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Abstract: Smart walkers have been developed for assistance and rehabilitation of elderly people
and patients with physical health conditions. A force sensor mounted under the handle is widely
used in smart walkers to establish a human–machine interface. The interaction force can be used to
control the walker and estimate gait parameters using methods such as the Kalman filter for real-time
estimation. However, the estimation performance decreases when the peaks of the interaction force
are not captured. To improve the stability and accuracy of gait parameter estimation, we propose an
online estimation method to continuously estimate the gait phase and cadence. A multiple model
switching mechanism is introduced to improve the estimation performance when gait is asymmetric,
and an adaptive rule is proposed to improve the estimation robustness and accuracy. Simulations and
experiments demonstrate the effectiveness and accuracy of the proposed gait parameter estimation
method. Here, the average estimation error for the gait phase is 0.691 rad when the gait is symmetric
and 0.722 rad when it is asymmetric.

Keywords: smart walker; gait phase estimation; adaptive control; switching mechanism

1. Introduction

With aging, muscle strength, cognition, and coordination gradually deteriorate, pos-
sibly leading to loss of mobility [1]. Physical therapists advise elderly people to stay
physically active to preserve or restore mobility [2,3]. Walkers are widely prescribed by
clinicians to such patients to enlarge the base of support for improved walking stability [4].
Furthermore, robotic walkers are wheeled walkers equipped with motors and sensors that
can be used to assist physical therapists in rehabilitation treatment to help elderly people
regain mobility [5].

To achieve proper rehabilitation using robotic walkers, it is essential to obtain gait
parameters, such as the instants of heel strike (HS) and toe-off, cadence, and gait phase.
The gait parameters captured during walking can be used for the gait ability assessment
continuously so that the clinicians can monitoring the rehabilitation process and adjust the
training plans accordingly [6]. In addition, gait parameters can be used to identify abnor-
mal gait patterns for providing more suitable assistance to users [7]. From the sensors
embedded in walkers, the force sensor under the handle has been the most important given
its simplicity and reliability. Additionally, force sensors do not require additional environ-
ment or user preparation. Alwan [8,9] proposed an approach to assess gait parameters
based on the user–walker interaction force. The peak timing of the vertical components of
the interaction force on one side of the handle coincided with the instant of ipsilateral HS.
A similar correlation between force and gait parameters was adopted by Abellanas [10],
who used the sum of the interaction force detected by two sensors mounted on the two
handles to detect the HS instant. However, no method has been devised for real-time gait
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phase estimation, which is crucial for developing control methods for rehabilitation. In fact,
obtaining and analyzing gait phase information can help develop rehabilitation strategies.
For example, function-related muscles can be strengthened at the precise timing as when
the corresponding muscle groups are activated, as demonstrated in a previous study, in
which we proposed gait-phase-dependent control for rehabilitation [11].

To provide proper assistance and maximize the rehabilitation outcomes, various
assistive robots and rehabilitation robots extract information of the user’s gait phases
during walking [12]. Such information is essential for wearable robots because if they
cannot provide the proper assistance in the correct gait phases; they would be a burden
rather than a support. Lewis [13] used the instants of HS detected from foot switches and
the average duration of the last several gait cycles to estimate the current gait phase. Hence,
gait phase of a walker user can be estimated by leveraging Abellanas’s method, where the
gait phase can be considered as the accumulation of the estimated frequency that starts
from an HS. Researchers have applied the cycles of kinetic or kinematic data of ground
reaction force or joint angle for estimating the gait phase by using adaptive oscillators
(AOs) [14,15]. An AO is a mathematical tool proposed by Righetti [16,17] that synchronizes
its phase and frequency with any quasi-periodic signal to extract these parameters from
the signal.

Despite its accurate gait events estimation, the Abellanas’s method presents some lim-
itations. (1) When it is directly applied to estimate the gait phase, the estimation accuracy
depends on the correct detection of gait events and predicted duration of the gait cycle,
which is in turn based on previous gait cycle durations [18]. (2) The estimation performance
deteriorates when gait event detection fails because an incorrect duration degrades the
estimation accuracy of the gait phase in the subsequent cycles, and the estimated phase is
the integral of the estimated frequency. If a considerable phase estimation error occurs, it
can only diminish when the next gait cycle starts, leading to discontinuity in phase esti-
mation during the transition period. The AO can provide a zero-delay accurate frequency
and phase estimation provided that the input signal has slow dynamics. However, a
drastic change in the frequency or amplitude of the target signal substantially degrades the
estimation accuracy due to slow convergence. Although the estimation convergence can be
accelerated by increasing the gains in the estimation loop, fluctuations in the estimates may
occur [19,20]. As for the case of interaction force based gait phase estimation, the amplitude
of the interaction force is not constant but can change drastically because it depends on
the bodyweight transmitted to the handle. In addition, although the frequency of walking
does not change rapidly, many people exhibit asymmetric gait patterns [21], which may
vary the signal frequency over consecutive gait cycles. Therefore, it is crucial to mitigate
the influence of the transient changes to reach an accurate and stable gait phase estimation.

In this paper, we present a real-time method to estimate the gait phases based on the
user–walker interaction force. An AO extracts the frequency and phase information from
the oscillatory gait component. To improve the performance for users with gait impair-
ments, we also propose a switching mechanism and an adaptive rule for the estimation
parameters. The switching mechanism can switch between two adaptive oscillators so that
the walking frequencies of two consecutive gait cycles can be tracked. The adaptive rule
changes the parameter of the AO to mitigate the influence of the transient change in the
amplitude of the interaction force in gait phase estimation.

2. Method for Asymmetric Gait Phase Estimation

In this section, the method proposed for gait phase estimation is described. In Section 2.1,
the architecture of the estimation method is introduced. In Sections 2.2 and 2.3, we briefly
introduce the methods adopted for the gait phase estimation. The proposed adaptive
methods for the robust estimation are demonstrated in Section 2.4.
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2.1. Architecture

When a user walks with a walker, its handle supports part of the bodyweight of the
user to reduce the physical burden to the lower limbs by transferring force to the upper
limbs. The change in vertical position of the center of mass of a user during walking leads
to a cyclic change in the interaction force in each gait cycle, as shown in Figure 1. In other
words, the interaction force contains information of the gait phases. Frizera Neto [22]
divided the interaction force into three components: (1) supporting force, which represents
the part of the bodyweight that is placed on the walker; (2) slow oscillation caused by the
cyclic change in the placement of the center of mass changing with the gait phase; and
(3) high-frequency vibration originating from the walker. As the slow oscillation contains
the information of the gait phase, we use it for estimation.
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Figure 1. Interaction force along vertical direction. Black line represents the raw data of the interaction
force, blue line represents the signal after BMFLC, and red line represents the reconstructed signal of
the AOs.

The main tool used for gait phase estimation is the AO proposed by Righetti [16]. Nev-
ertheless, the supporting force and high-frequency vibration in the user–walker interaction
force degrade the estimation accuracy because the AO is sensitive to noise and variations
in the input signal. Therefore, preprocessing is necessary to extract the low-frequency gait
oscillations from raw data. As shown in Figure 2, the proposed estimation method consists
of two subsystems. (1) A band-limited multiple Fourier linear combiner (BMFLC) [23,24]
model extracts the slow gait oscillation from the raw data of the user–walker interaction
force, enabling the AO to reflect the information of the gait phase. (2) Two AOs are used to
separately obtain the gait phase information from the two legs. The difference between the
slow oscillation and the AO output is used as feedback to tune its frequency and phase.
In addition, alternate switching between the two AOs is applied in response to the input
signal when the HS is detected. Moreover, an adaptive rule for the AO parameter is applied
to reduce the impact of the transient amplitude change on phase estimation.
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Figure 2. Architecture of proposed gait phase estimation method.

2.2. BMFLC

To separate gait phase frequency components from raw interaction force data, we
adopt a model to reconstruct the interaction force by using BMFLC to represent the slow os-
cillation components in frequencies from γ1 to γm , similar to the proposal by Velovulo [23].
Moreover, we use a constant component Pc(kT) to represent the voluntary force.

Po(kT) =
m

∑
n=1

(an(kT)× sin(γn(kT)) + bn(kT)× cos(γn(kT))) (1)

Pc(kT) = a0(kT) (2)

where T ∈ R is the sampling interval, a0 is the voluntary force component, a1, b1, · · · , am, bm
represent the amplitudes of the sinusoidal signal components, ∆γ is the step size in fre-
quency band [γ1 − γm] given by ∆γ = (γm − γ1)/n, Po(kT) is the slow oscillation compo-
nent, and Pc(kT) is the constant component.

2.3. AO

The AOs developed by Righetti [16] synchronize with periodic signals and track the
frequency and phase of the target signal without delay. The estimated parameters were
used to reconstruct an approximate signal. The difference between the estimated and target
signals can serve as feedback to adjust the states of the AO to adapt to changes in the target
signal. An AO can be described by the following formulas:

ṙ = (µ− r2)× r + σ× F× cos ϕ (3)

ϕ̇ = ω− σ

r
× F× sin ϕ (4)

ω̇ = −ε× F× sin ϕ (5)

α̇ = δ× F× r× cos ϕ (6)

y = α× r× cos ϕ (7)

where r, ϕ, and ω are the amplitude, phase and frequency of the oscillator, respectively.
α× r is the amplitude of the reconstructed signal. F is the difference between the recon-
structed signal and target signal. y is the reconstructed signal by the AO. The learning
speed is adjusted by the constants of µ, ε, σ, and δ.
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2.4. Adaptive Rules for Transient Parameters

During walking, gait phases increase with monotony and continuity owing to their
nature. In AO, however, the estimated phase, which is an AO parameter, does not necessar-
ily always increase. Because the phase, frequency, and amplitude are estimated in the same
loop, the phase may fluctuate owing to sudden changes in frequency or amplitude. There-
fore, we propose two methods to handle phase fluctuations caused by sudden changes in
frequency and amplitude, as detailed below.

2.4.1. Switching Mechanism

Robotic walkers are designed for users who require assistance or rehabilitation to
enhance their physical abilities. Many people suffer from neuromuscular impairments or
muscle atrophies, which lead to asymmetric gait patterns [21]. Thus, consecutive steps can
notably vary in timing, hindering gait phase estimation using one AO.

In the 1990s, various control approaches with model switching were introduced to
improve the performance of adaptive control under large and rapid changes in the system
dynamics [25,26]. In particular, Westervelt [27] proposed switching between different
controllers for a plantar biped walker to achieve high control stability under different
cadences. Similarly, we adopt a simple switching mechanism for AOs to track rapid
changes in the walking frequency. Specifically, two AOs with the same structure work in
parallel, but only one is active at any instant. As the states of r, ϕ, α are shared between the
AOs, their values are used by the active AO. On the other hand, there are two independent
frequencies, ω1 and ω2, for the two AOs corresponding to the two legs.

During estimation, the value of phase ϕ(t) monotonically increases. A modulo opera-
tion is applied to the gait phase estimated by the AOs:

Cstep = mod(ϕ(t), 2π) (8)

Switching occurs when Cstep reaches 2π, and the gait characteristics of two consecutive
steps are estimated by two different AOs. Thus, a sudden change in frequency caused by an
asymmetric gait pattern between legs is considered by the proposed switching mechanism.

For some users, there is a substantial difference between the two AOs in amplitude.
However, the amplitudes of both AOs vary substantially during walking. The improve-
ment in estimation accuracy from using two independent amplitudes for AOs is limited.
Furthermore, two AOs switch when the reconstructed signal y is at its peak; therefore, the
switch in amplitude will lead to a sudden change in the waveform of the reconstructed
signal in a discontinuous manner. It is a perturbation to the AOs, which will eventually
degrade the accuracy of phase estimation. We can choose a large δ which can scale the
converge rate of α, so that the AO can achieve a higher estimation accuracy when the
amplitude of the input signal changes rapidly.

2.4.2. Adaptive Rule for a Parameter

The component of the interaction force used for gait phase estimation is the slower
oscillation that reflects walking, whose amplitude can vary with the walking posture or
elbow movements.The phase dynamics of the AO can be expressed as follows:

ϕ̇ = ω− σ

r
× F× sin ϕ (9)

when the residual F is large enough and F× sin ϕ > 0,

ϕ̇ = ω− σ

r
× F× sin ϕ < 0 (10)

Although the AO phase is supposed to increase monotonically, the estimated phase
decreases when the condition above is satisfied.
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To prevent this problem, feedback gain σ can be reduced for ϕ̇ to be positive when
the transient change occurs, thus limiting fluctuations in the estimated phase. However,
a small σ increases the time taken by the oscillator to synchronize with the input signal.
This not only influences the estimation accuracy initially but also limits the ability to track
gait changes [20]. Alternatively, we apply an adaptive rule for σ when a sudden change in
amplitude occurs.

A phase fluctuation can be identified by observing the difference between ϕ̇ and ω.
For a small difference, σ stays at its initial value. For a large difference, we replace σ with σ̄
as follows:

σ̄ = λ× (r×ω)

F× sin ϕ
(11)

where λ is a positive constant less than 1. ϕ̇ is equal to (1− λ)×ω, guaranteeing that the
phase changes almost as fast as the frequency. As a transient phase change is uncommon
during walking, we consider a large phase change as a disturbance in the system dynamics.
Therefore, we change the parameters to minimize the influence of such a disturbance. In
this study, the difference between ϕ̇ and ω is considered large when it is larger than 30%
of ω, which means the adaptive rule is applied when the change rate of phase is lower
than 70% of the estimated frequency. As a result, a transient change can be bounded to
improve the robustness against the disturbance and achieve smooth gait phase estimation.
In addition, fast synchronization can be achieved when the difference in phase change is
small, allowing synchronization to be maintained during walking and promoting accurate
gait phase estimation.

3. Simulation

We conducted simulations to evaluate the influence of the asymmetric gait patterns
and varying amplitudes of the input signal on gait phase estimation.

3.1. Simulation Scenario 1

Many people suffer from strokes and often experience conditions such as loss of
coordination and hemiplegia afterward, resulting in asymmetric gait patterns [21]. The
interaction force is naturally different between steps performed with a healthy leg and
with a paralyzed leg. Such difference poses a challenge for gait phase estimation using AO
because two frequencies occur alternately in the input signal. We used the simulated signal
shown in Figure 3 to evaluate the switching scheme under asymmetric gait. The signal is
sinusoidal with a constant amplitude and frequencies of ωs1 and ωs2 for consecutive cycles.

Figure 3 shows the estimation results when using a single AO and two AOs with
the switching mechanism. For a single AO, the estimated frequency is close to the mean
frequency. The two AOs with the switching mechanism can reflect the two frequencies.
The phase estimation error when using the single AO is clearly higher than that of the
proposed method and increases with an increase in the difference between ωs1 and ωs2. The
proposed estimation method with the switching mechanism maintains a small error, which
is mostly attributable to the inaccurate switching instant that often occurs in a discrete
system. Nevertheless, the error due to switching is small and can be further reduced by
increasing the sampling rate.

The estimation error of the proposed method is caused by the poor frequency esti-
mation accuracy given the slow convergence. The AO convergence rate for frequency
estimation can be increased by tuning parameter ε, but a larger ε increases the steady-state
error, as also noted in [18,19].
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Figure 3. Simulation results with different frequency combinations (a) ωs1 = 1 Hz and ωs2 = 1 Hz.
(b) ωs1 = 1.2 Hz and ωs2 = 1 Hz. (c) ωs1 = 1.4 Hz and ωs2 = 1 Hz. (d) ωs1 = 1.6 Hz and ωs2 = 1 Hz.
S1 is the simulated signal; the black solid line represents the signal with ωs1 and the black dotted line
represents the signal with ωs2. ϕs is the phase of the simulated signal. ωs is the estimated frequency
of the AO (Red) and the proposed method (Blue). es is the phase estimation error of the AO (Red)
and the proposed method (Blue).

3.2. Simulated Scenario 2

When an elderly person uses a walker, the amplitude of the slower oscillation related
to walking varies over time owing to their deteriorated abilities. Although this variation
does not cause estimation failure, the accuracy can severely decrease. Moreover, the
estimated gait phase may decrease instead of increase, leading to failure in gait-phase-
based control. Therefore, we simulated a signal to verify the performance of the proposed
adaptive rule under a sudden change in amplitude. The simulated signal S2 used for the
simulation (Figure 4) is given by

S2(t) =
{

50× sin(2× π × t)− 25 for 20.5 < t < 21.5
75× sin(2× π × t) for others

(12)
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Figure 4. Simulated signal with transient changing amplitude.



Appl. Sci. 2021, 11, 7888 8 of 16

Figure 5 shows the phase estimation results when the amplitude changed suddenly.
The transient change in the input signal causes a large perturbation in phase estimation.
Specifically, the phase estimation drops for approximately 0.5 s and increases again instead
of monotonically increasing as expected. The behavior in the decreasing phase considerably
degrades the estimation accuracy, possibly leading to the failure of gait-phase-based control.
On the contrary, the estimation of the proposed method managed to mitigate the influence
of the transient change by adaptively reducing the value of σ as shown in Figure 6. In
practice, the amplitude of the input signal changes frequently, and its influence needs to
be controlled.
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Figure 5. Phase estimation results. The black line is the reference phase, the blue line is the estimated
phase of the proposed method, and the red line is the estimated phase of the AO.
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Figure 6. The value of σ.

4. Experiment
4.1. Experiment Platform

The experimental robotic walker shown in Figure 7 consists of a mobile platform
with four casters (two motor-actuated rear casters and two front passive omnidirectional
casters). The walker was developed at the National Innovation Center, Nagoya University,
Japan [5].

A six-axis force sensor (WEF-6A500-10-RCD-B, WACOH-TECH, Toyama, Japan)
mounted under the handle was used to measure and digitize the user–walker interac-
tion force. A computer was used to estimate the user gait phase from the measured
interaction force using inhouse software. The sampling rate of the system was 62.5 Hz.

A pair of pressure sensors (FSR-406, Interlink Electronics, Irvine, CA, USA) was placed
under the heels of users to detect the HS instant, as shown in Figure 7. The corresponding
measurements were used as the reference for evaluating the accuracy of the proposed
method. Both pressure sensors were synchronized with the walker system at a sampling
rate of 62.5 Hz.
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Force sensor

Pressure sensor

Knee orthosis

Figure 7. Walker used in experiment.

4.2. Experiment Protocol

Nine subjects were recruited for the experiments to evaluate the performance of the
proposed gait phase estimation method. The participants were young healthy male students
(age: 25.2 ± 2.0, height: 176.1 ± 4.6 cm, bodyweight: 66.5 ± 6.8 kg) from Nagoya University.
Before the experiments, the participants were informed of the experimental protocol and
signed a consent form. The study was approved by the ethics committee of the Department
of Mechanical Systems Engineering, Nagoya University (approval number: 21-10).

The experiment was conducted in two scenarios. (1) Every participant was instructed
to walk using a walker along a corridor of 30 m at a self-selected pace. (2) Every participant
repeated the experiment for Scenario 1 while wearing a knee orthosis (GAIT INNOVATION
Dial Lock, Pacific Supply, Osaka, Japan). The experiments for the two scenarios were
repeated four times per participant. Figure 7 shows the knee orthosis used to restrict the
left knee extension to a maximum of 30° to elicit asymmetric gait patterns [28,29]. For the
height of the handle, we firstly set the level at half of their body height, and then we slightly
adjusted the height based on the feedback from the user individually for better adjustment.

4.3. Data Analysis

In this study, we consider a normalized gait phase as the reference gait phase, which
linearly increases from 0 to 2π in one step cycle. The phase of one step instead of one
stride was used to evaluate the estimation performance because we considered asymmetric
gait. The instant when the force between the participant’s heel and the ground sharply
increased was set as the HS instant. The instant when the estimated gait phase reached
2π was considered as the estimated HS instant. Figure 8 shows the difference between
the reference and estimated gait phases (i.e., estimation error), and the average root mean
square error (RMSE) across the experiment was used to quantify the accuracy of gait phase
estimation. The HS error determines the estimation performance because the HS is the
most important gait event. During the experiment, gait phase estimation failed to detect
HS in some cases, as shown in Figure 9. The HS misdetections were discarded to calculate
the estimation error. The number of misdetections was recorded for evaluation. For all the
trials, the first five strides were discarded to exclude the synchronization period between
the AO and interaction force, and the other steps were considered for evaluation.

We also compared the proposed method with the direct use of an AO to determine
the effectiveness of the proposed adaptive rule and switching mechanism for estimation.
The results of the proposed method were obtained in real time, while those of the AO
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were obtained offline in MathWorks MATLAB from the same experimental data and
same parameter settings (µ = 1, ε = 0.1, σ = 1, δ = 1, and λ = 0.3). All of the parameters
are tuned by simulations in Matlab/Simulink and confirmed in the preliminary stage of
the experiment.
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Figure 8. Gait phase estimation error and Heel Strike (HS) estimation error (red circles = estimated
HS; green triangles = HS detected by pressure sensor).
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Figure 9. HS misdetections.

A one-way analysis of variance was applied to analyze significant differences in the
estimation of HS instants. Pearson’s chi-squared test is applied to evaluate the significant
difference in the number of misdetections. The threshold for the significance was set to 0.01.

All the analyses were implemented in MATLAB 2019a.

4.4. Results

The results for Scenario 1 are listed in Table 1. The estimation results are similar
for the conventional AO and proposed method. Nevertheless, the AO provided 35 HS
misdetections over the 36 trials (2884 steps), while the proposed method only provided
four HS misdetections. There was a significant difference in the number of misdetections
between the two methods (p < 0.01).
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Table 1. Estimation performance when participants walked without knee restriction.

Name of Method Gait Phase Estimation Error (RMSE) HS Estimation Error No. HS Misdetections (Ratio *)

AO 0.774 rad 54.16 ± 53.28 ms 35 (1.21%)
Proposed method 0.691 rad 55.75 ± 56.55 ms 4 (0.14%)

* Percentage for HS misdetections of HSs in all trials.

Table 2 shows that the difference between the two methods became much larger when
the participants walked with the knee restriction. The consecutive step times were different
from each other: the step time from left HS to right HS was 0.766 ± 0.143 s, while the
step time from right HS to left HS was 0.642 ± 0.108 s. In addition, the accuracy of HS
instant estimation degraded significantly for both methods because the interaction force
contained more variations and disturbance due to the use of the knee restriction. There
were significant differences (p < 0.01) between the HS estimation errors and the number
of the misdetections of the two methods. Moreover, the number of HS misdetections
provided by the conventional AO (105 misdetections) was much larger than that provided
by the proposed method (11 misdetections) for 3174 steps during the experiment with knee
movement restriction.

Table 2. Estimation performance when participants walked with knee restriction.

Name of Method Gait Phase Estimation Error (RMSE) HS Estimation Error No. HS Misdetections (Ratio *)

AO 0.889 rad 80.61 ± 70.39 ms 105 (3.31%)
Proposed method 0.722 rad 75.79 ± 66.69 ms 11 (0.35%)

* Percentage for HS misdetections of HSs in all trials.

5. Discussion

We propose a gait phase estimation method based on AOs and the user–walker
interaction force. First, we use a BMFLC to extract the slow oscillation component that
reflects walking in the interaction force. Then, we use AOs for phase estimation. In
addition, a switching mechanism and a parameter-adaptive rule improve the accuracy and
robustness of the AOs under rapid changes in amplitude and frequency of the input gait
signal. The switching mechanism allows two AOs to track the frequencies of consecutive
steps to account for asymmetric gait. As shown in the simulation, with the increase in the
frequency difference between the two legs, the estimation error keeps increasing constantly
for the single AO. When the frequencies are 1.4 Hz and 1 Hz, the estimation error reaches
0.7 rad, which is about approximately 10% of a step time (5% of a stride time if the gait
is symmetric), while the estimation error is much lower with the proposed switching
mechanism. An estimation error of 5% of the gait cycle is not substantial; however, the
simulated signal is a pure sinusoidal, while the interaction force contains variations and
disturbances, which can deteriorate the estimation accuracy. If the estimation error is
over 10% of the gait cycle, it leads to the failure of the control algorithm when the target
gait phases are those with short durations, such as the bodyweight acceptance, which
lasts for approximately 10% of the gait cycle [30]. By adopting the proposed adaptive
rule, parameter σ is adapted based on the difference in estimated frequency ω and actual
change rate of phase ϕ̇. The proposed adaptive rule considers that the gait phase does
not change drastically during walking and is applied when the difference is large, thus
maintaining a phase increase of at least (1− λ) of the expected frequency. Nevertheless,
this method may decelerate the initial AO synchronization when the phase difference
between the estimated and true gait phases is large [19,31]. However, the deterioration
of synchronization is suppressed afterward, and there is no substantial influence on the
overall estimation accuracy.

In the experiments, the phase estimation accuracy of scenario 1 (without knee re-
striction) was better than that of scenario 2 (with knee restriction) because the interaction
force contains more disturbances and variations under the limitations imposed by the knee
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orthosis. In fact, a restricted knee movement hampers the coordinative movement of the
trunk during walking [32], eventually altering the interaction force during walking. The
estimation performance of the proposed method and a single AO is similar without the
restriction. As the participants in this study were young and healthy, their gait patterns
were symmetric and the interaction force contained few variations and noise, promot-
ing accurate estimation. In contrast, the proposed method showed higher accuracy than
AO when the participants walked with a knee orthosis, which elicited asymmetric gait
due to the restricted knee movement. For these subjects, the RMSE of phase estimation
provided by the proposed method was lower than that without the adaptive rule and
switching mechanism.

The switching mechanism improved the estimation accuracy by using two separate
states to track the step timing of the two legs. Although the difference in HS estimation
error between the proposed method and single AO was significant, the improvement in
the estimation accuracy was not very large (reduction by 6.25%). However, over 100 HS
misdetections occurred using the conventional AO, whereas most HSs were captured by the
proposed method. With a smaller σ, the single AO method can achieve fewer misdetections
of heel strikes. However, it takes a longer time for the AO to re-synchronize with the input
signal when the characteristics of the input signal change. This will eventually deteriorate
the estimation accuracy. Although the proposed method successfully detected the HSs,
the estimation accuracy was degraded when the orthosis was used. These differences in
estimation are likely much larger if the HSs are neglected.

The HS estimation error was also compared with offline gait event estimation based
on the user–walker interaction force proposed in [10]. This method uses a Butterworth
bandpass filter to suppress noise, and the peak timing of the interaction force is considered
as the HS instant. Its estimation accuracy was 46.75 ± 50.60 ms, outperforming the results
of our proposal. However, the HS estimation error of the proposed method in scenario
1 was 54.16 ± 53.28 ms, being comparable to the results of Abellenas’s method. This is
a suitable result considering that the results were obtained offline by the method in [10],
while the proposed method performs real-time estimation. Abellenas’s paper does not
report any misdetection of HS, but the misdetection of HS is mentioned in other similar
research studies [9,33] while none of them uses the misdetection of HS to evaluate the
performance of their estimation methods.

The adaptive rule for σ improves not only the estimation performance but also the
robustness. Using the proposed method, the number of HS misdetections decreased
considerably from 105 to 11. In the few cases in which the proposed method provided HS
misdetections, the interaction force did not reflect the change in the gait phase. For example,
Figure 10 shows the filtered interaction force for an HS misdetection provided by the
proposed method. The HS instant is supposed to coincide with the peak timing of the
interaction force, but the peak in the red circle is very small, leading to a failed HS detection.
This is a limitation of the proposed method because its results rely on the interaction force.
In addition, the gait phase can be indirectly affected by elbow movements or posture
changes during walking.

If a heel strike is not detected by the proposed method, the AO that kept track of
the left steps will turn to track of the right steps while the AO that kept track of the right
steps will turn to track of the left steps. It will take several steps for the estimator to
re-synchronize with the input signal, which will deteriorate the performance of estimation
in a short period. However, the phase estimation error will diminish rapidly during the
re-synchronization period. Furthermore, the misdetections barely occur for the proposed
method even when the user’s knee movement is restricted (11 misdetections for about
3000 steps), and the phase estimation error after the 11 misdetections decreases rapidly
due to the choice of a ε with a large value to increase the converge rate of ω. Therefore, it
is not a big issue for the proposed phase estimation method. Moreover, we will improve
the proposed method by making the best use of the interaction force/torque between the
walker and a user to determine the left/right heel strikes in real time. During walking,
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the interaction force (vertical direction) at the corresponding side grows, whereas the
interaction force on the opposite side decreases, as demonstrated in [33]. In this way, the
proposed method can keep track of left steps with one AO and keep track of right steps
with another AO.
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Figure 10. Interaction force under HS misdetection (red circle).

As the proposed method relies on the user–walker interaction force for gait phase
estimation, it may fail to detect the HS instant and gait phase if the interaction force contains
several unrelated fluctuations. In the experiment, 11 HS misdetections occurred when
the knee movement was restricted, which mostly negligible because over 3000 steps were
processed. HS misdetection is mainly caused by elbow movement and posture changes
during walking, and the estimation performance may degrade for elderly people, who
often present deteriorated upper and lower limb strength.

In the experiments, all nine participants are young healthy males, and a knee orthosis
is used to elicit asymmetric gait. For elderly people, there can be a larger amount of
noise and variations in the amplitude and frequency of interaction forces due to their
deteriorating upper and lower limb strength. The noise and variations can degrade the
estimation accuracy of the proposed method. Although a knee orthosis can resemble the
gait patterns of people who suffer from joint contracture, the gait patterns of people with
motor impairments are more diverse. For instance, some stroke survivors suffer from
hemiplegia, which not only leads to an asymmetric gait but also damages their upper
limb muscles and trunk muscles on the affected side. The interaction force between a user
suffering from a severe stroke and a walker can be different from that between a healthy
user and a walker. It may change the correlation between the interaction force and the gait
phase that is used for gait phase estimation. The changed correlation may make it less
reliable for the proposed method to estimate the gait phase successfully.

On the contrary, gender does not seem to be a factor that will substantially influence
the gait phase estimation. The differences between male and female users are the height
and the body weight, and female users are normally shorter and lighter. The height of the
handle of the walker is adjustable, and it can be adjusted to fit people with different heights.
While the lighter body weight can lead to a smaller amplitude in the interaction force, it is
not a major issue since the AO can adapt its amplitude to synchronize with the interaction
force with different amplitudes. We will confirm this by evaluating the performance with
both male and female subjects in our future work.

All experiments were conducted for straight walking, and it is expected that perfor-
mance in curve walking should be slightly worse than that in the straight line walking,
as was presented in Alwan’s research [9]. There will be an additional component in the
interaction force that represents the user’s intention to change the direction of walking,
which is a disturbance to the gait phase estimation.

The real-time gait phase estimation method will be used to enhance the performance
of lower limb physical training for elderly people. By using the proposed real-time gait
phase estimation method, we tried to exert different levels of resistance to young healthy
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subjects at different gait phases to achieve better training outcomes for certain lower limb
muscles [11]. As an example, we increased the level of resistance to a user at 10% to 50% of
a gait cycle to train the muscle of gastrocnemius. We assume that the gait patterns of people
with mild motor impairments (elderly people and patients) are similar to those of young
healthy people. However, there are two limitations: (1) the gait pattern may change due to
the resistance exerted to the user or the physical conditions of the user, just as stroke can
alter the gait pattern significantly [34]; (2) the gait patterns of elderly people or people with
motor impairments are inconsistent due to the deteriorated walking ability. Furthermore,
the proposed gait phase estimation method can only estimate the percentage of a gait
cycle rather than identifying the phases of a gait such as loading response, mid-stance, or
pre-swing. The effectiveness of the physical training can degrade if the resistance is not
applied at desired gait phases.

6. Conclusions and Future Work

We propose a robust real-time gait phase estimation method that considers asymmetric
gait patterns and relies on the user–walker interaction force. In addition, the proposed
method uses two AOs (Adaptive Oscillators) that are alternately activated by a switching
mechanism. The switching mechanism enables accurate gait phase estimation even for
people presenting asymmetric gait. Furthermore, an adaptive rule for an AO parameter
improves the transient performance under drastic amplitude changes in the input gait
signal. The performance of the proposed method and its underlying techniques were
evaluated in simulations. The proposed techniques can improve the accuracy of gait phase
estimation for asymmetric gait and sudden amplitude changes. Then, we experimentally
validated the proposed method, and we found that (1) the proposed method achieves
higher accuracy and robustness than the conventional AO, especially under asymmetric
gait elicited by a knee orthosis; (2) the proposed method can estimate the HS instant with
high accuracy (54.16 ± 53.28 ms), similar to that of a method for offline gait event detection
based on the interaction force (46.75 ± 50.60 ms).

From the viewpoint of ethics, we only accepted young healthy subjects in this study.
In the future

1. The application of the proposed method for people who suffer from severe motor
impairments will be further investigated;

2. The application of the proposed method for actual wheel walker users under different
conditions (straight and curve walking) will be further investigated;

3. The interaction forces to be detected at both sides will be used to minimize the
influence of misdetections of HSs (heel strikes).

as were presented in the discussion section.
Moreover, we will apply the proposed method for improving the effectiveness of

physical training for elderly people with a smart walker.
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