th European Conference on Software Architecture—Volume 2; Association for Computing
Machinery: New York, NY, USA, 2019; pp. 34–37. [CrossRef]

http://dx.doi.org/10.23919/MIPRO48935.2020.9245234
http://dx.doi.org/10.1109/ACCESS.2020.3044610
http://dx.doi.org/10.1109/TCCN.2020.2966615
http://dx.doi.org/10.1109/TSE.2018.2887384
http://dx.doi.org/10.1145/3368089.3417066
http://dx.doi.org/10.1016/j.jss.2019.110432
http://dx.doi.org/10.1016/j.jss.2019.07.008
http://dx.doi.org/10.1109/IWQoS49365.2020.9213058
http://dx.doi.org/10.1109/NOMS47738.2020.9110353
http://dx.doi.org/10.1109/CloudCom.2016.0051
http://dx.doi.org/10.1109/ICSA-C50368.2020.00024
http://dx.doi.org/10.1145/3344948.3344961

Appl. Sci. 2021, 11, 7856 27 of 27

61. Mendonca, N.C.; Aderaldo, C.M.; Camara, J.; Garlan, D. Model-Based Analysis of Microservice Resiliency Patterns. In
Proceedings of the 2020 IEEE International Conference on Software Architecture (ICSA), Salvador, Brazil, 16–20 March 2020;
pp. 114–124. [CrossRef]

62. McZara, J.; Kafle, S.; Shin, D. Modeling and Analysis of Dependencies between Microservices in DevSecOps. In Proceedings of
the 2020 IEEE International Conference on Smart Cloud (SmartCloud), Washington, DC, USA, 6–8 November 2020; pp. 140–147.
[CrossRef]

63. de Toledo, S.S.; Martini, A.; Sjøberg, D.I. Identifying architectural technical debt, principal, and interest in microservices: A
multiple-case study. J. Syst. Softw. 2021, 177, 110968. [CrossRef]

64. Auer, F.; Lenarduzzi, V.; Felderer, M.; Taibi, D. From monolithic systems to Microservices: An assessment framework. Inf. Softw.
Technol. 2021, 137, 106600. [CrossRef]

65. Bogner, J.; Fritzsch, J.; Wagner, S.; Zimmermann, A. Limiting Technical Debt with Maintainability Assurance: An Industry Survey
on Used Techniques and Differences with Service- and Microservice-Based Systems. In Proceedings of the 2018 International
Conference on Technical Debt, Gothenburg, Sweden, 27 May–3 June 2018; Association for Computing Machinery: New York, NY,
USA, 2018; pp. 125–133. [CrossRef]

66. Kobayashi, K.; Kamimura, M.; Kato, K.; Yano, K.; Matsuo, A. Feature-gathering dependency-based software clustering using
dedication and modularity. In Proceedings of the 2012 28th IEEE International Conference on Software Maintenance (ICSM),
Trento, Italy, 23–28 September 2012; pp. 462–471.

67. Lin, T.; Park, B.; Bannazadeh, H.; Leon-Garcia, A. Savi testbed architecture and federation. In Future Access Enablers of Ubiquitous
and Intelligent Infrastructures; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–10.

68. Palladio. Available online: https://www.palladio-simulator.com (accessed on 16 August 2021).
69. Wohlin, C. Experimentation in Software Engineering: An Introduction; International Series in Engineering and Computer Science;

Kluwer Academic: Boston, MA, USA, 2000.
70. Bogner, J.; Fritzsch, J.; Wagner, S.; Zimmermann, A. Industry practices and challenges for the evolvability assurance of

microservices. Empir. Softw. Eng. 2021, 26, 104. [CrossRef]

http://dx.doi.org/10.1109/ICSA47634.2020.00019
http://dx.doi.org/10.1109/SmartCloud49737.2020.00034
http://dx.doi.org/10.1016/j.jss.2021.110968
http://dx.doi.org/10.1016/j.infsof.2021.106600
http://dx.doi.org/10.1145/3194164.3194166
https://www.palladio-simulator.com
http://dx.doi.org/10.1007/s10664-021-09999-9

	Introduction
	Related Work
	Methods and Materials
	Review of the Selected Studies
	Approaches and Tools
	Static Analysis
	Dynamic Analysis
	Combined Dynamic and Static Analysis
	Model-Based Analysis
	Graph-Based Analysis
	Pattern-Based Analysis
	Tools

	Challenges and Goals
	Architectural Analysis
	Migration to Microservices
	Software Architecture Reconstruction (SAR)
	Technical Debt Analysis
	Microservice Evolution
	Quality Attribute Analysis
	Fault Analysis
	Surveys

	Results and Discussion
	RQ1: Methods and Techniques Used
	RQ2: Goals Addressed by the Papers
	RQ3: Relationship between Microservices and Other Architectures
	RQ4: Future Research Directions

	Threats to Validity
	 Construct Validity
	 Internal Validity
	 External Validity
	Conclusions Validity

	Conclusions
	References

