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Aida Kamišalić 1,* , Renata Kramberger 2 and Iztok Fister, Jr. 1

����������
�������

Citation: Kamišalić, A.; Kramberger,
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Abstract: Blockchain and Data Mining are not simply buzzwords, but rather concepts that are playing
an important role in the modern Information Technology (IT) revolution. Blockchain has recently
been popularized by the rise of cryptocurrencies, while data mining has already been present in IT
for many decades. Data stored in a blockchain can also be considered to be big data, whereas data
mining methods can be applied to extract knowledge hidden in the blockchain. In a nutshell, this
paper presents the interplay of these two research areas. In this paper, we surveyed approaches for
the data mining of blockchain data, yet show several real-world applications. Special attention was
paid to anomaly detection and fraud detection, which were identified as the most prolific applications
of applying data mining methods on blockchain data. The paper concludes with challenges for future
investigations of this research area.

Keywords: anomaly detection; blockchain; distributed ledger; data mining; machine learning

1. Introduction

Blockchain technology [1] might be considered one of the most disruptive technologies
of the last decade, which can revolutionise business processes within the private and public
sectors. It offers the means to secure processed transactions in distributed and decentralised
environments, providing transparency and immutability [2,3]. Nevertheless, there are still
several challenges associated with technology application related to security, scalability,
interoperability, regulation. On the other hand, machine learning (ML) applications have
emerged in recent years, due to the availability of vast amounts of data and the capacity
of ML algorithms to provide systems with the ability to learn and improve automatically
using past data [4,5]. Blockchain technology can benefit from the use of ML algorithms
while taking advantage of their ability to provide an analysis for an enormous amount of
data. It can enhance the security of such systems significantly [6–9].

The applications that benefit from blockchain technology and machine learning algo-
rithms rise promptly within different domains, such as healthcare, fintech, and the energy
sectors and for different purposes, such as anomaly, fraud and malicious activity detection,
biometrics’ monitoring and disease detection, etc. Several reviews have dealt with these
topics in recent years. Some of them address the integration of blockchain technology and
artificial intelligence among other technologies to achieve decentralised authentication [6],
to enable different features within the 5G networks [8], or to achieve the de-anonymisation
of bitcoin addresses or entity recognition within cryptocurrency transaction networks [10].
Other works provided have surveyed the use of one or both technologies separately within
a specific domain, such as Healthcare [3,11–14], Agriculture [15], Construction Engineering
and the built environment [16,17], or across several domains such as Data Management
and IoT [3,18], Blockchain industrial applications [2,19], or addressing security and privacy
issues [7,9,20]. A detailed insight into these reviews (presented in Section 3) reveals that
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none of these provide a comprehensive review of all applications regardless of the domain
where the blockchain technology and machine learning techniques are used to complement
each other, offering complete solutions for anomaly and fraud detection. Therefore, we
contribute to the body of knowledge by (1) Providing a comprehensive review of appli-
cations where the synergy of blockchain technology and machine learning algorithms is
used to detect anomalies, (2) Discovering all main machine learning methods used and the
types of data they exploit, (3) Offering a taxonomy of machine learning methods used to
enhance blockchain technology, serving a specific purpose.

The structure of the paper is as follows. Section 2 provides fundamental informa-
tion on blockchain technology. The research methodology used in the review, research
questions and taxonomy, as well as an overview of existing reviews covering those topics
are presented in Section 3. Sections 4 and 5 provide a detailed analysis of the machine
learning methods used for intelligent data analysis and review of applications, respectively.
A discussion can be found in Section 6, while Section 7 summarize the directions of the
further development of the research field and issues to be addressed. Finally, conclusions
and future trends are presented in Section 8.

2. Fundamentals of Blockchain Technology

In recent years, blockchain technology has been attracting much attention due to its
features that complement storage technologies. With the expansion of cryptocurrencies it
has become the most known representative of distributed ledger technologies. Blockchain
technology enables the creation of a decentralised and distributed environment. It serves
as a secure and immutable ledger, allowing transactions’ to be processed without being
controlled by a central authority. A ledger consists of a chain of blocks that store data
chronologically. The chain is growing as new blocks are being appended to the end of the
ledger (see Figure 1). Each new block holds a hash value reference to the content of the
previous block which assures the immutability of saved data. Data are structured into
transactions and sealed using cryptography, where a public key encryption mechanism
is used to secure the content. The content is replicated, distributed and synchronised
among nodes in a P2P network. Therefore, the consistency, immutability and transparency
of the content is ensured using all the mentioned principles [21]. Since it is based on
decentralisation principles, the consensus mechanism ensures a fault-tolerant system
where nodes reach agreement on a single source of truth—the state of the ledger content.
Its protocols ensure that nodes are synchronised and agree on transactions added to the
ledger. The chosen mechanism influences the features of the blockchain directly, and
its sustainable applicability in different domains. Some of the most known consensus
mechanisms are: Proof-of-Work (PoW), Proof-of-Stake (PoS), Delegated Proof-of-Stake
(DPoS), Proof-of-Authority (PoA), Proof-of-Activity, Proof-of-Identity, etc. [22–24].

Figure 1. Blockchain transaction processing: (1) Transaction request, (2) Transaction broadcast to P2P
network nodes, (3) Transaction verification using consensus algorithms, (4) Transaction packed into
block with other transactions, (5) The block added to the blockchain, (6) Transaction completed

Essentially, there are four types of blockchain: public, private, consortium and hybrid.
A public blockchain is permissionless, and it emphasises the public part-all the data are
accessible and visible to the public. Typical representatives of this type of blockchains are
cryptocurrencies [25]. On the other hand, a private blockchain is based on permissioned
principles, therefore, only chosen nodes can join the closed network. Here, the network
is still distributed but centralised, whereby the security, authorisations, permissions and
accessibility are in the domain of a central authority—a single organisation. They are
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usually used within one organisation or enterprise, typically for voting processes, digital
identity, asset ownership, etc [18,21]. Consortium blockchains are partially decentralised,
since more than one organisation manages the network. Only selected participants get
full access. The typical use of this type of blockchain can be found in banks, govern-
ment organisations, etc [18,21]. Finally, hybrid blockchains are a combination of private
and public types of blockchains, where some instances are public and some restricted.
Those networks are not open to everyone, but still offerthe main features of blockchain
technology—integrity, transparency and security. They provide flexible control over the
blockchain and are suitable for domains such as finance, supply chains, medical records,
etc. [18,26,27].

The first application of blockchain technology emerged in 2009, with the cryptocur-
rency Bitcoin [1]. Since then, we have witnessed the evolution of blockchain technology
and its expansion in a number of applications. However, the most known applications of
blockchain technology are cryptocurrencies. Nowadays, there are over 10,000 different
cryptocurrencies. Nevertheless, the huge potential of this technology can be seen through
its usage within different domains, where new business models and efficiency efforts might
be leveraged from the technology features. Several use cases that benefit from this technol-
ogy are found in Healthcare, IoT, Supply chain management, Education, Electronic voting,
Resource management, Transportation, Insurance, Energy, and Rights management [28,29].

3. Research Methodology

As stated in the Introduction, the main objective of this paper was to review the inter-
play of machine learning methods and blockchain data for anomalies and fraud detection.
Therefore, this research was conducted by reviewing the present state of knowledge of
applications using blockchain technology and machine learning methods.

While designing this research paper, we formed three research questions, which are
addressed and answered in the paper. The research questions are as follows:

Research Question 1 (RQ1). What are the core elements for defining the taxonomy of machine
learning methods used for anomaly and fraud detection in blockchain systems?

Research Question 2 (RQ2). Which machine learning methods are used for the intelligent data
analysis of anomalies using data stored in a blockchain?

Research Question 3 (RQ3). What type of applications emerge from the use of machine learning
methods within a blockchain environment?

Based on the research questions, the review was undertaken to address the following
specific goals:

• To review machine learning methods used for the intelligent data analysis of anomalies
using data saved in a blockchain environment.

• To synthesise a taxonomy of ML methods used for specific purposes.
• To review applications that benefit from blockchain technology and machine learn-

ing algorithms.

We started our study with an extensive literature search in several scientific abstract
databases. In order to collect the required articles, the following search string was used:

("blockchain’’ OR ‘‘block chain’’ OR ‘‘distributed ledger’’ OR
‘‘smart contract’’ OR ‘‘cryptocurrency’’) AND
(‘‘data mining’’ OR ‘‘classification’’ OR ‘‘machine learning’’ OR
‘‘AI’’ OR ‘‘preprocessing’’ OR ‘‘deep learning’’ OR
‘‘neural network’’ OR ‘‘artificial intelligence’’ OR
‘‘anomaly detection’’)
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The search string was modified to meet the requirements and limitations of each
selected search engine. Initially, the search was conducted so that the engines took the
entire text of the articles into account. This led to a large number of results, and a large
number of retrieved articles that were not relevant to our study. In order to fix this, the
search was limited to include only abstracts and keywords. Additionally, the search was
only limited to include results published within the last five years (2017 to 2021).

The search was conducted between the 11th and 14th of June, 2021. The following
search engines and scientific databases were used: ACM Digital Library, IEEE Xplore,
Science Direct, Springer Link, and Web of Science. Table 1 shows the number of results
obtained from each database.

Table 1. Databases with the total number of search results.

Database Name URL No. Total Results

ACM Digital Library dl.acm.org 119
IEEE Xplore ieeexplore.ieee.org 982

Science Direct sciencedirect.com 103
Springer Link link.springer.com 2398
Web of Science webofknowledge.com 1004

Total 4606

After the results had been collected, they were also checked to exclude duplicates,
both within the databases and given by different databases. Table 2 shows the number
of duplicates found among the databases. Given that Web of Science indexes articles
that are hosted by other databases, it can be seen that most of the duplicates were found
when comparing a specific database to Web of Science. Altogether, 18 duplicates were
found within the databases, and 522 across each database pair. A total of 540 duplicates
were excluded.

Table 2. Number of duplicates excluded, shown by each database pair.

ACM IEEE Science Direct Springer Link WoS

ACM Digital Library 15 4 0 0 6
IEEE Xplore 4 1 0 0 425

Science Direct 0 0 0 0 45
Springer Link 0 0 0 0 46
Web of Science 6 425 45 46 2

We also defined several additional exclusion criteria that resulted in the removal of
papers from our selection pool:

• Research not written in the English language,
• The full text of the article was not available, and
• The method, evaluation process, and results were not described.

After inspecting the title, keywords and the abstracts, 206 papers were initially selected
for our research. However, one paper was not written in English, and we could not obtain
the full text for nine papers. Therefore, these 10 papers were also excluded. A full text
inspection was conducted on a total of 196 studies, and 130 were selected as relevant for
our research.

As we can observe in Figure 2, there has been an increasing trend in using machine
learning techniques in blockchain anomaly detection. Although it seems as though there
is a decrease in the number of publications in the year 2021, note that we conducted the
search in June 2021 and the 36 publications were published in the first six months. We can
expect that more research within this area will be published until the end of the year, and
will exceed the number of publications from the year 2020.

http://dl.acm.org/
http://ieeexplore.ieee.org/
http://www.sciencedirect.com/
http://link.springer.com/
http://webofknowledge.com/
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Figure 2. Number of publications per year included in the research.

Similar Review Papers

During the search process we were able to detect several review papers addressing
topics on blockchain technology and artificial intelligence. Below we present those reviews
and their contributions.

Mohsin et al. [6] published a review on integrating a blockchain technology with IoT,
Telemedicine, Cloud computing and Artificial Intelligence among others, in order to achieve
decentralised authentication. A state-of-the-art survey on the integration of blockchain with
5G networks was published by Nguyen et al. [8]. They detected several works combining
machine learning with blockchain in 5G networks, to enable secure and intelligent resource
management and orchestration, optimisation, secure computation offloading, and reliable
network channel selection, etc. Wu et al. [10] presented a comprehensive review of the state-
of-the-art literature on cryptocurrency transaction networks. They detected works using
machine learning or deep learning for the de-anonymisation of bitcoin addresses or entity
recognition. In 2020 Lezoche et al. [15] published a survey on new technologies (focusing
on Big Data, AI, IoT, and Blockchain), and new supply chain methods that were analysed
within the Agriculture domain. Azbeg et al. [11] offered a review of healthcare applications
where the IoT and blockchain were integrated, Kouicem et al. [12] published a survey of
security and privacy solutions in IoT, and the benefits that blockchain technology, among
other things, might bring to security and privacy in terms of flexibility and scalability,
while Mohd Aman et al. [13] reviewed architecture, applications, technologies and security
developments made within the Internet of Medical Things (IoMT) in the COVID-19 period,
providing an insight into the used technologies (i.e., blockchain, machine learning, big data)
within the medical environment. Negro-Calduch et al. [14] performed a systematic review
of systematic reviews to assess technological progress in the Electronic Health Record (EHR)
and Personal Health Record (PHR) systems, whereby EHRs and PHRs are considered to
be the primary beneficiaries of the implementation of blockchain technology and natural
language processing techniques, (i.e., rule-based, machine learning, or deep learning-based)
are considered useful for the extraction of information from clinical narratives and other
unstructured data within EHRs and PHRs. A systematic literature review of blockchain-
based applications across several domains, such as from supply chains, business, healthcare,
IoT, privacy, and data management was published by Casino et al. [3]. Lu [18] published
a review of the main applications based on the blockchain technology and studies of
the blockchain and main components, blockchain-based IoT, blockchain-based security
and blockchain-based data management. A survey of industrial blockchain, identifying
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challenges and opportunities, and summarising the main obstacles of industrial blockchain,
was conducted by Li et al. [2]. Hoffmann Souza et al. [19] published a survey on decision-
making based on system reliability in the context of Industry 4.0. A systematic review
presenting the current state of AI adoption in the context of Construction Engineering
and Management (CEM), where Blockchain technology was detected as one of the key
future research directions that would enable narrowing the gap between AI and CEM,
was published by Pan and Zhang [16]. Nawari and Ravidran [17], on the other hand,
presented an evaluation survey of Blockchain technology and its applications in the built
environment. Peng et al. [20] analysed the characteristics of permissionless blockchain
and summarised potential privacy threats. Valdovinos et al. [9] provided a systematic
survey of the existing Distributed Denial of Service (DDoS) attacks detection and mitigation
strategies in Software-Defined Networking (SDN). They provided a taxonomy of DDoS
detection strategies (e.g., statistical, Machine Learning) and emerging approaches (e.g.,
network function virtualisation, blockchain, honeynet, network slicing, and moving target
defence). Cryptographic techniques proposed to achieve authentication, privacy and other
security features within Vehicular ad hoc networks (VANETs) were in the focus of a study
published by Mudhe et al. [7].

4. Identified Data Mining Methods

Data stored in blockchain can definitely be considered to be Big Data [30,31]. For
example, the full blockchain size of the most popular cryptocurrency Bitcoin is more than
300 gygabytes at the time of writing this paper (https://www.statista.com/statistics/6475
23/worldwide-bitcoin-blockchain-size/ (accessed on 15 August 2021)). Very sophisticated
Data Mining tools and methods are usually used or developed for deep analysis of these
data. There exists a wide pool of Data Mining methods nowadays, such as, for example,
from Regression Analysis to more complex ML methods, Random Forest or Support Vector
Machines [32]. Typically, these methods are used to cope with Association Rule Mining,
Numerical Association Rule Mining, clustering, classification and others. Data Mining can
also be viewed as a part of the KDD (Knowledge Discovery in Databases) [33] process,
where the term KDD refers to the overall process of discovering useful knowledge from
various data [33]. In this process, DM is actually an application of algorithms aimed to
extract patterns from data. In line with this, KDD is a very complex process which consists
of six phases [34,35]:

• Problem/application specification (a problem is introduced which plays the main role)
• Problem/application understanding (problem tries to become explainable),
• Data preprocessing, (data cleaning, data transformation, feature selection procedures

take place)
• Data mining, (an actual model is built on preprocessed data and knowledge is extracted)
• Evaluation, (interpretation of results takes place)
• Result exploitation (visualisation of discovered knowledge, generation of reports,

narrating stories).

Many research papers and practice have revealed that data preprocessing is probably
the hardest step in the overall process of the KDD. If data are well prepared, cleaned and
transformed, then the subsequent processes that follow occur more smoothly. Loosely
speaking, the data preprocessing step, in most literature, is considered to be the most
significant and most time consuming process in the whole pipeline [34]. Blockchain data
are also very interesting from this perspective, because they usually involve a couple of
additional steps that are not necessary for the data stored in spreadsheets, transaction
databases and similar sequential-based formats. Blockchain data are, typically, stored in
specially prescribed formats, which ensures data immutability. Data are structured into
sets of valid transactions, which are packed into blocks. A block of transactions holds
a reference in the form of a hash value to the content of the previous block. Each block
is sealed cryptographically and appended to the end of the ledger. Therefore, retrieving
data from a blockchain is not easy or effortless. It requires, firstly, to use specific parsers

https://www.statista.com/statistics/647523/worldwide-bitcoin-blockchain-size/
https://www.statista.com/statistics/647523/worldwide-bitcoin-blockchain-size/
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for each blockchain, in order to extract raw data and make a systematic extraction and
presentation of these data. Some examples of parsers can be found in the following links
(https://github.com/alecalve/python-bitcoin-blockchain-parser (accessed on 15 August
2021)) (https://github.com/gcarq/rusty-blockparser (accessed on 15 August 2021)).

The following heatmap (Figure 3) presents all Data mining methods that were identi-
fied in our study. To improve the readability and clarity of the heatmap, we excluded all of
the methods that appeared only once (AdaBoost, Adaptive Weighted Attribute Propagation,
Bagging, Broad Learning System, Cascading Machine Learning, DBSCAN, Deep Hashing,
Ensemble Learning, Generative Adversarial Network, k-Means Clustering, Link Mining,
Linear Regression, and Logistic Regression), as well as some custom Supervised Learning
methods. In our research we also encountered hybrid solutions that are based on statistical
methods such as the Gaussian Graphical Model. As we can see from the heatmap, the
authors utilised Computational Intelligence methods [36], conventional Machine Learning
methods [5] as well as Deep Learning methods [37]. We can see that the most used methods
for anomaly detection are Support Vector Machines, Artificial Neural Networks, and the
Random Forest algorithm, while for detecting fraud, the best methods appeared to be the
Random Forest algorithm and Gradient Boosting.

Anomaly detection Fraud detection

Artificial Neural Network
AutoEncoder

Convolutional Neural Network
Decision Tree

Deep Learning
Federated Learning
Gradient Boosting

Graph Convolutional Network
Isolation Forest

k-Nearest Neighbor
Long Short-Term Memory

Multi-layer Perceptron
Naive Bayes

Random Forest
Reinforcement Learning
Support Vector Machine
Temporal Graph Network

8 3
7 1
0 2
3 1
7 5
1 2
7 10
2 1
3 1
2 3
7 4
0 2
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9 12
2 0
9 3
2 0

0
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8
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12

M
ethod per application

Figure 3. Heatmap of the most used methods per application.

5. Review of Applications

The performed literature review led to classification of publications regarding the
addressed application. Publications were grouped into two categories of applications:
Anomaly detection (see Tables 3–6) and Fraud detection (see Tables 7–10).

5.1. Anomaly Detection

Anomaly detection refers to the process of data processing and detection of behaviour
patterns that may indicate a change in system operations [38]. The task of anomaly
detection is searching for rare or suspicious events/items in data, which differ significantly
from the whole dataset. In line with this, the process is also associated many times with
the term outlier detection. Anomalies can be detected in practically most of the real-world
datasets, but their practical use is arising in the detection of bank frauds, computer security,
doping detection in sports, etc.

https://github.com/alecalve/python-bitcoin-blockchain-parser
https://github.com/gcarq/rusty-blockparser
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We divided the results further into four main groups associated with anomaly detec-
tion: Financial, Security, Data processing, and IoT.

5.1.1. Financial Anomaly Detection

One of the situations where detecting anomalies can be of use is money laundering.
In their research, Alarab et al. [39] performed a comparative analysis of the use of multiple
machine learning methods to detect money laundering in the Bitcoin blockchain. For the
experiment, they used the elliptic data set (from which they excluded the time-step) and the
aggregation features to enhance the performance. From the whole data set, unknown labels
were excluded and only the licit and illicit remained. They used the Receiver Operating
Characteristics (ROC) curve to present the visualisation of each of the tested techniques:
Ensemble Learning, Random Forest, Extra Trees, Bagging, AdaBoost, Gradient Boosting,
and k-Nearest Neighbours.

Graph Convolutional Networks assisted by linear layers were also used by Alarab
et al. [40] to detect money laundering in the Bitcoin blockchain. The Elliptic data set
was used for evaluation, and their method was then compared to the original GCN and
Skip-GCN. The results that included precision, recall, F1 score, and accuracy, showed that
their proposal reached the best score.

Table 3. Financial Anomaly Detection.
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M
on

ey
La

un
de

ri
ng

U
nd

er
-P

ri
ce

d
D

oS
A

tt
ac

k

C
re

di
tC

ar
d

Fr
au

d

Pu
m

p
an

d
D

um
p

A
no

m
al

ou
s

Tr
an

sa
ct

io
ns

Tr
an

sa
ct

io
n

Si
gn

in
g

H
on

ey
po

tC
on

tr
ac

ts

H
ig

h
Yi

el
d

In
ve

st
m

en
tP

ro
gr

am
m

e

Sm
ar

tC
on

tr
ac

ts

Ensemble Learning [39]
GCN [40]
Decision Tree [41] [42]
Random Forest [41] [43] [44] [45]
XGBoost [46] [45]
Isolation Forest [47]
LSTM [48]
LightGBM [49]
OCSVM [50]
Deep AutoEncoder [51]

Eduardo et al. [41] tackled the problem of under-price DoS attacks in the Ethereum
blockchain network. In under-price DoS attacks, malicious users perform denial of service
attacks in order to exploit flaws in blockchain networks. One example of such exploits
includes the Ethereum fee mechanism. In this scenario, the attackers pay a small fee for a
large number of transactions. To test their network they created 2000 accounts and tested it
with waves of normal transaction flows (2000 transactions), under-price DoS attack (10% of
the transactions were malicious), and the Ethereum Boom (transactions from 20 December
2017). To test the flows they used real transactions from 5 May 2019. The results of the
Machine Learning models show that the Decision Tree and Random Forest methods are
most suitable for this type of task.

A system for credit card fraud prevention was presented by Balagolla et al. [43]. The
system is trained to recognise anomalies within transactions stored on a blockchain. There
were three data sets used to perform the tests: the credit card fraud detection data set (ULB),
synthetic financials data set, and the German credit card fraud data set. Four Machine
Learning algorithms were tested (Logistic Regression, SVM, XGBoost, and Random Forest),
and the results showed that (based on the True Positive rate), the Random Forest algorithm
had the best accuracy and Kappa value.
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Cryptocurrency “pump and dump” schemes are a way of exploiting the blockchain
market, where one first buys a cryptocurrency at a low price. Then, with the help of social
media and similar platforms, they convince other investors to purchase the cryptocurrency,
and, thus, increase its value. As others invest, the price of the cryptocurrency rises, and
the organisers sell their shares at an (often) much higher price. Victor and Hagemann [46]
presented a cryptocurrency pump and dump detection scheme. Quantification and detec-
tion is done based on data obtained from the Binance Exchange. Data were collected for
the data set from 172 cryptocurrencies in one-second intervals, and filtered to contain only
certain fields relevant for this analysis (timestamp, price of last trade, 24 h trading volume,
and 24 h trade count). Also, 18 telegram channels were monitored to obtain timestamped
messages associated with cryptocurrency pump and dump schemes. The data set was
cleared of all small trade amounts, windows of 30 min were centered on ground-truth
timestamps, and certain features (like entropy, stability, flat spots, etc.) were computed
using the tsfeatures library. Finally XGBoost was used to detect pumps. Their timeline
visualisation shows the comparison of pumps found by the model, and pumps from the
ground truth.

Mirtaheri et al. [44] also created a system that detects pump and dump cryptocurrency
manipulations by analysing social media and cryptocurrency market data. They collected
the needed data from Telegram, Twitter, and CoinMarketCap.com. The data were then
labelled as either pump/not-pump messages, and the Random Forest classifier was used
to detect and predict pump and dump manipulations. Their approach was validated using
an area under the receiver operating characteristic curve (ROC-AUC).

A system that detects suspicious activities in financial transactions and distributed
ledgers was created by Camino et al. [42]. They conducted data preprocessing by first
filtering out entries containing invalid values, then building a collection of vectors (grouped
transactions by user) that will be analysed and filtered using the RFM (Recency, Frequency
and Monetary) features. The Pearsons correlation coefficient was used to calculate the
mutual influence of the features. Missing values from the data set were filled with a median
value of that column, and the peak values were eliminated by subtracting the columns
mean from it and then dividing it by its standard deviation. They used use cases to train
decision trees, extract anomalies and detect anomalous accounts. They visualised their
data using the t-SNE algorithm, as well as 2D and 3D scatter plots.

An LSTM network for anomaly detection and classification of Ethereum smart con-
tracts was presented by Hu et al. [48]. They collected smart contracts from Ethereum,
identified behaviour patterns manually, extracted features, and proposed a data slicing
algorithm to slice the collected contracts. The proposed LSTM model was evaluated on
the created data set, and the results were presented with the satisfactory precision, recall,
and F-score.

An anomaly detection model for Bitcoin transactions was presented by Sayadi et al. [50].
The data used for the evaluation were obtained from the Bitcoin blockchain. They use
One-Class SVM to detect outliers, and K-means clustering to gather similar attacks. The
results of the evaluation were presented using confusion matrices, cluster frequencies, and
detection results.

Podgorelec et al. [47] presented a machine learning based method for blockchain
transaction signing and personalised anomaly detection. The data were collected from the
Ethereum public main network. Isolation Forest was used to detect anomalous transactions,
while Random Forest was used to determine the feature importance.

Honeypot contracts represent malicious contracts that are designed so that they have
certain obvious flaws and attract other malicious users that wish to profit off of them. Of
course, the flaws are carefully used to mask traps, and the only one that will ultimately
profit is the creator of the honeypot contract [49]. Chen et al. [49] created a system that
detects these kinds of contracts. To collect the data needed for the data set, they extracted
honeypot contracts from the HONEYBADGER project and analysed each of the entries
whether it was a honeypot or not. The results were then categorised by the used technology,
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and the Ethereum ledger is downloaded into the data set. Feature extraction was conducted
by converting the bytecode into opcodes, analysing the opcode frequency and using the
bi-gram features to determine the opcode combination. Classification was done with the
use of the LightGBM algorithm. The evaluation metrics used to present their results were
precision, recall, AUC, and F1.

A transaction pattern analysis was performed by Toyoda et al. [45] to identify High
Yield Investment Programmes (HYIP) . HYIP presents a fraudulent act where scammers
offer high interest payments with minimal risk to potential investors. In the end, the HYIP
collapses and the scammers collect the earned interest. To create a data set for the pattern
analysis they collected both HYIP and non-HYIP related data, grouped the transactions by
Bitcoin address, and finally conducted feature extraction to remove change of transactions
and to calculate the transaction pattern. The classification was performed using XGBoost
and Random Forest. The evaluation was conducted by the True Positive Ratio, False
Positive Ratio, and F1 score.

Demertzis et al. [51] presented another anomaly detection framework. They used
deep autoencoders to detect anomalous behaviours within a blockchain network. Their
data set consisted of network transaction data that had their lower layer transmission data
removed. For the data set, the Optimal Dataset Threshold (ODT) was determined, and the
data were normalised. The evaluation results for the proposed method and the comparison
to other methods, i.e., OCSVM, Isolation Forest, and Minimum Covariance Determinant,
are depicted using RMSE, precision, recall, F1-score, and AUC.

5.1.2. Cryptojacking, Malware, and Security

Desai et al. [52] created BlockFLA, an accountable federated learning framework
based on the Hyperledger Fabric blockchain. The main goal of their work is to detect
backdoor attacks. BlockFLA’s performance was tested by using trojan patterns on the
CIFAR10 data set. An agent who corrupts the data set is considered an adversary. They
presented their results by sampling from a Dirichlet distribution.

ContractWard [53] is a system that detects vulnerabilities within Ethereum smart
contracts. They use a combination of the Synthetic Minority Oversampling Technique
(SMOTE) and TomekLinks to deal with the class-imbalance problem in the training sets.
The classification was conducted using five supervised learning techniques (eXtreme
Gradient Boosting, Adaptive Boosting, Random Forest, Support Vector Machine, and k-
Nearest Neighbor). Micro-F1 and Macro-F1 are used to present the measurements of the
conducted tests.

Table 4. Security.
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Federated Learning [52]
XGBoost [53] [54]
Neural Network [55] [56]
Deep Learning [57] [58]
Naive Bayes [59]
LSTM [60] [61]
SVM [56] [62]
Decision Tree [56]
Random Forest [63] [64] [56]
KNN [62]
Temporal Graph [65]
OCSVM [66]
Deep AutoEncoder [67] [68]

ALICIA, applied intelligence in the blockchain-based VANET, was presented by
Maskey et al. [55]. They designed the system to provide vulnerability detection using
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neural networks. An existing data set was used that contained car trajectories and vehicle
telemetry (such as speed, acceleration, heading, etc.). The data set was additionally sup-
plemented with simulated accident events. The results of their evaluation are shown on a
graph containing the relationship between accuracy and the false positive rate.

Ashizawa et al. [57] presented Eth2Vec—a deep learning vulnerability detection
system for Ethereum smart contracts. To evaluate their proposed system, they compared it
to SVM. They collected smart contracts from Etherscan.io to create the data set needed for
the evaluation. The evaluation was presented using precision, recall, and an F1-score for
each, and it can be observed that Eth2Vec offers a better average performance.

Another vulnerability detection model for Ethereum smart contracts was presented
by Song et al. [63]. To create a data set they collected source codes of smart contracts
from the official Ethereum website, which were then labelled using Oyente. The feature
extraction was preformed using the n-gram algorithm. To reduce the dimension of the data
set, the opcodes were simplified by removing operands and classifying similar opcodes.
The test was conducted on Random Forest, SVM, and KNN. The results are presented by
calculating the F1-score, Micro-F1, and Macro-F1. The ROC curves of their models were
presented additionally.

Cryptojacking is the process of adding covert malware that performs cryptocurrency
mining on one’s computer. The attackers use the victims’ resources to collect mining
rewards [59,60]. Liu et al. [60] proposed an approach to detect cryptojacking using
Recurrent Neural Networks (LSTM). This approach uses the browser header data to detect
malicious behaviour. The collected data are pre-proccesed so that the function features,
suspicious data, and the function calling sequence are extracted and categorised (replaced
by predetermined symbols). The evaluation results are shown, presenting the precision,
recall, and F1-score with the addition of the hardware performance test results.

Another system used for detecting cryptocurrency miners using the NetFlow/IPFIX
protocol was designed by Munoz et al. [59]. Data were first gathered from the Stratum
traffic generator and analysed to identify the flows coming from mining traffic. Then, to
create a training data set, traffic was captured from a large university campus network and
flows were matched to those gathered from Stratum. The model was then trained with
677 samples on multiple Machine Learning algorithms (SVM, CART, C4,5 Decision Tree,
and Naive Bayes). The results of the training were presented using accuracy, precision,
recall, and an average F score. Additionally, the results of the method with the highest
accuracy (Naive Bayes) were presented using a confusion matrix.

The dangers and descriptions of several types of malicious applications that affect
Android devices were presented by Suleman et al. [69]. One of the listed malicious
applications are cryptojacking applications. This means that Android devices, such as
mobile phones and tablets, can also be affected by this type of malware software. Soviany
et al. [70] presented the importance of the methodology when working on the detection of
crypto-mining malware. They defined the exact steps in creating and testing such systems
and the methodology for the presentation of the results. BrenntDroid, a tool that detects
mining on Android devices was presented by Dashevskyi et al. [64]. They created a dataset
by collecting potential Android mining applications and analysed their behaviours to
determine whether they are truly miners. The dataset was filtered using scikit-learn library
and the entries containing low variance were excluded. The features with high correlations
were detected using the Pearson correlation coefficient and also excluded. The results of
the Random Forest classifier were presented using ROC and AUC.

A machine learning model for smart contracts’ security analysis was presented by
Momeni et al. [56]. They collected the data for their data set from Etherscan, where they
collected smart contract source codes. The source codes then had to be compiled, and the
source codes were removed that were not version 0.4.18. After Feature Extraction, the data
set was processed using four machine learning methods i.e., SVM, NN, RF, DT. For the
presentation of their results they calculated the accuracy, precision, recall, and F1. The
results were grouped by security problem and the method with the best results was shown
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for each of them. They concluded that each specific problem yields a specific method and
that there is no method that would be best for all scenarios.

Another method of anomaly detection was presented by Huang et al. [62]. Their main
goal was to detect malicious nodes in the blockchain network. The data collected for this
experiment consisted of time intervals of prepare and commit phases of nodes in different
situations. They labelled the normal and abnormal data, and conducted the experiment
using KNN, CNN, SVM, Gaussian model, and the Bernoulli model. The results are shown
by displaying the relation between the accuracy and delay on several graphs.

Temporal graph properties to detect malicious accounts in permissionless blockchains
were used by Agarwal et al. [65]. They performed an evaluation using the data obtained
from the Etherscan API. Additionally, they used other sources to identify and label mali-
cious accounts within the data set. To present the results of their experiment they calculated
the precision, recall, F1 score, and MCC score. Additionally, they provided cosine similarity
graphs to show the correlation between old and new malicious accounts, and the similarity
between malicious and benign accounts.

Kumar et al. [54] created a system for detecting malicious accounts on the Ethereum
blockchain. The used data set consisted of malicious and non-malicious addresses. A string
comparison was used to filter out duplicate addresses, regardless of the case sensitivity.
Additionally, addresses containing null transactions were also eliminated from the data
set. Their method compares multiple supervised learning techniques: KNN, Decision Tree,
Random Forest, and XGBoost.

A One Class Support Vector Machine classifier was used by Zarpelao et al. [66] to
detect Bitcoin-based botnets. For the evaluation of their proposal they used an instance of
the ZombieCoin botnet with six nodes. The botnet network was executed for an estimated
two hours to collect the needed data. Additionally, legitimate data were collected from
blocks appended to the main Bitcoin blockchain in three days. The obtained data were
used to construct multiple experimental scenarios. The performance was measured using
TPR, FPR, and AUC.

Adversarial Machine Learning was used by Yilmaz et al. [61] to enhance the privacy
protection of grid users data. Their chosen method is based on the Long Short Term Memory
(LSTM) model. The data set used in their evaluation was the Electricity Consumption
and Occupancy data set, that contains power consumption readings and ground-truth
occupancy information.

A security framework for IoT-based on deep learning and blockchain was proposed
by Rathore et al. [58]. The MS COCO data set was used to evaluate their framework. They
presented the results of their experiments by providing F-Score, accuracy, MCC, and AUC.

A system for the detection of cyber threats and situational awareness was proposed
by Graf and King [67]. They used the deep autoencoder. The data were collected from the
open source intelligence sources. The performance of the proposed model is shown by
presenting a graph with the loss, accuracy, validation loss, validation accuracy, as well as
the ROC space plot.

A deep autoencoder system for anomaly detection on the Ehtereum blockchain was
proposed by Scicchitano et al. [68]. To evaluate their proposal, they used one synthetic and
one real Ethereum data set. They presented the outlierness score on the real and synthetic
data sets.

5.1.3. Data Processing

Social media behaviour detection is the focus of the study published by Liu et al. [71].
They trained the Isolation Forest algorithm on user login data from Carnegie Mellon
University and focused mostly on the user’s login time. Principal Component Analysis
(PCA) was used to process the data and obtain the outliers.

Lin et al. [72] proposed a system that creates an address classification. They used a data
set with 26,313 addresses to perform this classification. The transaction history was pruned,
and only the relevant (direct) transactions of an address were added to the transaction
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history summary. They tested multiple machine learning methods, and their tests show
that LightGBM offers the best results. A confusion matrix was used for data representation.

Kanemura et al. [73] performed an identification of Bitcoin addresses by using a
voting based classification method. Their goal was to detect which addresses are used
by darknet market operators. To create a data set they extracted addresses, related and
non-related to the darknet market, from multiple forums and sites. They expanded the
collected addresses with the use of the address clustering heuristic, and compared the
voting and non-voting identification methods. Data were presented by calculating the
recall, precision, and F1 score of the results.

Table 5. Anomaly detection in data processing.
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Isolation Forest [71]
LightGBM [72]
Random Forest [73] [74]
AWAP [75]
OCSVM [76] [77]
AutoEncoder [76]
KMC [77]
Deep Learning [78]
Temporal Graph [79]
CML [80]
VGAE [81]
Neural Network [82]
XGBoost [82]

Wang et al. [75] proposed a detection model from Bitcoin address de-anonymising.
They used a labelled data set, specifically: a five categories bitcoin address data set. Feature
vectors were extracted from the historical transactions with using a parser. The tested
algorithms were Logistic Regression, LightGBM, BAGC, CP, and AWAP. Their results were
presented with the calculation of the accuracy, precision, F1 score, Jaccard, and NMI. The
results were, additionally, summarised in four graphs.

Li et al. [74] performed an Ethereum behaviour analysis using multiple Machine
Learning algorithms (Logistic Regression, SVM, KNN, C4.5 Decision Tree, AdaBoost,
and Random Forest). They gathered the data with NetFlow traffic and obtained real
communication relationships between the nodes in the network. The obtained data were
later analysed using the passive traffic association analysis method. Two sets of features
were extracted from the training set: features based on the statistical information, and
features based on the graph information. The node2vec algorithm was also used for the
graph representation. The precision rate and recall rate were used for the evaluation of the
aforementioned machine learning algorithms. The results show that the best performance
was given by the Random Forest algorithm.

Fan et al. [76] conducted performance analyses of machine learning methods on
Bitcoin miners. They use multiple algorithms (LR, GB, RF, SVM, DNN, OCSVM, AE) and
deployed them on real Bitcoin node implementations to test their training and testing
latency. They used a data set for security detection, which consisted of normal and
abnormal behavioural data. They concluded that the LR would be best for signature-
based detection, but OC-SVM and AE would be best for anomaly detection.

Brinckman et al. [77] presented techniques and applications for crawling, ingesting
and analysing data obtained from a blockchain. They used multiple machine learning
methods to detect anomalies in the transaction behaviour, i.e., SVM, OCSVM, and K-Means
clustering. The data were collected from websites that identify rogue accounts. Transactions
for each account were clustered and the account features were extracted.
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Patel et al. [78] presented a one-class graph deep learning framework for anomaly
detection on the Ethereum blockchain. To create a data set, they collected the external
transactions from the Ethereum blockchain, marked the anomalies manually, and extracted
the needed features. They evaluated their system by comparing the results to the OCSVM
and Isolation Forest models. The results were presented by showing the accuracy and
F1-score for each of them.

Zhao et al. [79] made a temporal analysis for the Ethereum blockchain using Tem-
poral Graph algorithms. To construct a data set, they extracted relevant data from the
ethereum_blockchain data set that can be found in the BigqueryPublicData Repository. In
addition to presenting the accuracy of the Random Forest and Logistic Regression, they
also provided a visualisation of the temporal evaluation of the collected data.

Zola et al. [80] used Cascading Machine Learning to detect changes in entity be-
havioural patterns. The used two data sets: one from WalletExplorer, and the other
contained Bitcoin data downloaded from the mainnet (from the last 3 years). The data set
was cleared of unneeded types of transactions (lending), unlabelled and unusable data.
The F1-scores were computed using k-fold cross-testing, and were shown together with
their standard deviation. Multiple graphs were presented to show the different F1-score
(bar charts) with regards to the batch size. Radar graphs show the precision, recall, F1-score,
and number of samples for each batch size. Heatmaps show the F1-score of each test per
batch size.

A variational graph autoencoder was used by Shah et al. [81] for transaction clus-
tering and embedding generation. For their analytic framework they collected data from
the Bitcoin blockchain (full node) and stored it in multiple NoSQL databases for easier
processing. They presented the self-organising map output and explainable clustering for
the retrieved data. The evaluation was conducted on the graph autoencoder, structural
deep network embedding, and variational graph autoencoder. The results show that VGAE
had the best result for both ROC and average precision.

Gouda et al. [82] presented BlockEval—a blockchain simulator where blocks are
generated using Deep Learning techniques. Two methods were evaluated: Artificial
Neural Networks and XGBoost. They were compared, and the performance of their models
is presented in the form of their median transaction value, median fee, block size, and
block count.

5.1.4. IoT and Sensors

An anomaly detection system for wastewater reuse was presented by Iyer et al. [83].
Hyperledger Fabric and multiple Machine Learning methods (polynomial regression,
DBSCAN, autoencoders, and LSTM) were used to detect anomalies associated with water
meter tampering. The blockchain is used to store all of the data obtained from the 2030
Wastewater Resources Group sensors that report data every hour. The data are then labelled
as either anomalous or non-anomalous by each of the methods.

Belhadi et al. [84] used Reinforcement Learning to detect anomalies and faults in the
smart grid. ITSA (Intelligent Time Series Anomaly detection) uses the CASAS (Center of
Advanced Studies in Adaptive Systems) and OPSD (Open Power System Data) data sets
injected with complex anomalous patterns to train the Reinforcement Learning models.
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Table 6. Anomaly Detection in IoT.
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DBSCAN [83]
Reinforcement Learning [84] [85]
KNN [86]
LSTM [87] [88]
Transfer Learning [89]
Deep Neural Network [90] [91] [92]
SVM [93,94]
BiLSTM [95]
AutoEncoder [96] [97]
Deep Learning [98] [99] [100] [101]
GGM [102]
SLSTM [103]
GNN [104]
Isolation Forest [105]
GCN [106]

An anomaly detection system for electricity consumption in smart grids was presented
by Li et al. [86]. They use the k-Nearest neighbors algorithm with the combination of a
data set collected from sensors. Their system is compared to DRAD (Distributed Real-Time
Anomaly Detection in the networked industrial sensing systems) and ADSM (Anomaly
Detection using Smart Meter data in the smart grid) and shows their successful detection
rate regarding the anomaly occurrence rate.

LSTM-based privacy preserving framework for smart power networks was proposed
by Keshk et al. [87]. They used two data sets: ICS Power Systems and UNSW-NB15 for
evaluation purposes. They presented the accuracy vs. loss graphs and the accuracy after
the application of their privacy preservation for both data sets.

A platform that manages crop growth and monitors crop diseases with the use of
Blockchain technology and machine learning was developed by Pranav et al. [89]. The
data set used for the training of the transfer learning model was the plant disease dataset.
They presented the evaluation of their model using training and validation accuracy.

Liang et al. [90] proposed a Deep Learning based intrusion detection system for the
IoT. They used the NSL-KDD data set, that contains different attack scenarios and classes.
They evaluated the proposed system by using multiple settings (optimiser, init_mode,
activation function), and presented the results through accuracy, average precision, average
recall, and average F1-score.

Ethereum blockchain was used by Cheema et al. [93] to create an SVM based intrusion
detection system for the IoT. The Bot-IoT data set was used to test the performance of the
system given two scenarios: one using 10 features, and the other using 34 features. The
results are presented with the ROC curves, accuracy, precision, recall, F1-score, and fall out.

Alkadi et al. [95] created an intrusion detection framework for the protection of IoT
and cloud networks. The intrusion is detected by using the Bidirectional Long Short-Term
Memory (BiLSTM) algorithm. They evaluated the framework by using the BoT-IoT and
UNSW-NB15 data sets. The results were presented using the accuracy, training times,
and testing times. Additionally, they compared the results with other Machine Learning
techniques (SVM, RF, NB, MLO) by using both data sets.

Ngo et al. [94] created an IoT Botnet detection system based on the integration of
static and dynamic vector features. Their data set consisted of both botnet and benign
samples. Feature Extraction was used to reduce the data dimensions. The data were
also standardised before they were considered to be ready for training and testing. The
evaluation criteria used to provide the results of their experiment were: accuracy, precision,
and F1. Additionally, they provided an ROC curve of the classifiers, PSI graph, and SCG.

Ali et al. [96] proposed a trust zone measurement architecture for blockchain based
IoT systems. Their data set is comprised of various sensors in an IoT network taken from
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the UCI Machine Learning Repository. This data set contains both malicious and benign
data. The proposed work was tested, and they evaluated four machine learning algorithms:
Autoencoder (their solution), Isolation Forest, SVM, and Local Outlier Factor. The results,
presented by the accuracy and detection time, showed that their autoencoder method
functioned best.

Sharma et al. [98] proposed a system that uses Deep Learning and blockchains to
enable security in the industrial IoT. They used the Bot-IoT data set that contains labelled
data of smart devices and multiple test scenarios. The evaluation of the model was
performed using recall, precision, overall accuracy, and average accuracy.

Ide [102] created a collaborative anomaly detection system that focuses on noisy sensor
data. The proposed system has multiple clients, and each of them has an individual data
set that is a result of repeated measurements. The data were processed so that the data
set was split into three equal blocks and each variable was standardised. Additionally,
outlying samples of data were removed from the data set. A variable-wise anomaly score
was calculated for each sample. The results were presented using a simple line graph.

Belhadi et al. [85] presented SS-ITS—a secure scalable intelligent transportation
system. The system gathers and performs Feature Extraction on urban traffic data. The
collected data are divided into different windows and processed accordingly. They used
the local outlier factor to identify anomalies and extract the training data. For experimental
results they used two urban data sets: ECML PKDD 2015 and HUMBI. They compared the
proposed solution to baseline anomaly detection solutions (DILOF and MSCRED), baseline
blockchain learning solutions (DRL and DUeling DQL), and baseline high-performance
computing solutions (LoTAD and FUAD).

Deep learning and blockchain were used by Kim et al. [99] for secure and private
dashcam video sharing. Their data set contained 519 images and 1093 sounds. The
evaluation results were presented by calculating the accuracy, F-measure, precision, and
recall. Optimal thresholds, image and sound detection comparison graphs, and overhead
comparisons are visualised additionally.

Preuveneers et al. [97] created a chained anomaly detection model that uses deep
learning (autoencoder). To evaluate their system, they used the CICIDS2017 data set. The
data set contains network traffic information and common attacks. The evaluation was
conducted on a real network where the data set was distributed among the nodes. They
presented the results of the accuracy, loss, validation accuracy, and validation loss. They
also presented the average epoch time comparison when using blockchain as a way of
storing the weight updates and revised models, and when using the classical method of
storage. The results show that when using blockchain, the latency is bigger.

Ferrag et al. [100] created DeepCoin, a deep learning (RNN) blockchain-based energy
exchange framework. The evaluation was conducted by using multiple data sets: the
CICIDS2017 data set, a power system data set and a web robot (Bot)-Internet of Things
(IoT) data set. They presented the results in the form of accuracy, false alarm rates, detection
rates, training time and test time. They also compared their proposition with SVM, Random
Forest, and Naive Bayes.

Chen et al. [104] provided a GNN anomaly detection method on industrial time-
series logs. They used a data set provided by SWaT, and represented the accuracy of their
system proposal.

Liang et al. [91] proposed a deep learning based collaborative anomaly intrusion de-
tection system. They used the KDD CUP1999 data set (the iris, lymphographic, vehicle, and
glass data sets), and compared their results to other similar propositions. They presented
the accuracy, validation time, average filtration efficiency, TPR, FPR, and the relationship
between attack intensity and average hiding probability.

Jin et al. [105] proposed a blockchain-based data collection and anomaly detection
for the estimation of battery state-of-health. The proposed system was evaluated using
battery charging data provided by NASA. The collected data were processed so that the
units and magnitudes became normalised. The normalised data were enlarged 100 times
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and the collected data had to be in a range from 0 to 100. They use Isolation Forest to detect
anomalies within the data, and showed the evaluation results using F1 and F2 scores. The
results were, additionally, compared to several different algorithms, i.e., K-means, FCM,
and PSO+FCM.

Jadidi et al. [92] presented an MS-DNN (Multi-Source Deep Neural Network) frame-
work that detects anomalies within manufacturing systems. They validated the framework
using two data sets: a factory automation data set and a SWaT (Secure Water Treatment)
data set. The evaluation results are presented using precision, recall, F1, and accuracy.

An LSTM based anomaly detection framework was proposed by Xie et al. [88]. They
used three data sets for evaluation purposes: the HDFS Benchmark data set, the HDFS data
set and the oil industry data set. The performance of their model was evaluated presenting
the accuracy, precision, recall and F1-score for each data set.

SP2F, an SLSTM (Stacked Long-Short Term Memory) privacy-preserving framework
for agricultural unmanned aerial vehicles was presented by Kumar et al. [103]. Two IoT
data sets, ToN-IoT and IoT Botnet, were used for evaluation purposes. The results were
compared to two scenarios, one before the two-level privacy was applied to the data sets
and the other after it was applied to the data sets. The results were compared to the
Random Forest, Decision Tree, and Naive Bayes, and represented with accuracy, detection
rate, precision, F1-Score, execution time analysis, confusion matrices, and ROC curves.

Drungilas et al. [101] evaluated two different implementations that are used for model
validation. One implementation is based on the chaincode, and the other is a combination
of chaincode and an Oracle web service component. They used two data sets for the
evaluation of their proposed system, a generated synthetic 2D data set and an EEG eye
state data set. Since the EEG data set was smaller than the synthetic 2D data set, it was
expanded by bootstrapping the original data. The data on both data sets were indexed
to improve the evaluation speed. Their model was evaluated on both data sets, and
the results presented with the model inference runtime, distribution of runtime, and the
overall overheads.

Wang et al. [106] proposed GuardHealth, a data management and graph convolutional
network enabled anomaly detection system for healthcare. They evaluated the proposal by
simulating malicious and benign nodes. Their model was compared to logistic regression
and multilayer perceptron, and showed the average trust value and precision.

5.2. Fraud Detection

Fraud detection can be viewed as a subset of anomaly detection. Loosely speaking,
fraud can be considered as a criminal activity with the intention of acquiring financial or
any other gain [107]. We divided the results further into four main groups associated with
fraud detection: financial, security, data processing, and IoT.

5.2.1. Financial Fraud Detection

KaRuNa is a blockchain-based framework for fraud cryptocurrency schemes created
by Sureshbhai et al. [108]. Their model was based on the LSTM classifier. They used the
Elliptic data set to evaluate the performance. This data set was enhanced by adding a
classification score for the reduced raw cryptocurrency data obtained from social media,
newsapi, and other web sources. The results are visualised with graphs depicting the
analysis of tweets and a fraud scheme classification confusion matrix. The precision, recall,
and F-score were also provided.

A multilayer perceptron architecture to detect cryptocurrency deception was presented
by Dalal and Abulaish [109]. The data set for their evaluation was collected from the CMC
website and labelled either legitimate or deceptive. The evaluation was conducted using
Linear Regression, Softmax Regression, SVM, and MLP. The accuracy, precision, TPR, FNR,
TNR, and FPR were presented, and it is observed that MLP performed the best.
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Table 7. Financial fraud detection.
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LSTM [108]
Multi-layer Perceptron [109] [110]
Graph2Vec [111]
GCN [112]
AutoEncoder [112]
AdaBoost [112,113]
CNN [114] [115]
Node2Vec [116]
Ordered Boosting [117]
XGBoost [118]
Random Forest [119,120] [121,122] [123] [124]
KNN [125]
Federated Learning [126]
SVC [110]
Logistic Regression [127]

An improved graph classification algorithm (Graph2Vec) for phishing detection on
the Ethereum blockchain was proposed by Yuan et al. [111]. To create a data set they
gathered phishing addresses from etherscan.io and also added the same number of normal
addresses. They gathered the transactions for every address, removed the redundant data,
and also removed the addresses with less than 10 transactions and more 300 transactions.
They presented the evaluation of their algorithm by calculating the precision, recall, and
F1-score. They also compared the performance to several other methods, such as node2vec,
WL-kernel, and Graph2Vec.

A phishing scam detection system for Ethereum blockchain was presented by Chen
et al. [112]. They used a graph convolutional network and autoencoder to detect phishing
accounts. As a data set they used the Ethereum transaction history. They provided a
performance comparison of their GCN method, Deep Walk, Node2Vec, and LINE. They
showed the results of their AUC, recall, precision, and F1-score.

Zhou et al. [114] proposed a financial fraud detection method using deep learning
(a Convolutional Neural Network). They gathered the data from a large O2O supply
chain management platform to create the data set, and calculated the precision, recall, and
F1-score of the experimental evaluation. Additionally, they compared their proposition to
SVM and a decision tree.

Zhou et al. [116] proposed a financial fraud detection system by using Node2vec. To
evaluate their proposal they used a data set provided from an Internet financial service
provider in China. They compared Node2Vec, DeepWalk, and SVM, and presented their
results by showing the calculated precision, recall, F1-score and F2-score.

Lou et al. [115] created an improved Convolutional Neural Network to detect Ponzi
contracts. They obtained the data for the data set from etherscan.io. They collected the
contracts and converted the hexadecimal bytecodes to the corresponding decimal number.
Additionally, they standardised the bycodes. They performed the evaluation on their
algorithm and several others (Decision Tree, SVM, XGBoost, OCSVM, Isolation Forest,
Random Forest), and presented their corresponding precision, recall, and F-scores.

A Ponzi scheme is not a novel fraud. It is an investment fraud where the scammer
pays the old investment clients revenue by using the investments of new clients rather than
through legitimate business actions. In a blockchain environment this is done by using
smart contracts [120]. Fan et al. [117] proposed a Ponzi scheme detection method. To create
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a data set, they collected Ponzi and non-Ponzi scheme contracts from multiple websites.
The contracts were converted from bytecode to opcode using the pyevmasm library and
removed the operands. The opcodes were additionally converted to eigenvectors (using
Bag Of Words - BOW) to conduct feature extraction utilising n-grams. BOW allows the
definition of stop words, so that frequent operators can be removed from the opcode. They
compared their method to multiple others by presenting the precision, recall, and F-score.

Machine learning was used by Chen et al. [120] to detect Ponzi schemes on the
Ethereum blockchain. To create a data set, they collected smart contract source code from
etherscan.io. and checked whether they were Ponzi scheme contracts manually. The
features were then extracted without the course code, all the related transactions were
collected and unsuccessful transactions were removed. Next, the contracts were converted
from bytecode to opcode, the features were classified, and feature extraction was performed.
Multiple algorithms were evaluated and combined, and their performance was presented
using precision, recall and F-scores.

Chen et al. [118] used XGBoost to detect Ponzi schemes on the Ethereum blockchain.
To test their system, they collected smart contracts from etherscan.io. The bytecodes were
converted to opcodes and their frequency calculated. The contracts were labelled as Ponzi
or non-Ponzi. The results were presented by calculating the precision, recall, and F-score.

Machine learning methods were used by Bartoletti et al. [119] to detect Ponzi schemes
on the bitcoin blockchain. To create a data set they collected bitcoin addresses related to
Ponzi schemes and their respected transactions. They extracted features that could be
useful to detect Ponzi schemes. Additionally, the data set was also filled with a number of
addresses not connected to Ponzi schemes. To create an evaluation, they selected several
machine learning classifiers: RIPPER, Bayes Network, and Random Forest. They calculated
their accuracy, specificity, sensitivity, precision, F-measure, G-mean, and AUC. The results
were visualised using confusion matrices.

Baek et al. [125] proposed the detection of money laundering with Ethereum cryp-
tocurrency transactions. To create a data set they collected wallets from etherscan.io and
extracted the wallets with the largest trading volumes. For the minimisation of data, they
chose the expectation maximisation algorithm, and the k-means algorithm for the clus-
tering and weight defining. To present the results they calculated the accuracy, precision,
F-measure, and True Negative Rate. A ROC curve and Precision Recall Curves were used
for visualisation purposes.

A federated learning framework was used by Liu et al. [126] to detect poisoning
attacks. For the evaluation they used the MNIST and CIFAR-10 data sets. The performance
of their model was presented by calculating accuracy for different numbers of participants,
and the percentage of modified labels that indicate the strength of the poisoning attack.

Badawi et al. [110] used machine learning classifiers to detect scams within a bit-
coin blockchain. They searched for bitcoin generator scams with multiple search engines:
Google, Bitcoin.fr, CuteStat.com, and the Internet Archive. They included multiple classi-
fiers for evaluation purposes. The results were presented by calculating precision, recall,
and the F1 score. It shows that SVC and MLP provided the best performance.

Bhowmik et al. [127] presented a comparative study of machine learning algorithms
used for fraud detection in blockchain networks. They used the node2vec algorithm to
collect data for the data set. Features were then extracted from the collected data and
stored in a CSV file. The CSV was then converted into a dictionary using the node2vec
algorithm. A network edge list file was created and the embedding dimensionality reduced.
Additionally, the features had to be normalised (the value 1 was assigned to fraudulent
transactions, and 0 for the others), the mean and standard deviation were calculated. The
results are shown by the achieved accuracy of each algorithm, and it was observed that
logistic regression performed the best.

A security enhancement to financial transactions in the bitcoin blockchain was offered
by Boughaci and Alkhawaldeh [121] using machine learning. They used the Elliptic data
set and the k-means clustering technique to partition unlabelled data. The measurements



Appl. Sci. 2021, 11, 7987 20 of 37

were made by using four machine learning algorithms: the Naive Bayes, Bayes Network,
AdaBoost, and Random Forest. The precision, recall, TP rate, FP rate, PRC, and area under
the ROC curve were calculated. The results showed that Random Forest had the best
performance out of the selected algorithms.

Lee et al. [122] used machine learning to detect illegal transactions on the bitcoin
blockchain. They collected hash lists of legal and illegal transactions from multiple websites
(such as Silk Road and Blockchain Explorer) to create their data set. The testing was
conducted on the artificial neural network and random forest classifier. The F1-scores of
these two methods show that random forest was a better fit for this type of detection.

Wen et al. [113] proposed a framework used for the detection of phishing scams on
the Ethereum blockchain. They collected data from Etherscan and added three filer rules
to remove accounts with low activity levels, i.e., removing the smart contracts accounts,
removing accounts with less than 5 transactions and transfer-in transactions with less than
four, and removing accounts whose greatest balance was less than five. The testing was
conducted on multiple Machine Learning models including SVM, KNN, and AdaBoost. For
each model the precision, recall, F1-score and AUC were presented, and it was concluded
that AdaBoost performed best.

A novel methodology for the detection of high yield investment programmes Bitcoin
addresses was proposed by Toyoda et al. [123]. The data were collected by searching for
HYIP addresses and collecting their transactions. Feature extraction was then conducted,
unneeded parts of the transaction were removed, the BTC was converted to USD, and the
transactions were labelled as spent, received, or Coinbase. The evaluation was conducted
on multiple algorithms (RF, XGBoost, Neural Network, SVM, k-NN) and the results were
shown as TPR and FPR. The best result was provided by Random Forest.

Xu et al. [124] used the Random Forest classifier to create a detector for eclipse attacks
for the Ethereum blockchain. Eclipse attacks are used to isolate a certain user from a
network by controlling their outgoing connections. In order to collect data for the data set,
they collected the UDP packets from normal and unsolicited nodes. The data were then
converted into a readable format using the Ethereum UDP packet dissector and added into
the data set. They evaluated their proposition and presented the results for the Random
Forest classifier in the form of its precision, recall, F-score, and support.

5.2.2. Cryptojacking, Malware, and Security

Abdulqadder et al. [128] created an intrusion detection system to mitigate attacks in
an SDN/NFV enabled cloud. Their method used a Recurrent Neural Network to detect
flow features. They used a network simulator (Ns3) and compared their proposed model
to the k-nearest neighbors algorithm by calculating the precision, recall, accuracy, detection
rate, and processing time.

Liu et al. [129] provided a classification and sharing method of malware that uses
threat intelligence. Their method is based on the Broad Learning network. The Kaggle’s
malware classification data set was used for evaluation. Data were preprocessed in order
to convert the malware data from binary to hexadecimal, and then convert the hexadecimal
values into a matrix to create a grey scale image. They compared the proposed algorithm to
several other algorithms (k-nearest neighbor, Random Forest, and a Convolutional Neural
Network) using accuracy and duration dependent on the image size.

A decentralized firewall that uses Deep Belief Neural Networks to detect malware
was proposed by Raje et al. [130]. The data set used for evaluation was a combination
of the MALIMG data set (for malicious data) and vanilla windows installations (for the
benign data). They presented the results by showing the accuracy and TPR.

Deep Recurrent Neural Networks (LSTM) were used by Yazdinejad et al. [131] to
detect cryptocurrency malware. Their data set is comprised of real-world cryptocurrency
malware samples and benign samples. They extracted the scripts of each file and created
samples of the original code. The operators, operands, and memory addresses were
removed from the data set. They conducted the evaluation of different LSTM configurations
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and provided their accuracy, and comparison to other ML classifiers (SVM, Naive Bayes,
Decision Tree, KNN, MLP, AdaBoost, Random Forest).

Table 8. Security.
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RNN [128]
BLS [129]
DBNN [130]
LSTM [131] [132]
Deep Learning [133] [134]
Naive Bayes [135] [136]
ATT-LSTM [137]
Random Forest [138–141] [142]
SVM [139,143,144] [145]
KNN [146]
Gradient Boosting [141,147] [148] [149]
Neural Network [141]
Decision Tree [150]
XGBoost [151] [152]
Supervised Learning [153]
T-DSNE [154]
Bagging [148]

A deep learning model for the detection of malware on the Quorum chain was
presented by Gao et al. [133]. They compared their new model to other algorithms, such as
Decision Tree, k-NN, Logistic Regression and SVM. The results were presented using their
precision, recall, F1-score, and z-values.

Kumar et al. [135] proposed a system for malware detection on Android IoT devices.
They used a data set composed of both benign and malware applications. The data were
collected from the Google Play Store and Chinese App store. They conducted the evaluation
on several machine learning algorithms, i.e., Improved Naive Bayer, SVM, KNN, Naive
Bayes, and DBN. The results were presented using TPR, FPR, and accuracy. The best results
were given by the Improved Naive Bayes algorithm.

Vesely and Žadnik [150] focused their work on the detection of cryptocurrency miners.
They used a data set that was collected in the Czech National Research and Educational
Network, and subnets of three major institutions. The data set contained mining and
non-mining clients, and was annotated accordingly. The results were presented using
cumulative normalised distribution functions and confusion matrices.

A deep learning approach for detecting cryptomining malware was presented by
Databian et al. [137]. They evaluated LSTM, attention-based LSTM and Convolutional
Neural Networks. In order to create their data set they collected the cryptominer samples
from virustotal.com and removed all the inactive samples. The evaluation of the aforemen-
tioned methods is shown by presenting their accuracy, precision, recall, F-measure, MCC,
and FPR. The best results were given by ATT-LSTM.

Machine learning was used by Caprolu et al. [138] to detect cryptojacking. The
Random Forest algorithm was selected as the most appropriate for this task. They tested
the proposed method on multiple scenarios: a baseline example that simply monitors the
traffic on the client, the detection of full nodes, detection of miners, and sponge-attack
detection. All results were presented by calculating the F1-score and using AUC curves.

Gangwal et al. [139] proposed a machine learning based system for the detection
of covert cryptomining. They collected events and information about the performance
of computers (processor events, hardware events, software events, and hardware cache
events). In the case of missing values, they were replaced with the mean of the associated
event. They trained and evaluated two machine learning methods, i.e., Random Forest and
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SVM. The testing was conducted on multiple scenarios, and the results were presented
using accuracy, precision, recall, F1, and confusion matrices.

A solution to detect cryptojacking using magnetic side-channels and machine learning
was presented by Gangwal and Conti [146]. They used two different laptops to collect the
data for the data set. They used laptops to conduct cryptominning and profiled the events.
In addition to the hardware and software measurements, they also measured the generated
magnetic fields. Before the data could be used for training and testing, a scaling function
had to be used to normalise the input data. They tested the KNN classifier, and presented
their results using confusion matrices, full-stack classifications, accuracy, precision, recall,
and F1-score.

Mansor et al. [147] compared the use of machine learning algorithms to detect crypto-
jacking. They tested the performance of Random Forest and Gradient Boost on a data set
with both malicious and benign applications. Their results showed the confusion matrices
and TP/FP rates for both algorithms.

A system that detects cryptomining malware using machine learning and deep learn-
ing was proposed by Pastor et al. [140]. They used Mouseworld to generate the needed
data. Additionally, they used the DS1 data set. Multiple machine learning models were
evaluated (FCNN, Random Forest, Logistic Regression, CART, and C4.5). After presenting
their F1, precision, recall, accuracy, AUC ROC, AUC P-R and confusion matrices, it was
observed that RF, C4.5, and FCNN performed well.

MineCap: An incremental learning method for cryptojacking detection was presented
by Neto et al. [141]. They used mining pools running on specific TCP ports to collect
the data needed for the data set. After the data were collected, unnecessary information
was removed (source IP, destination IP, source port, destination port, transport protocol).
They evaluated multiple classification algorithms, i.e., Random Forest, Logistic Regression,
Gradient Boosted Tree, Naive Bayes. The results were presented using a graph with the
ROC curve, and a graph containing the precision, sensibility, and specificity. Additionally,
more graphs were presented that showed the accuracy of the ML algorithms.

Kharraz et al. [144] created OUTGUARD—a system that detects in-browser covert
cryptomining. To construct their data set they collected the blacklist pattern information
from CoinBlockerList, NoCoin, and minerBlock. They then gathered websites that con-
tained JavaScript libraries matching the blacklist patterns. They used Wappalyzer to label
the cryptojacking libraries and also added non-cyprojacking websites to the data set. Lastly
a set of features was extracted including: JavaScript execution time, JavaScript compilation
time, garbage collection, Iframe resource loads, CPU usage, etc. To evaluate the proposed
system, they presented the score ratio based on the feature, and TPR and FPR ratio graph.

Yang et al. [132] proposed a spam transaction attack detection model that is based on
Deep Learning and LSTM (GRU and WGAN-div). The data set was created by using the
bitcoin sound code and simulating the needed environment. The results were presented
with an accuracy and false alarm rate, and compared to ADvISE, SVDD, and OC-SVM.

Deebak and Al-Turjman [151] used machine learning to measure privacy protection
and cyber risks. Multiple machine learning algorithms, i.e., XGBoost, Nearest Neighbor,
SVM, and Decision-Tree were used to detect fraudulent behaviour. The data set used for
testing purposes was collected from an insurance company. The detection was focused on
whether the claims were fraudulent or not. The performance was measured using accuracy,
precision, recall, F1-score and training time.

A supervised learning model that can be used to identify illegal activities in the bitcoin
blockchain was created by Nerurkar [153] et al. The data set was collected from the VJTI
Blockchain lab, and the raw data were converted to CSV files. The necessary features
were extracted and multiple hash addresses (from a single entity) were grouped by using
multi-input heuristic clustering. The experimental study of their approach was conducted
comparing the performance of SVM, LogReg, XGBoost, Random Forest and their custom
proposed model. The results were presented by calculating the precision, recall, and F-
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score, and by multiple graphs showing the scalability, learning curves, and performance of
each method.

A method for the detection of intrusion and DoS attacks on E-voting systems was
presented by Cheema et al. [145]. They used the UNSW-NB15 data set to train and test two
SVM classifier models (Gaussian and Linear). The evaluation was made using accuracy,
area under the curve, and prediction speed.

A cryptojacking detection method using machine learning was presented by Nukala [143].
He tested KNN, Random Forest, Decision Trees, SVM, and Naive Bayes. The data set
consisted of cache hits and misses, and the performance was presented using the models
accuracy, precision, recall, and F1-score. The best F1 score was given by SVM.

The T-distributed stochastic neighbour embedding was used by Sun et al. [154] to
detect malicious user activity on Ethereum. They used an existing data set, and extracted the
ones that could be associated with malicious behaviour. Node clustering was employed to
detect such behaviour. The performed work was presented using Eigenvector visualisation.

Supervised machine learning was used by Ostapowicz and Zbikowski [142] to detect
fraudulent accounts on the Ethereum blockchain. Data were obtained from Etherscan.io,
and the empty wallets were removed (the ones with no transactions). The evaluation
included three machine learning classifiers (Random Forest, SVM, and XGBoost). The
probability specificity, recall, precision, FPR, F1, and confusion matrices were presented for
each of the evaluated methods. Random Forest obtained the best results.

Farrugia et al. [152] presented the detection of illicit accounts on the Ethereum
blockchain by using XGBoost. They created the data set by collecting the data from the
Etherscamdb and a local Geth client. They collected both normal accounts and those
labelled as illicit. The data were filtered by removing the duplicate accounts, their transac-
tions were gathered using Etherscan API, and removing unsuccessful transactions. The
data were visualised utilising a 2D and 3D t-SNE scatter plot. To evaluate their proposal,
they calculated the accuracy, sensitivity, specificity, F1-score, and AUC for multiple scenar-
ios. They also provide a graph with the average logarithmic loss, classification error, and a
confusion matrix.

A method for the detection of suspicious users was proposed by Mittal and Bha-
tia [136]. They used two data sets to evaluate their system: Bitcoin-OTC and Bitcoin-Alpha.
Multiple machine learning techniques were evaluated, such as SVM, Naive Bayes, Decision
Tree, and Neural Networks. They presented the results of the evaluation providing the
precision, recall, F1-score, support, and accuracy from each machine learning algorithm,
and for each data set.

A supervised learning model to identify illegal activities within the bitcoin blockchain
was presented by Nerurkar et al. [149]. The data set was taken from the VJTI Blockchain
lab and converted to CSV files. They evaluated the proposed model on multiple classifiers
(SVM, Logistic Regression, XGBoost, and Random Forest). The results of the valuation were
presented with a several performance variables (like AUc, accuracy, sensitivity, detection
rate, kappa, P-value, etc.), confusion matrices, CPU and RAM utilisation, learning curves,
scalability graphs of the models, and performance graphs of the models.

An estimate of the proportion of malicious entities in the bitcoin system was proposed
by Sun Yin and Vatrapu [148]. They used supervised machine learning. The data set
consisted of categorised and uncategorised data for every cluster in the blockchain environ-
ment. Data were cleaned from all of the empty cells (values depending on the cell type were
inserted in the empty cells—0 for integers, 0.0 for float, and the string values depended
on the column). Manual feature extraction and feature engineering was conducted after
the data set was cleared of missing values. Multiple classifiers were tested and presented
using mean CV-Accuracy and SD. Gradient boosting and bagging proved to have the best
performance, so they were chosen for further research.

Chen et al. [134] created a decentralised autonomous video copyright protection
system based on blockchain. They evaluated their system using the VCDB data set, and
presented the dimension, recall, and query speed.
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5.2.3. Data Processing

The LightGBM algorithm was used by Jourdan et al. [155] to characterize entities in
the bitcoin blockchain. For testing purposes, they gathered addresses and their labels from
WalletExplorer. Additionally, they applied common spending heuristics and transitive
closure operations to the labelled data set. They evaluated their decision tree algorithm,
and compared the results (accuracy, F-1, and precision) to the logistic regression algorithm.

Jan et al. [156] used deep learning for integrity verification and behavioral classifica-
tion. They created a data set by downloading benign applications from the Google Play
Store and malicious applications from VirusTotal. They captured their behaviour logs
and labelled the data in the data set. The results of the evaluation are presented with the
accuracy, precision, recall, F1-score, and ROC curves.

Linoy et al. [157] used machine learning for the deanonymisation of addresses within
the Ethereum blockchain. They collected verified contract data from etherscan.io. The main
focus was on contracts written in Solidity. For easier parsing, they converted the bytecodes
into opcode. Each contract was split into its individual components and refined before the
feature extraction.

Table 9. Data processing.
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LightGBM [155]
Deep Learning [156]
Random Forest [157]
Graph Embedding [158]
Linear Regression [159]

Hamdi et al. [158] used graph embedding to detect fake news on Twitter. They
combined multiple sources (ego-Twitter, Twitter API, CREDBANK) to create their own
data set. After the data were combined, they used NetworkX to a graph that could be used
to train the classification model. The results were shown by Micro-F1 and Macro-F1 graphs,
SBM visualization using t-SNE, accuracy, precision, recall, F1-score, and AUC ROC.

Kaci and Rachedi [159] proposed a machine learning method to manage a miner’s
reputation. To evaluate their proposed solution, they created a data set that is composed
of mining history information. The evaluation of the proposal was compared to linear
regression, SVR and MLP. The results were presented using the accuracy and training time.

5.2.4. IoT and Sensors

Ding et al. [160] proposed a multiple object tracking system using HashNet from deep
hash extraction. They used the MOT15 data set for the evaluation and acquired multiple
results (mostly tracked agents, mostly lost agents, False Positives, False Negatives, identity
switches, multi-object tracking accuracy and multi-object tracking precision).

AIT is an deep learning based trust management system for vehicular networks
proposed by Zhang et al. [161]. To create a data set, they used SUMO (Simulator of Urban
MObility) to generate maps and vehicular network simulations. Their model is based on
the Feedforward Neural Network, and for the evaluation (precision, recall, percentage of
malicious nodes, and accuracy) it was compared to the Recurrent Neural Network and
Convolutional Neural Network.
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Table 10. IoT fraud detection.
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Deep Hashing [160]
Deep Learning [161] [162]
Federated Learning [163]
GAN [164]
Supervised Learning [165]
Isolation Forest [166] [165]
KNN [167]
XGBoost [168]

Liu et al. [163] used blockhain and Federated Learning for intrusion detection in
vehicular edge computing. They used the KDD Cup99 data sets of edge vehicles to test the
proposed system and represent the precision rate, recall rate, and accuracy rate changes
with respect to data size.

Zhang et al. [162] proposed a target detection and automatic monitor scheme based
on blockchain and deep learning models. They used the CIFER-10 and Mnist data set
to conduct the performance evaluation of the proposed model. The results showed the
training accuracy and loss.

Hao et al. [164] used Generative Adversarial Neural Networks to detect fraudulent
behaviour in the IoT. They prepared two sets of data: one set for the digital signature frauds
(containing messages, private keys, and public keys), and another data set for asymmetric
encryption frauds (plaintext, private keys, and public keys).

Supervised machine learning for outlier detection was used by Salimitari et al. [165].
They created a simulation of an IoT network with 100 sensors and collected their data. The
performance was presented using fault tolerance and accuracy.

BITS: A blockchain based intelligent transportation system was proposed by Maskey
et al. [166]. They used machine learning to detect outliers within the system. Simulated data
were used from multiple data and randomly injected 10% outlier values. They presented
the outcome of the Isolation Forest model using a graph that included the accuracy and
false positive rate.

A multi-level trust mechanism against Sybil attacks in vehicular networks was pre-
sented by Haddaji et al. [167]. They tested the system with three different machine learning
algorithms: SVM, KNN, and Random Forest. The algorithms were tested using the VeReMi
data set that contains multiple types of attacks: Constant attack, Constant offset attack,
Random attack, Random offset attack, and Eventual stop attack. They presented the ac-
curacy and time consumed per test for each of the selected algorithms, and showed that
KNN gave the best ratio of accuracy and consumed time.

Dhieb et al. [168] presented a system for fraud detection and risk measurement in the
Insurance sector. For their experiment they used four machine learning classifiers (Decision
Tree, SVM, Nearest Neighbor, and XGBoost) on a data set obtained from an insurance
company. They calculated the accuracy, recall, precision, and F1-score, and showed that
XGBoost performed the best. Additionally, they provided the normalised confusion matrix
for XGBoost.

6. Discussion

Following the previous section which depicted the features of applications considered
in our study systematically, we provide an overall discussion and extraction of key elements
that define the taxonomy of data mining methods used for analysing blockchain data. We
defined the following levels:

• Level 1: Data extraction,
• Level 2: Data preprocessing,
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• Level 3: Data mining,
• Level 4: Evaluation and visualisation of results.

The first level is tailored to the raw data that are stored in blockchain. Here, we are
confronted with data retrieval from blockchain. As we have already mentioned, blockchain
technology, where a set of valid transactions form a block and a set of blocks that satisfy
the consensus protocol that are added to the ledger, brings the benefits of transparency,
immutability and consistency of data [21]. Nevertheless, the features that offer these
benefits are the ones that include several challenges with regard to data management.
Searching and retrieving data in blockchain-based systems is not straightforward. It is
time and money consuming, since it requires additional programming efforts. Blockchain
is optimised for storage and not for searching and retrieving data as is the case with
traditional databases. Therefore, the biggest obstacles to enabling the efficient retrieval
are: decentralisation and data distribution, lack of query language, data confusion and
entanglement and limited APIs [21,169]. At the moment there are several efforts underway
to try to provide more efficient and reliable data access, such as supporting faster querying
using a centralised indexing server to copy blockchain data (e.g., Etherscan), or proposing
an SQL-like query language (e.g., Ethereum Query Language (EQL)) to provide general
purpose querying [21]. Let us mention that many of the research papers skipped the step
of data retrieval, due to using publicly available datasets where this step had already
been performed.

In addition to the raw data stored in the blockchain, in some studies [74,124,141] raw
network traffic was collected to detect certain anomalies within the blockchain network.
Specifically, the needed traffic information was added to the data set and, if necessary,
converted into different formats. On the other hand, some created network and scenario
simulations to generate the needed data [59,66,76,106,128,132,140,150,161,165,166]. The
simulations included malicious nodes, traffic flows, etc. Smart contracts were obtained
from sources such as HONEYBADGER [49], Ethereum [48] and Etherscan [56,57]. The
collected smart contracts are mostly in bytecode, which is converted into opcode for further
processing [49,117,118,157].

The data are stored mostly on the blockchain, or collected from the blockchain or its
network. Some authors [83,97] used blockchain to store the data collected from a data set or
sensors, while Preuvenees et al. [97] also tested the storage of data on the blokchain versus
using a classical method of storage, and their results showed more significant latency when
using blockchains. Additionally, NoSQL databases were used to store the data retrieved
from the blockchain for easier processing [81], while Drungilas et al.[101] tested whether
it was better to keep all the data on the chaincode, or to combine the chaincode with the
Oracle web service. Another way to store data is using a CSV file [127,149,153] because of
its simplicity and ease of further processing.

The second level deals with the preprocessing of the retrieved data. Usually, data
preparation is one of the most complex processes, that involves data cleaning, missing data
estimation, feature selection, and several data transformations.

Data cleaning involves the actions of filtering and excluding data that cannot be used or
is irrelevant. Data that are excluded can include irrelevant fields [45,46,72,80,141,152], invalid
fields [42,120], inactive accounts [46,111,113,142], duplicate addresses and data [54,111,152],
outliers [102], and data with unknown labels [40,80]. Additionally, missing values can
be filled with a median value of the column [42,139] or with certain default values [148].
Peak values can be eliminated by subtracting the column mean and dividing it with
the standard deviation [42]. Data can be further normalised [51,105,127,146] and, when
working with smart contracts, the operators and operands can be removed from the
opcodes [63,117,131]. When working with transactions, if needed, the data can be grouped
by user or address [42,77,111,153]. If the data set seems to be too small, it can be expanded
by bootstrapping the original data [101].
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To be able to work with the collected data, they should be labelled [118,123,148,150,156].
The labelling can either be done manually [48,78,120] or automatically [44,59] by using
certain tools, like Oyente [63] or Wappalyzer [144].

Feature extraction can be done by using several tools, like the bi-gram features [49],
RFM features [42], the tsfeatures library [46], or the n-gram algorithm [63,117]. The mutual
influence of features can be calculated using Pearson’s correlation [42].

The third level is devoted to the selection of the data mining method. The selection
of data mining is done mostly by conducting literature reviews and research. Most of the
articles included in our study also evaluated multiple methods. The methods were either
selected to show the performance of their custom solution, or were evaluated to choose the
best method for a specific problem. Figure 4 shows the trends of using various methods
over the past five years. In the first years that were considered in this study, the authors
utilised mostly conventional machine learning methods, e.g., Random Forests. However, a
very interesting trend appeared in recent years, where the use of deep learning methods
was in the majority, which is not surprising due to the popularity of deep learning [37].
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Figure 4. Distribution of used methods per year.

The taxonomy is concluded with an evaluation of results, as well as a visualisation of
the obtained results in level 4.

Most of the evaluation results given by the reviewed publication were given by presenting
the precision, recall, F-score and accuracy. Other metrics include the processing and training
time, the Micro and Macro F-score [53,63], fall out [93], loss [67,87,97,103,162], Jaccard, NMI [75],
True Positive Rate (TPR) and False Positive Rate (FPR) [45,66,91,100,121,123,135,144,147], Kappa
value [43], and MCC score [58,65,137].

The visualization was done by presenting the ROC curves [40,51,63,67,81,93,94,103,
121,125,140,141,156], AUC [49,58,66,93,112,113,138,140,152], ROC-AUC [44,158], the t-SNE
algorithm [42,158], 2D and 3D scatter plots [42], confusion matrix [50,59,72,103,108,119,139,
140,142,146,147,149,150,152,168], detection frequencies [50], PSI graph and SCG [94], the
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Dirichlet distribution [52], Precision Recall Curves [125], Radar graphs and Heatmaps [80],
and other suitable graphs.

7. Where Are We Now, and What Follows?

A review of the papers published in the last five years revealed the trends and facts
of synergy between data mining and blockchain technology. According to the study,
numerous methods were proposed, used and utilised to intelligently analyse data stored in
blockchain, focusing on anomaly detection, implying the popularity and importance of
this field and research that will further explore the potential of this synergy.

Based on the facts presented so far, here, we summarise what are to be the directions
of the further development of this research field, to what part of this synergy researchers
should focus their research investigation, as well as what the issues and challenges yet to
be explored are.

7.1. The Importance of Synergy

With the implementation of blockchain solutions in different application domains,
different systems will need to be developed for controlling the content. Researchers will
have a lot of opportunities to develop methods for the analysis of data stored in blockchain,
since cryptocurrencies will be inevitable in the future. Countries and different agencies will
have to control this aspect, including money flows, preventing money laundering [170],
as well as controlling potential terrorism-sponsoring [171]. Another important aspect lies
in smart contracts, which are already being implemented in different domains [172,173],
such as the insurance industry, healthcare, land registry. We expect that there will be an
expansion of its usage in the future. Therefore, it will be essential to detect anomalies in
these contracts and avoid potential fraudulent behaviour [174]. Another approach that
might be decisive for Industry 4.0 lies in using data mining methods as an active structural
component of the blockchain. This will strengthen blockchain networks and address
security issues, which emerge in those environments such as information protection and
industrial confidentiality [19,51]. Those approaches will offer a timely behaviour prediction
and optimal decision-making in dynamic environments.

7.2. Challenges

Research of papers, on the one hand, revealed interesting trends which suggest that
most of the solutions are prototypes and proofs-of-concept. Some research papers also
proposed several solutions which are basically only ideas without their practical evaluation
using proof-of-concept. Therefore, there is still a long road to ensure quick flow or transition
from prototypes to real applications.

On the other hand, research exposed several challenges where much more devotion
should be given in the future, especially in the design of datasets, experiments, test cases
or scenarios and implementation of algorithms. Researchers should also explore further
ways for automatization of some preprocessing steps [148], while expanding and enlarging
the datasets [56,90,106,109,118]. This aspect should also be at the centre of the research,
since more complex and expanded datasets should definitely contribute to more accurate
anomaly detection and potentially result in faster decisions. Also, the datasets should be
kept up to date to include new frauds and types of attack. Some researchers reported that
the developed methods also use a lot of computational power [126] or communication cost
of propagating a new block to all participants in the network [95]. The need for simulation
in real world scenarios was also reported in paper [90], as well as the creation of realistic
test cases and experiments [140]. Additionally, enhancing methods with different types
of fraud detection is also one important research direction [117]. Finally, using additional
optimisation methods, i.e., metaheuristics [121], should also be a fruitful direction in
improving the existing algorithms.



Appl. Sci. 2021, 11, 7987 29 of 37

8. Conclusions

In this paper, we have reviewed recent studies that explore the synergies of blockchain
technology and data mining techniques for anomaly and fraud detection. These two appli-
cations were detected as the most fruitful ones for possibly applying data mining methods
on blockchain data. The aim of this review was to analyse the current trends in exploiting
the synergies of blockchain technology and data mining techniques for anomaly detection,
while discovering all the main machine learning methods and constructing a taxonomy of
those methods used to enhance the blockchain technology for specific purposes.

A review of the data mining methods used during the last five years revealed a
tendency in this research area. In the first two years the dominant method used was
Gradient Boosting. SVM and Random Forest are two methods used consistently in the
studies throughout this five year period. Nevertheless, we can observe that these two
methods were offering the best results predominantly among studies published in 2019
and 2020, whereby Random Forest is also predominant in 2021. Nevertheless, we can see a
new tendency in the last two years going towards the use of Neural Networks, Gradient
Boosting, Deep Learning and LSTM. There are also some future challenges in this domain.
It would be interesting to explore the maturity of the proposed ideas and the flow of
knowledge from research papers to real-world applications. Additionally, researching the
opportunities of Automated Machine Learning (AutoML) in this domain may also be a
fruitful direction.
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47. Podgorelec, B.; Turkanović, M.; Šestak, M. A brief review of database solutions used within blockchain platforms. In Proceedings
of the Advances in Intelligent Systems and Computing, Salamanca, Spain, 6–8 October 2020; pp. 121–130. [CrossRef]

48. Hu, T.; Liu, X.; Chen, T.; Zhang, X.; Huang, X.; Niu, W.; Lu, J.; Zhou, K.; Liu, Y. Transaction-based classification and detection
approach for Ethereum smart contract. Inf. Process. Manag. 2021, 58, 102462. [CrossRef]

49. Chen, W.; Guo, X.; Chen, Z.; Zheng, Z.; Lu, Y.; Li, Y. Honeypot contract risk warning on ethereum smart contracts. In Proceedings
of the 2020 IEEE International Conference on Joint Cloud Computing (JCC 2020), Oxford, UK, 3–6 August 2020; pp. 1–8. [CrossRef]

50. Sayadi, S.; Ben Rejeb, S.; Choukair, Z. Anomaly detection model over blockchain electronic transactions. In Proceedings of the 2019
15th International Wireless Communications and Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019;
pp. 895–900. [CrossRef]

51. Demertzis, K.; Iliadis, L.; Tziritas, N.; Kikiras, P. Anomaly detection via blockchained deep learning smart contracts in industry
4.0. Neural Comput. Appl. 2020, 32, 17361–17378. [CrossRef]

52. Desai, H.B.; Ozdayi, M.S.; Kantarcioglu, M. BlockFLA: Accountable Federated Learning via Hybrid Blockchain Architecture.
In Proceedings of the Eleventh ACM Conference on Data and Application Security and Privacy, Virtual, 26–28 April 2021;
pp. 101–112. [CrossRef]

http://dx.doi.org/10.1109/BLOCKCHAIN.2019.00013
http://dx.doi.org/10.1109/ACCESS.2019.2902501
http://dx.doi.org/10.1016/j.jpdc.2019.12.019
http://dx.doi.org/10.1109/EUROCON.2017.8011213
http://dx.doi.org/10.1609/AIMAG.V17I3.1230
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1145/1541 880.1541882
http://dx.doi.org/10.1145/3409073.3409078
http://dx.doi.org/10.1145/3409073.3409080
http://dx.doi.org/10.1145/3466826.3466835
http://dx.doi.org/10.1109/ICDMW.2017.109
http://dx.doi.org/10.1109/I2CT51068.2021.9418192
http://dx.doi.org/10.1109/TCSS.2021.3059286
http://dx.doi.org/10.1109/GLOCOM.2017.8254420
http://dx.doi.org/10.1109/ICDMW.2019.00045
http://dx.doi.org/10.1007/978-3-030-52535-4_13
http://dx.doi.org/10.1016/j.ipm.2020.102462
http://dx.doi.org/10.1109/JCC49151.2020.00009
http://dx.doi.org/10.1109/IWCMC.2019.8766765
http://dx.doi.org/10.1007/s00521-020-05189-8
http://dx.doi.org/10.1145/3422337.3447837


Appl. Sci. 2021, 11, 7987 32 of 37

53. Wang, Y.; Gou, Y.; Guo, Y.; Wang, H.H. Construction of Audit Internal Control Intelligent System Based on Blockchain and
Cloud Storage. In Proceedings of the 4th International Conference on Trends in Electronics and Informatics, Tirunelveli, India,
16–18 April 2020; pp. 292–295. [CrossRef]

54. Kumar, N.; Singh, A.; Handa, A.; Shukla, S.K. Detecting Malicious Accounts on the Ethereum Blockchain with Supervised
Learning. In Proceedings of the International Symposium on Cyber Security Cryptography and Machine Learning, Be’er Sheva,
Israel, 8–9 July 2020; pp. 94–109. [CrossRef]

55. Maskey, S.R.; Badsha, S.; Sengupta, S.; Khalil, I. ALICIA: Applied Intelligence in blockchain based VANET: Accident Validation as
a Case Study. Inf. Process. Manag. 2021, 58, 102508. [CrossRef]

56. Momeni, P.; Wang, Y.; Samavi, R. Machine Learning Model for Smart Contracts Security Analysis. In Proceedings of the 2019 17th
International Conference on Privacy, Security and Trust, PST 2019, Fredericton, NB, Canada, 26–28 August 2019. [CrossRef]

57. Ashizawa, N.; Yanai, N.; Cruz, J.P.; Okamura, S. Eth2Vec: Learning Contract-Wide Code Representations for Vulnerability
Detection on Ethereum Smart Contracts. In Proceedings of the ACM Asia Conference on Computer and Communications Security
Virtual Event, Hong Kong, China, 7 June 2021. [CrossRef]

58. Rathore, S.; Park, J.H.; Chang, H. Deep Learning and Blockchain-empowered Security Framework for Intelligent 5G-enabled IoT.
IEEE Access 2021, 9, 90075–90083. [CrossRef]

59. Munoz, J.Z.I.; Suarez-Varela, J.; Barlet-Ros, P. Detecting cryptocurrency miners with NetFlow/IPFIX network measurements.
In Proceedings of the 2019 IEEE International Symposium on Measurements and Networking, Catania, Italy, 8–10 July 2019.
[CrossRef]

60. Liu, J.; Zhao, Z.; Cui, X.; Wang, Z.; Liu, Q. A novel approach for detecting browser-based silent miner. In Proceedings of the 2018
IEEE 3rd International Conference on Data Science in Cyberspace, DSC 2018, Guangzhou, China, 18–21 June 2018; pp. 490–497.
[CrossRef]

61. Yilmaz, I.; Kapoor, K.; Siraj, A.; Abouyoussef, M. Privacy Protection of Grid Users Data with Blockchain and Adversarial Machine
Learning. In Proceedings of the 2021 ACM Workshop on Secure and Trustworthy Cyber-Physical Systems, Virtual, 28 April 2021;
ACM: New York, NY, USA, 2021.

62. Huang, D.; Chen, B.; Li, L.; Ding, Y. Anomaly Detection for Consortium Blockchains Based on Machine Learning Classification
Algorithm. In Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), Dallas, TX, USA, 11–13 December 2020; pp. 307–318. [CrossRef]

63. Song, J.; He, H.; Lv, Z.; Su, C.; Xu, G.; Wang, W. An Efficient Vulnerability Detection Model for Ethereum Smart Contracts.
In Proceedings of the International Conference on Network and System Security, Sapporo, Japan, 15–18 December 2019;
pp. 433–442.

64. Dashevskyi, S.; Zhauniarovich, Y.; Gadyatskaya, O.; Pilgun, A.; Ouhssain, H. Dissecting Android Cryptocurrency Miners. In
Proceedings of the Tenth ACM Conference on Data and Application Security and Privacy, Orleans, LA, USA, 16–18 March 2020;
pp. 191–202. [CrossRef]

65. Agarwal, R.; Barve, S.; Shukla, S.K. Detecting malicious accounts in permissionless blockchains using temporal graph properties.
Appl. Netw. Sci. 2021, 6, 1–30. [CrossRef]

66. Zarpelão, B.B.; Miani, R.S.; Rajarajan, M. Detection of bitcoin-based botnets using a one-class classifier. In Proceedings of the IFIP
International Conference on Information Security Theory and Practice, Paris, France, 11–12 December 2019; pp. 174–189.

67. Graf, R.; King, R. Neural network and blockchain based technique for cyber threat intelligence and situational awareness.
In Proceedings of the 2018 10th International Conference on Cyber Conflict (CyCon), Tallinn, Estonia, 30 May–1 June 2018;
pp. 409–425. [CrossRef]

68. Scicchitano, F.; Liguori, A.; Guarascio, M.; Ritacco, E.; Manco, G. Deep Autoencoder Ensembles for Anomaly Detection
on Blockchain. In Proceedings of the International Symposium on Methodologies for Intelligent Systems, Graz, Austria,
20–22 May 2020; pp. 448–456. [CrossRef]

69. Suleman, M.; Soomro, T.R.; Ghazal, T.M.; Alshurideh, M. Combating Against Potentially Harmful Mobile Apps. In Proceedings
of the International Conference on Artificial Intelligence and Computer Vision (AICV2021), Settat, Morocco, 28–30 June 2021.
[CrossRef]

70. Soviany, S.; Scheianu, A.; Suciu, G.; Vulpe, A.; Fratu, O.; Istrate, C. Android Malware Detection and Crypto-Mining Recognition
Methodology with Machine Learning. In Proceedings of the 2018 IEEE 16th International conference on embedded and ubiquitous
computing (EUC), Bucharest, Romania, 29–31 October 2018; pp. 14–21. [CrossRef]

71. Liu, X.; Jiang, F.; Zhang, R. A New Social User Anomaly Behavior Detection System Based on Blockchain and Smart Contract.
In Proceedings of the 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC 2020), Nanjing, China,
30 October–2 November 2020. [CrossRef]

72. Lin, Y.J.; Wu, P.W.; Hsu, C.H.; Tu, I.P.; Liao, S.W. An Evaluation of Bitcoin Address Classification based on Transaction History
Summarization. In Proceedings of the 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Seoul,
Korea, 14–17 May 2019. [CrossRef]

73. Kanemura, K.; Toyoda, K.; Ohtsuki, T. Identification of Darknet Markets’ Bitcoin Addresses by Voting Per-Address Classification
Results. In Proceedings of the 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Seoul, Korea,
14–17 May 2019; pp. 154–158. CrossRef]

http://dx.doi.org/10.1109/ICOEI48184.2020.9143061
http://dx.doi.org/10.1007/978-3-030-49785-9_7
http://dx.doi.org/10.1016/j.ipm.2021.102508
http://dx.doi.org/10.1109/PST47121.2019.8949045
http://dx.doi.org/10.1145/3457337.3457841
http://dx.doi.org/10.1109/ACCESS.2021.3077069
http://dx.doi.org/10.1109/IWMN.2019.8804995
http://dx.doi.org/10.1109/DSC.2018.00079
http://dx.doi.org/10.1007/978-3-030-66046-8_25
http://dx.doi.org/10.1145/3374664.3375724
http://dx.doi.org/10.1007/s41109-020-00338-3
http://dx.doi.org/10.23919/CYCON.2018.8405028
http://dx.doi.org/10.1007/978-3-030-59491-6_43
http://dx.doi.org/10.1007/978-3-030-76346-6_15
http://dx.doi.org/10.1109/EUC.2018.00010
http://dx.doi.org/10.1109/ICNSC48988.2020.9238118
http://dx.doi.org/10.1109/BLOC.2019.8751410
http://dx.doi.org/10.1109/BLOC.2019.8751391


Appl. Sci. 2021, 11, 7987 33 of 37

74. Li, Z.; Hou, J.; Wang, H.; Wang, C.; Kang, C.; Fu, P. Ethereum Behavior Analysis with NetFlow Data. In Proceedings of the 2019
20th Asia-Pacific Network Operations and Management Symposium: Management in a Cyber-Physical World, APNOMS 2019,
Matsue, Japan, 18–20 September 2019. [CrossRef]

75. Wang, J.; Xie, X.; Fang, Y.; Lu, Y.; Li, T.; Wang, G. Attribute Propagation Enhanced Community Detection Model for Bitcoin
De-anonymizing. In Proceedings of the International Conference on Machine Learning for Cyber Security, Xi’an, China,
19–22 September 2020. [CrossRef]

76. Fan, S.; Fu, S.; Xu, H.; Cheng, X. Al-SPSD: Anti-leakage smart Ponzi schemes detection in blockchain. Inf. Process. Manag. 2021,
58, 102587. [CrossRef]

77. Brinckman, E.; Kuehlkamp, A.; Nabrzyski, J.; Taylor, I.J. Techniques and Applications for Crawling, Ingesting and Analyz-
ing Blockchain Data. In Proceedings of the 2019 International Conference on Information and Communication Technology
Convergence (ICTC), Jeju Island, Korea, 16–18 October 2019; pp. 717–722. [CrossRef]

78. Patel, V.; Pan, L.; Rajasegarar, S. Graph Deep Learning Based Anomaly Detection in Ethereum Blockchain Network. In Proceedings
of the International Conference on Network and System Security, Tianjin,China, 22–24 October 2020; pp. 132–148. [CrossRef]

79. Zhao, L.; Sen Gupta, S.; Khan, A.; Luo, R. Temporal Analysis of the Entire Ethereum Blockchain Network. In Proceedings of the
Web Conference, Ljubljana, Slovenia 19–23 April 2021; pp. 2258–2269. [CrossRef]

80. Zola, F.; Bruse, J.L.; Eguimendia, M.; Galar, M.; Urrutia, R.O. Bitcoin and cybersecurity: Temporal dissection of blockchain data to
unveil changes in entity behavioral patterns. Appl. Sci. 2019, 9, 5003. [CrossRef]

81. Shah, R.S.; Bhatia, A.; Gandhi, A.; Mathur, S. Bitcoin Data Analytics: Scalable techniques for transaction clustering and embedding
generation. In Proceedings of the 2021 International Conference on COMmunication Systems and NETworkS (COMSNETS 2021),
Bengaluru, India, 5–9 January 2021. [CrossRef]

82. Gouda, D.K.; Jolly, S.; Kapoor, K. Design and Validation of BlockEval, A Blockchain Simulator. In Proceedings of the 2021
International Conference on COMmunication Systems and NETworkS (COMSNETS 2021), Bangalore, India, 5–9 January 2021;
pp. 281–289. [CrossRef]

83. Iyer, S.; Thakur, S.; DIxit, M.; Katkam, R.; Agrawal, A.; Kazi, F. Blockchain and Anomaly Detection based Monitoring System for
Enforcing Wastewater Reuse. In Proceedings of the 2019 10th International Conference on Computing, Communication and
Networking Technologies (ICCCNT 2019), Kanpur, India, 6–8 July 2019. [CrossRef]

84. Belhadi, A.; Djenouri, Y.; Srivastava, G.; Jolfaei, A.; Chun-Wei Lin, J. Privacy Reinforcement Learning for Faults Detection in the
Smart Grid. Ad Hoc Netw. 2021, 119, 102541. [CrossRef]

85. Belhadi, A.; Djenouri, Y.; Srivastava, G.; Lin, J.C.W. SS-ITS: Secure scalable intelligent transportation systems. J. Supercomput.
2021, 77, 7253–7269. [CrossRef]

86. Li, M.; Zhang, K.; Liu, J.; Gong, H.; Zhang, Z. Blockchain-based anomaly detection of electricity consumption in smart grids.
Pattern Recognit. Lett. 2020, 138, 476–482. [CrossRef]

87. Keshk, M.; Turnbull, B.; Moustafa, N.; Vatsalan, D.; Choo, K.K.R. A Privacy-Preserving-Framework-Based Blockchain and Deep
Learning for Protecting Smart Power Networks. IEEE Trans. Ind. Inform. 2020, 16, 5110–5118. [CrossRef]

88. Xie, X.; Fang, Y.; Jian, Z.; Lu, Y.; Li, T.; Wang, G. Blockchain-driven anomaly detection framework on edge intelligence. CCF Trans.
Netw. 2020, 3, 171–192. [CrossRef]

89. Hari Pranav, Senthilmurugan, M.; Pradyumna Rahul, K.; Chinnaiyan, R. IoT and Machine Learning based Peer to
Peer Platform for Crop Growth and Disease Monitoring System using Blockchain. In Proceedings of the 2021 Interna-
tional Conference on Computer Communication and Informatics (ICCCI 2021), Coimbatore, India, 27–29 Jauary 2021.
https://doi.org/10.1109/ICCCI50826.2021.9402435 (accessed on 24 June 2021)

90. Liang, C.; Shanmugam, B.; Azam, S.; Jonkman, M.; De Boer, F.; Narayansamy, G. Intrusion Detection System for Internet of
Things based on a Machine Learning approach. In Proceedings of the 2019 International Conference on Vision Towards Emerging
Trends in Communication and Networking (ViTECoN), Vellore, India, 30–31 March 2019. [CrossRef]

91. Liang, W.; Xiao, L.; Zhang, K.; Tang, M.; He, D.; Li, K.C. Data Fusion Approach for Collaborative Anomaly Intrusion Detection in
Blockchain-based Systems. IEEE Internet Things J. 2021. [CrossRef]

92. Jadidi, Z.; Dorri, A.; Jurdak, R.; Fidge, C. Securing manufacturing using blockchain. In Proceedings of the 2020 IEEE
19th International Conference on Trust, Security and Privacy in Computing and Communications, Guangzhou, China,
29 December–1 January 2020; pp. 1920–1925. [CrossRef]

93. Cheema, M.A.; Qureshi, H.K.; Chrysostomou, C.; Lestas, M. Utilizing Blockchain for Distributed Machine Learning based
Intrusion Detection in Internet of Things. In Proceedings of the 16th Annual International Conference on Distributed Computing
in Sensor Systems, Los Angeles, CA, USA, 25–27 May 2020; pp. 429–435. [CrossRef]

94. Ngo, Q.D.; Nguyen, H.T.; Tran, H.A.; Nguyen, D.H. IoT Botnet detection based on the integration of static and dynamic vector
features. In Proceedings of the ICCE 2020—2020 IEEE 8th International Conference on Communications and Electronics, Phu
Quoc Island, Vietnam, 13–15 January 2020; pp. 540–545. [CrossRef]

95. Alkadi, O.; Moustafa, N.; Turnbull, B.; Choo, K.-K.R. A Deep Blockchain Framework-Enabled Collaborative Intrusion Detection
for Protecting IoT and Cloud Networks. IEEE Internet Things J. 2020, 8, 9463–9472. [CrossRef]

96. Ali, J.; Ali, T.; Alsaawy, Y.; Shahrafidz Khalid, A.; Musa, S. Blockchain-based Smart-IoT Trust Zone Measurement Architecture.
In Proceedings of the International Conference on Omni-Layer Intelligent Systems, Crete, Greece, 5–7 May 2019; pp. 152–157.

http://dx.doi.org/10.23919/APNOMS.2019.8893121
http://dx.doi.org/10.1007/978-3-030-62223-7_53
http://dx.doi.org/10.1016/j.ipm.2021.102587
http://dx.doi.org/10.1109/ICTC46691.2019.8939746
http://dx.doi.org/10.1007/978-3-030-65745-1_8
http://dx.doi.org/10.1145/3442381.3449916
http://dx.doi.org/10.3390/app9235003
http://dx.doi.org/10.1109/COMSNETS51098.2021.9352922
http://dx.doi.org/10.1109/COMSNETS51098.2021.9352838
http://dx.doi.org/10.1109/ICCCNT45670.2019.8944586
http://dx.doi.org/10.1016/j.adhoc.2021.102541
http://dx.doi.org/10.1007/s11227-020-03582-7
http://dx.doi.org/10.1016/j.patrec.2020.07.020
http://dx.doi.org/10.1109/TII.2019.2957140
http://dx.doi.org/10.1007/s42045-020-00044-9
http://dx.doi.org/10.1109/ViTECoN.2019.8899448
http://dx.doi.org/10.1109/JIOT.2021.3053842
http://dx.doi.org/10.1109/TrustCom50675.2020.00262
http://dx.doi.org/10.1109/DCOSS49796.2020.00074
http://dx.doi.org/10.1109/ICCE48956.2021.9352145
http://dx.doi.org/10.1109/JIOT.2020.2996590


Appl. Sci. 2021, 11, 7987 34 of 37

97. Preuveneers, D.; Rimmer, V.; Tsingenopoulos, I.; Spooren, J.; Joosen, W.; Ilie-Zudor, E. Chained anomaly detection models for
federated learning: An intrusion detection case study. Appl. Sci. 2018, 8, 2663. [CrossRef]

98. Sharma, M.; Pant, S.; Kumar Sharma, D.; Datta Gupta, K.; Vashishth, V.; Chhabra, A. Enabling security for the Industrial Internet
of Things using deep learning, blockchain, and coalitions. Trans. Emerg. Telecommun. Technol. 2021, 32, e4137. [CrossRef]

99. Kim, T.; Jung, I.Y.; Hu, Y.C. Automatic, location-privacy preserving dashcam video sharing using blockchain and deep learning.
Human-Centric Comput. Inf. Sci. 2020, 10, 1–23. [CrossRef]

100. Ferrag, M.A.; Maglaras, L. DeepCoin: A Novel Deep Learning and Blockchain-Based Energy Exchange Framework for Smart
Grids. IEEE Trans. Eng. Manag. 2020, 67, 1285–1297. [CrossRef]
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