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Abstract: Pneumonia is a lung infection that threatens all age groups. In this paper, we use CT scans to
investigate the effectiveness of active contour models (ACMs) for segmentation of pneumonia caused
by the Coronavirus disease (COVID-19) as one of the successful methods for image segmentation.
A comparison has been made between the performances of the state-of-the-art methods performed
based on a database of lung CT scan images. This review helps the reader to identify starting points
for research in the field of active contour models on COVID-19, which is a high priority for researchers
and practitioners. Finally, the experimental results indicate that active contour methods achieve
promising results when there are not enough images to use deep learning-based methods as one of
the powerful tools for image segmentation.

Keywords: chest CT scans; COVID-19 infection; pneumonia; active contour models; parametric
methods; level set methods; region-based models; edge-based models

1. Introduction

The new 2019 coronavirus, named COVID-19 by the World Health Organization
(WHO), is attracting a lot of attention lately because it is a new type of coronavirus
that is highly contagious and has not been seen in humans before [1]. As of 20 August
2021, 209,201,939 confirmed cases of COVID-19, including 4,390,467 deaths, have been
reported by the WHO (https://covid19.who.int/ (accessed on 20 August 2021)). The
current standard golden diagnostic method for COVID-19 cases is the detection of viral
nucleic acids by Reverse Transcription Polymerase Chain Reaction (RT-PCR). Due to the
lower sensitivity of some tests leading to false-negative results, other methods may be
considered to aid in COVID-19 diagnosis. To facilitate COVID-19 diagnosis, medical
radiological imaging is used as a valuable supplemental diagnostic tool to evaluate the
infectious process. Radiologic imaging such as radiographs is usually performed in patients
with clinical symptoms suggestive of pulmonary infection [1]. The authors of [2] showed
that CT scan tests have higher sensitivity than RT-PCR tests. This point is also confirmed
by the fact that CT scans and RT-PCR tests have sensitivities of 98% and 71%, respectively.
However, the duration of diagnosis remains the major limitation of CT scans. Even
experienced radiologists need about 21.5 min to analyze the test results of each case [2,3].

Therefore, identifying the region of infection can help reduce the time radiologists
spend analyzing examination results. Automatic segmentation of the infection region can
be achieved by effective segmentation algorithms. Currently, there are several segmenta-
tion algorithms in the literature that show accurate and robust segmentation results. In
general, they can be divided into four categories, the clustering-based [4,5], the graph-
cut-based [6,7], neural network-based (for example, deep learning methods) [8,9] and
the active-contour-based methods [10–14]. The clustering-based methods use clustering
algorithms such as Kmeans and fuzzy C-means, which are based on the assumption that
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each pixel can be assigned to pixels belonging to the same class because they have a certain
distribution. The clustering-based methods have high efficiency but are sensitive to the
initial clustering centers and require manual adjustment of the clustering number. In the
graph cut-based methods, the pixel correlation is considered and the segmentation prob-
lem is converted into a graph partition problem where a cut energy model is constructed
and the segmentation curve is the cut that minimizes the energy. The drawback of this
method is the difficulty in constructing accurate weights for the correlations between pixels,
which usually leads to over-segmentation or under-segmentation problems, especially in
complicated regions. The neural network-based semantic segmentation solutions [8,9]
require a large set of images to train the network, and also lack fine segmentation for
tiny regions, which is very important in medical image analysis. One of the methods
that ensures stable performance is the active contour model (snake model). This method
grants closed boundaries and has proven to be effective and widely used. The general
idea behind ACMs is to apply partial differential equations (PDEs) to iteratively evolve the
initial contour toward object boundaries by minimizing a given energy function [15,16],
which is a function of the internal and external energies of the contour.

Since our goal is to investigate the effectiveness of active contouring methods for
segmenting COVID-19 infected regions from the CTSI, current methods for segmenting
COVID-19 pneumonia using the CTSI are examined below. It should be noted that the
segmentation methods in COVID-19 applications can be mainly divided into two categories,
namely, the lung region-oriented methods and the lung lesion-oriented methods. The lung
region-oriented methods aim to separate the lung regions, i.e., the entire lung and the lobe
of the lung, from other (background) regions in CT or X-ray images, which is considered a
prerequisite in COVID-19 applications [17–26]. To the best of our knowledge, most COVID-
19 pneumonia segmentation methods are based on deep learning networks, including
the classic U-Net [17–22], UNet++ [22,23], VB-Net [24]. UNet and its variants achieved
reasonable segmentation results in images COVID-19. For example, Jin et al. [23] used
the UNet++ network to segment the lung region from CT images. Then, the damaged
region of the lung is separated. This process is challenging because the damaged area
may have different shapes and textures. The authors of [21] developed an automatic
AI-based analysis of CT images using a deep learning approach to classify CT images into
coronavirus and non-coronavirus cases. They reused a system previously used to detect
small opacities and nodules in the lungs and used UNet to segment lung images. To detect
coronavirus abnormalities, they used the CNN architecture Resnet-50, which consists of
50 layers, to classify images into normal and abnormal cases. One of the most important
approaches to visually interpret and explain medical imaging is Gradient Weighted Class
Activation Mapping (Grad-CAM) [27]. Therefore, many studies have been conducted to
segment COVID-19 infected regions based on activation mapping [28,29]. Finally, for more
detail, the reader is referred to several comprehensive reviews of all works on this topic,
including deep learning methods [30–33].

The aim of this work is to compare current active contour methods for detecting
COVID-19 pneumonia infections using CTSI, as shown in Figure 1. Our proposed segmen-
tation experiments are performed using the COVID-CS database [34], which contains one
hundred CT COVID-19 images with dimensions of 512× 512× 1 pixels, and all images are
associated with the Ground-Truth Image (GTI). In this paper, we present the state-of-the-art
methods that have been selected between 2008 and 2020 and have achieved the best results
in medical image segmentation. Moreover, these methods were compared in terms of
robustness to initialization.



Appl. Sci. 2021, 11, 8039 3 of 19

Covid-19 CT images
 database Preprocessing

Evaluation

Measures based on
ground-truth and 

segmentation results

Active contour models

Segm
entation

Lung region extraction

...

Figure 1. Overview of the proposed steps.

This paper deals with CT COVID-19 image segmentation. The main contributions of
this paper are described as follows:

• A survey of active contour models: One of the most important aspects of detecting
diseases such as pneumonia from medical images is identifying the region of infection.
Although deep learning methods are well suited for this goal, if there are not enough
images to train deep learning methods, the experimental results of the paper show that
active contour methods achieve promising results. Therefore, our main contribution
is to verify whether the active contour model-based image processing methods can be
useful when only one image is available;

• Study on COVID-19 as a current topic: To the best of the authors’ knowledge, this paper
is the first attempt to study active contour models and comparisons on images of
the disease;

• Pointing out a line of research for the next researchers: We examine different methods and
show which of them are effective for the topic and where the problems lie.

The remainder of this paper is organised as follows: Section 2 presents our method-
ology, including the methodological background and the database description. Section 3
presents the experimental results, Section 4 discusses the results, and Section 5 concludes
the paper.

2. Methodology

In this section, we describe the details of the ACM methods used in our experiments,
including traditional and the state-of-the-art methods. We also explain the database to
which the methods are applied. The main idea of ACM is to segment an image based
on an initial contour by minimizing the energy associated with the sum of internal and
external energy. Depending on the contour representation (parametric or level set) and
object boundary description (edge-based or region-based), ACMs can be classified into
four categories: parametric representation with edge-based description [15,35], parametric
representation with region-based description [36,37], level set representation with edge-
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based description [38,39] and level set representation with region-based description [40,41].
In parametric ACM, the contour is explicitly represented as polynomials or splines [42,43].
Given an initial contour, the external energies drive the evolution of a parametric ACM,
while the internal energies maintain the shape of the contour. The parametric ACM is
capable of extracting a single object given a single initial contour. Its strength is that the
parametric snakes have a limited capture range, i.e., the range where the external forces are
is strong enough to drive the contour evolution. Therefore, they must be initialized near
the object contour. Another problem is that the parametric snakes are not able to accurately
capture concave shapes. In the ACMs with level set, the contour is implicitly represented
in the zero level set. In this method, the deformation of the level set function leads to
contour evolution. Compared to the parametric ACMs, the level set model can capture
multiple objects by a single initial contour and complex geometry. However, since the
level set models require the deformation of a higher dimensional function, these methods
are generally slower than parametric methods [39]. Moreover, for many applications,
such as medical image processing, it is necessary to extract only a single object [44] and
therefore, in such situations, the parametric representation is preferred over the level
set representation. To solve the contour evolution equation, each representation scheme
must select appropriate numerical methods. The finite element method [45] is used for
parametric snake models, while the finite difference method [46] is used for level set
models. Boundary-based segmentation methods for describing object boundaries based
on the external force include region-based and edge-based models. Region-based models
use more global information to define object boundaries. To control the evolution, region-
based models use the statistical information inside and outside the contour [40,41]. In
the region-based approach, the deformation of ACM is based on an energy minimization
algorithm. In the region-based method, many functions were considered as an edge stop
function (ESF) [41], such as a signed pressure function (SPF). Edge-based models use image
gradients to construct an ESF [39,42], which is used to stop contour evolution at object
boundaries. Using the ESF, the boundary points can be characterized by a differential
property with respect to the image gradient. It should be noted that hybrid description
approaches have been used recently to take advantage of edge-based and region-based
methods and avoid their drawbacks [47]. Two important challenges in using ACMs are
initialization and convergence. For example, some parametric ACMs are affected by saddle
point and stationary point problems that lead to convergence failure [39]. ACM models
respond quickly to initial conditions, so a poor initial contour can lead to a poor result,
as shown in Figure 2, which shows the initialization of the contour outside, overlapping
(cross), or inside the image.

Figure 2. Three examples of initial contours considered outside (a), overlapping (b), and inside (c) the im-
age.
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The region-based methods are more efficient than the edge-based methods in detecting
the outer and interior boundaries because they are less sensitive to the location of the initial
contour. However, for weak edges and concave shapes, the edge-based methods are more
successful than the region-based descriptions.

2.1. Background of ACMS

In this subsection, a background knowledge of ACMs is presented by briefly explain-
ing traditional ACMs, geometric ACM models, and deep learning methods with loss
functions based on ACMs.

2.1.1. Traditional ACM

The earliest active contour or snake, which was a parametric representation with edge-
based description, was proposed by Kass et al. (1988) [42]. Active contours are declared as
an energy minimization process. The energy functional is a function of contour’s internal
energy (Eint) addition to the external energy (Eext). These energies are two functions of the
set of points (x(s), y(s)), which make up a snake c(s) = (x(s), y(s)). The energy functional
denoted by ESnake is computed as follows:

ESnake =
∫ 1

0
[Eint(c(s)) + Eext(c(s))]ds, (1)

where s ∈ [0, 1] is the normalized length around the snake and to control the behavior of
the snake naturally, Eint is defined as follows:

Eint =
α(s)|c′(s)|2 + β(s)|c′′(s)|2

2
, (2)

where the first and the second derivatives of c(s) are shown by c′(s) and c′′(s) with respect
to s and α and β called elasticity and rigidity parameters, respectively, which are the
weighting parameters of contour. The term of external energy, Eext, attracts a snake to
the chosen low-level features (such as edge points) such that it has smaller value near the
object boundary and bigger value in other areas.

Limit capture range and poor convergence to the concave regions are two major issues
in ACM. Figure 3 shows an example of concave regions which has not been captured.

Figure 3. An example of concave regions; (a) is the initial snake and (b) is the final state of snake (by
Kass) occurred after 2346 iterations
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2.1.2. Geometric Active Contours (Gac) Models

One of the most popular level set representations with edge-based models is the
Geometric active contours (GAC) model [38]. This model utilizes image gradient to
construct an ESF. Usually, a positive, decreasing and regular ESF such as g(t) is used such
that limt→∞ g(t) = 0. For instance, g(|∇I|) can be computed using the following formula:

g(|∇I|) = 1

1 + |∇Gσ ∗ I|2
, (3)

where Gσ ∗ I shows the convolution of Gaussian kernel (standard deviation of σ) and image
I. The GAC model suffers some major disadvantages as follows:

• High computational cost due to computation of gradient of the curvature approxima-
tion of the current level set at each iteration;

• Since the GAC model is in terms of the curvature and the gradient, only local boundary
information is used. This leads to the GAC model being affected by input noise. This
problem is shown in Figure 4.

Figure 4. Segmentation result on a synthetic image based on GAC model; (a) the initial contour
shown in red color, (b) the final segmentation result, and (c) shows all of the boundaries that should
be surrounded.

2.1.3. The C-V Model

The C-V model is a parametric representation with region-based description presented
by Chan and Vese [40]. For a given image I in domain Ω, the C-V model is formulated
(parametric) by minimizing the following energy functional:

EC−V =λ1

∫
inside(c)

|I(x)− c1|2dx (4)

+ λ2

∫
outside(C)

|I(x)− c2|2dx, x ∈ Ω (5)

where c1 and c2 show the average intensities inside and outside the contour, respectively.
Two major disadvantages of C-V model are as follows:

• Similar to GAC model, C-V model also needs to calculate the curvature approximation
δ(φ), which has a high computational expense;

• Despite power of global segmentation of the C-V model with a proper initial contour,
it cannot extract the interior contour without setting the initial contour inside the
object and fails to extract all the objects. This problem has been shown in Figure 5.
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Figure 5. An example of global segmentation property of the C-V model. (a) shows the initial contour
and (b) shows the segmentation result of the C-V method, which cannot extract all boundaries in
the image.

2.1.4. Deep Learning Approaches

Deep learning models showed better results, but are limited to pixel-wise adaptations
of the segmentation map. This limitation can be addressed by considering the size of the
boundaries and the areas inside and outside the region of interest during the learning
process. This can be achieved by using an active contour loss function inspired by ACMs.
This new loss function combines geometric information with region similarity to enable
more accurate segmentation. The ACM loss function is used as a loss function in many
deep learning models, as in [48–51].

2.2. The State-of-the-Art Methods

In this section, we review some of the best proposed ACMs and present the main
advantages and disadvantages.

2.2.1. Magnetostatic Active Contour (MAC) Model

The magnetostatic active contour (MAC) model is based on the level set representation
with edge-based description [39]. MAC represents the active contour using an implicit
model in which the contour, c, is defined as follows:

c = {x̄|φ(x̄) = 0}, (6)

where φ : R2 → R. For image segmentation MAC considers the following PDE:

∂φ

∂t
= αs(x̄)∇

(
∇φ

|∇φ|

)
|∇φ| − (1− α)F(x̄)∇φ, (7)

where α, s(x̄), and F(x̄) are a real constant, the stopping function (Sobel filter), and the
magnetostatic force, respectively. The advantages of MAC compared to other related works
are as follows:

• Significant improvement in initialization invariance;
• Significant improvement in convergence capability; the contour attracts into deep

concave regions;
• Is not affected by stationary point and saddle point problems;
• It is able to capture complex geometries;
• It is able to capture multiple objects with a single initial contour.

2.2.2. Online Region-Based Active Contour Model (Oracm)

The ORACM is introduced as representing the level set with region-based ACM. The
models do not require any parameters. Compared to traditional ACMs, the ORACM
requires less time without a change in the segmentation accuracy. In each iteration, the
ORCAM performs block thresholding. Rigorous boundaries and small particles that do
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not belong to the object and are produced outside of this process. To tackle this problem,
morphological operations such as closing and opening are applied. The level set function,
φ(x), is initialized to constants, which have different signs such as −1 and +1 inside
and outside the contour. A simple and efficient level set updating formulation is used in
ORACM as follows:

∂φ

∂t
= H(SPF(I(x))) · φ(x), (8)

where H(.) is the Heaviside function, and SPF(.) is the signed pressure function defined
as follows:

SPF(I(x, y)) =
I(x, y)− c1−c2

2

max
(∣∣∣I(x, y)− c1−c2

2

∣∣∣) , (9)

where I and φ show an input image and the current level set, respectively. Two parameters,
c1 and c2, have the same definitions as (20) and (21), respectively. The advantages of
ORACM are as follows:

• Decreasing efficiency without changing the accuracy of the image segmentation process;
• Accurate segmentation of all object regions in both inside and outside for medical, real,

and synthetic images with holes, complex backgrounds, weak edges, and high noise.

The disadvantage of ORACM is that it supports only bimodal segmentation of piece-
wise constant intensity distribution. Therefore, the application of ORACM is limited to the
cases satisfied the above constraints. It should be noted that two types of ORACM have
been conducted by researchers called ORACM1 and ORACM2 which consider ORACM
without or with the morphological operations, respectively.

2.2.3. Selective Binary and Gaussian Filtering Regularized Level Set (Sbgfrls)

The SBGFRLS [47] is an ACM based on level set representation with a region-based
description. This model uses both global and local information. At the initialization step, a
user-defined active contour is determined and it is continuously updated by a region-based
signed pressure function (SPF) defined by (25). Unlike the C-V method, obtaining c1 and c2
using (20) and (21), SBGFRLS uses the H Heaviside function described in (22) only with
ε = 0. The SPF function tunes the signs of the pressure force inside and outside the region
of interest. For example, the contour shrinks and expands based on whether it is outside or
inside the object. The SBGFRLS obtains the corresponding variation level set by:

∂φ

∂t
= SPF(I(x)) · α.|∇φ|, (10)

where, to control the speed, a constant α is used. The advantages of SBGFRLS are as
follows:

• Robust against noise because the image statistical information is used to stop the
curve evolution on the desired boundaries;

• Good performance on images with weak edges or even without edges;
• Initial curve can be defined anywhere to extract the interior boundaries of the objects

However, the disadvantages of the ACM with SBGFRLS include the following cases:

• Difficult to use ACM with SBGFRLS on different images because it needs to be tuned
according to the image which is why it cannot be used on real-time video images;

• The slowness of the method caused by propagating the SPF function results in the
boundary of the level set function only using |∇φ| at the level set. Updating only the
boundary of the level set is the main cause of the slowness.
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2.2.4. Level Set Active Contour Model (Lsacm)

The LSACM is a level set method that relies on the region for image segmentation
in the presence of intensity inhomogeneity. This method models the inhomogeneous
objects as Gaussian distributions of different means and variances. Using a sliding window,
the original image is mapped into another domain. In this area, every object’s intensity
distribution is still Gaussian but more distinct. It is possible to approximate the means
of the Gaussian distributions in the transformed domain by multiplying a bias field with
the original signal inside the window. A functional energy of maximum likelihood is then
defined in the entire image region, which combines the bias field, the level set function,
and the partly constant function which approximates the true image signal [10].

The method works by combining information from neighbouring pixels that belong
to the same class. In this approach, the desired object is separated from its background.
Given NRx, a neighboring region centered at location x, i.e., NRx = {y||y − x| ≤ ρ},
where for the region NRx, ρ is its radius. The whole image domain Ω can be represented
as Ω = ∪i=1,...,nΩi with Ωi ∩ Ωi = ∅, for all i 6= j, where Ωi is the ith object region.
A mapping T : I(x|θi, B) → I(x|θi, B) from original image intensity domain ID(T ) to
another domain RD(T ) by averaging image intensities is defined as

I(x|θi, B) =
1

Li(x)

∫
Ωi∩NRx

I(y|θi, B, x)dy (11)

where the number of pixels in region Ωi ∩ NRx is obtained with Li(x) = |Ωi ∩ NRx|. The
intensity of pixel x is assumed to be independently distributed with a Gaussian distribution,

that is, P(I(x|θi, B)) = N
(

I|Ui(x), σ2
i

Li(x)

)
where Ui and σi are the spatial varying mean

and the standard deviation subject to the object in region Ωi, for all I(x|θi) ∈ RD(I).
The advantages of this method are: it achieves soft classification, it is robust against

noise and it mitigates the over-smoothing of object boundaries problem.
The disadvantages are: only the neighbouring intensities belonging to the same class

contribute to each class and the overlapping parts of the statistical distributions among
different classes of intensities are suppressed.

2.2.5. Region-Scalable Fitting and Optimized Laplacian of Gaussian Energy (Rsfolge)

The RSFOLGE applies a LoG energy term optimized by an energy functional. Then,
it integrates the optimized LoG energy term with the region-scalable fitting energy term.
The advantage of this is that it makes use of of local region information to drive the curve
towards the boundaries. The advantage of the RSFOLGE model is that it achieves accurate
image segmentation and it is insensitive to the positions of initial contour [11]. The energy
functional used to optimize the LoG of the image is as follows:

ELQG(L) =
∫∫

Ω
g([∇I])× (L− 0)2 + (1− g(|∇I|)) (12)

× (L− β× ∆(Gσ ∗ I))2dxdy (13)

where the value of optimized LoG of the image is represented with L, and g(∇I) =
e−a|∇Go∗I , a, β are positive constants. A edge indicator is defined by g(∇I). The values of
g(∇I) are small and approximately equal to 0 at the locations near the object boundaries.
∆(Gσ ∗ I) is:

∆(Gσ ∗ I) =
[

∂2Gσ(x, y)
∂x2 +

∂2Gσ(x, y)
∂y2

]
∗ I(x, y) (14)

where Gσ(x, y) is a Gaussian kernel function with standard deviation σ.
The advantages of this method are that it develops the robustness of initialization

and it has accurate segmentation results compared with the original region scalable fitting
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(RSF) method. Moreover, the optimization process is applied to the edge stopping function
which used in edge-based ACMs.

The disadvantage of this method is that it fails when objects inside the image have
significantly different intensity values which can be tackled by using multi-phase segmen-
tation.

A simple and universal method of improving the robustness of initial contour for
these local fitting-based models is presented [12]. The core idea of proposed method is
exchanging the fitting values on the two sides of contour, so that the fitting values inside
the contour are always larger (or smaller) than the values outside the contour in the process
of curve evolution. In this way, the whole curve will evolve along the inner (or outer)
boundaries of object and is less likely to be stuck in the object or background.

2.2.6. Adaptive Local-Fitting (Alf) Method

The ALF model pushes the initial contour towards the object boundary using adaptive
local fitting energy and regularization energy. This method shows an accurate way to
separate the region of interest. The traditional methods assume that the intensities in the
local region are constant; however, the LBF method finds an optimal solution by fitting the
original image using an adaptive technique [52].

The ALF method improves on the local binary fitting method. The energy function of
the ALF is:

EALF =
∫ N

∑
i=1

(
κi

∫
wx(x− y)|I(y)− µi(x)− λ(x)σ̄(y)|2

×Mi(Φ(y))dy)dx

+ β
∫ 1

2
(|∇Φ(x)| − 1)2dx + v

∫
δ(Φ(x))|∇Φ(x)|dx

(15)

where wx is a truncated weight function, σ̄ is an appropriate estimation to σ and Mi(Φ(y))
is a membership function satisfying:

Mi(Φ(y)) =
{

1, y ∈ Ωi
0, else

(16)

In Equation (27), when λ(x) = 0 or σ̄(y) = 0, it is the same as the LBF model. So,
the LBF model can be seen as special case of the proposed ALF model. Nevertheless, LBF
discards the local information about intensity variance Despite the necessity to improve
the efficiency of the method, the model can extract more details and performs robustly
with regard to to intensity inhomogeneity and noises.

2.2.7. Fuzzy Region-Based Active Contour Model (Frbacm)

The FRBACM is driven by weighting global and local fitting energy, wherein fuzzy
region energy with local spatial image information is proposed. The segmentation results
of this method are independent of initialization. To extract object boundaries while main-
taining its distance, an initial evolving curve of pseudo level set function (LSF) followed by
the pseudo-LSF and further smoothed by edge energy is proposed. This method consists
of fuzzy region energy which is formulated with local spatial image information and edge
energy which use the evolving curve to stop the object boundaries. The fuzzy region
energy is strictly convex and used to drive the motion of the evolving curves. To minimize
the energy functional, the fuzzy region energy directly calculates the change in the fuzzy
region energy instead of using the Euler–Lagrange equation [53].

This proposed model succeeds in extracting objects in different situations such as
images with noise and images with intensity inhomogeneity; however, this model fails
when the similarity between the object and its background is high.
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2.2.8. Global and Local Signed Energy-Based Pressure Force (Glsepf)

The GLSEPF uses the energy difference between the inner and outer energies to obtain
the contour of the object. This model will improve the initial curve robustness. The local
signed energy-based pressure force (LSEPF) is determined by means of the pixel-by-pixel
energy difference within the local neighborhood region. This LSEPF can handle images with
depth inhomogeneity and noise. Global image information and local energy information
are used, respectively, for global and local force propagation functions. Global and local
variances are used to balance the weights of GSEPF and LSEPF automatically, which can
solve the problem of parameter setting. In the meantime, a regularization term and a
penalty term are added in order to prevent re-initialization during iterations and smooth
the level set function [54]. The level set formulation of the GSEPF model is written as:

GSEPF model:
∂φ

∂t
=

∆Eg(I(x))
max(|∆Eg(I(x))|) · |c1 − c2| · ∇φ

+ µδ(φ) · div
(
∇φ

|∇φ|

)
+ v
(
∇2φ− div

(
∇φ

|∇φ|

)) (17)

where ∆Eg(I(x)) is the global energy. Objects in images with noise and intensity can be
detected by incorporation of the global and local image information; however, for color
images, the segmentation is poor because only the intensity information is used.

In next subsection, we explain the database that the methods are applied to.

2.3. Database

In this paper, the COVID-19 pneumonia image database of [34] was considered to
test the performance of the proposed image processing method. This database consists
of 100 CTI with dimensions of 512 × 512 × 1 pixels, and all the available images are
associated with corresponding Ground-Truth Images (GTI). The overall distribution of
patients is shown in Table 1. Figure 6 also shows examples of COVID-19 CT images and
the corresponding ground truth. As can be seen in the figure, the ground truth is a binary
image where the white parts are infection regions. The segmentation step aims to divide
the images of CT into black and white regions. The segmentation results are compared
with the ground truth to evaluate the performance of the method.

Table 1. The overall distribution of samples used in the database.

Range of ages of patients 32–86 (years)
No. of total patients (men + women + NA) 49 (=27 + 11 + 11)
Minimum no. of COVID-19 CT images per patient 1
Maximum no. of COVID-19 CT images per patient 13
Total no. of COVID-19 CT images 100
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Figure 6. Samples of images of COVID-19 database and their ground truth (a binary image where
the white parts represent the area of infection).

3. Evaluation

In this section, we present the experimental results of the active contour methods de-
fined in the previous section for comparison purposes. We also explain the implementation
of the methods. To evaluate the effectiveness of the active contour methods, seven suitable
measures applied, namely: Dice, Jaccard, Bfscore, Precision, Recall, Iteration and Time. If
the first five measures score better (closer to one or closer to 100%), then the implemented
disease investigation scheme is confirmed as a better procedure. If IO and IGT represent
the binary output image of the segmentation result and the binary image of the ground
truth, respectively, the measures are defined as follows:

Precision =
TP

TP + FP
, (18)

Recall =
TP

TP + FN
, (19)

Jaccard =

∣∣Io ∩ Ig
∣∣∣∣Io ∪ Ig
∣∣ , (20)

Dice =
2
∣∣Io ∩ Ig

∣∣
|Io|+

∣∣Ig
∣∣ , (21)

Bfscore =
2× Precision× Recall

Recall + Precision
, (22)

where TP, FP and FN are true positive, false positive and false negative rates.
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3.1. Lung Region Extraction

In this work, we first removed the artifacts such as bones and other body segments
from the test image using a threshold filter in [55]. This threshold filter separates the test
image into two sections based on a chosen threshold. We plotted the Receiver Operating
Characteristic (ROC) curve (the TP part against the FP part) by changing the threshold
value, as shown in Figure 7. This method obtained an area under curve (AUC) value of
0.94. We chose the threshold value when TP = 0.9 and FP = 0.045, and then we obtained
the accuracy of the lung region extraction step for each image with respect to the ground
truth. We assumed that the method failed for each image if the accuracy was less than 95 %.
Therefore, we manually separated the part of images. A total of 12 images of the database
(12 %) failed and were processed manually. The results obtained with the threshold filter
are shown in Figure 8.
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Figure 7. ROC curve plot based on the average TP and FP for all images in the database when the
threshold was changed.

Figure 8. Outcomes of extraction lung region extraction.

3.2. Comparison the Active Contour Methods

In this section, the performances of the mentioned methods in the previous sections
have been compared. We performed all simulations in MATLAB R2018a. All experiments
were run on a 64-bit operating system with a CPU E5-2690 v3 @ 2.60 GHz, 64.0 GB of
RAM, and a single NVIDIA GTX TITAN X. In order to implement the methods, their
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codes have been provided by authors: the C-V, SBGFRLS, and ORACM (available at
http://iys.inonu.edu.tr/webpanel/dosyalar/1348/file/OnlineSeg.rar (accessed on 20 Au-
gust 2021)), LSACM (available at http://www.comp.polyu.edu.hk/~cslzhang/LSACM/
%MDPI:changedlikethisformat,pleaseconfirm.Thedatehasbeenadded.LSACM.htm (accessed
on 20 August 2021)), RSFOLGE (available at https://github.com/dingkeyan93/Active-
Contour-Model-Matlab-Code-Set (accessed on 20 August 2021)), ALF (available at https:
//github.com/madd2014/ALF (accessed on 20 August 2021)), FRAGL (available at
https://github.com/fangchj2002/FRAGL (accessed on 20 August 2021)), GLSEPF (avail-
able at https://github.com/HuaxiangLiu/GLSEPF/ (accessed on 20 August 2021)) meth-
ods were implemented in MATLAB code and the MAC method (available at http://
csvision.swan.ac.uk/public_html_XX/snakes/mac/index.html (accessed on 20 August
2021)) was implemented in JAVA code. For all of the methods used on the database, the
default parameters mentioned in their codes were retained. The experimental results
confirm that the proposed methods provide the mean value of infection rate for further
evaluation. The comparative analysis was performed for CT COVID-19 images. To test
the robustness of initialization, three initial contours were considered: inside, outside, and
overlapping (cross) the target object. However, some methods failed on the initial contours
(when the inner contour cannot be extracted and the method is forced to infinite loop), as
shown in Table 2.

Table 2. Success of active contour methods in obtaining infection area in terms of initial contour.

Initial Contour C-V SBGFRLS MAC ORACM LSACM RSFOLGE ALF FRAGL GLSEPF

Inside Failed Failed Done Done Failed Failed Failed Failed Failed

Outside Failed Failed Done Done Failed Done Done Failed Failed

Cross Done Failed Done Done Done Done Failed Done Done

3.3. Result

The quality of the results of the methods is shown in Figure 9. The quantitative
results related to the metrics from the database are presented in Table 3. According to the
evaluations, the quantitative and qualitative results are promising in segmentation, but the
results should help the researchers to improve the results in sensitive application.

The quantitative results in terms of Dice, Jaccard, Bfscore, Precision, Recall, Iteration
and Time measured using the database are shown in Table 3.

Table 3. Detailed evaluation of seven metrics based on COVID-19 CT images.

Measure C-V MAC ORACM LSACM RSFOLGE ALF FRAGL GLSEPF

Dice (%) 93.55 95.94 96.30 95.77 89.88 92.12 96.44 95.60

Jaccard (%) 88.31 92.32 93.06 92.01 82.49 85.70 93.21 91.77

Bfscore (%) 66.82 61.40 74.13 60.46 63.50 57.05 65.55 71.96

Precision (%) 84.44 92.37 77.73 96.89 73.03 93.33 91.33 68.24

Recall (%) 58.15 48.25 72.41 45.67 61.44 43.34 53.18 78.81

Iteration 158 8500 5 200 250 8 10 30

Time (s) 55 700 1.4 12 41.40 100 1.8 5.5

Figure 9 shows some binary results processed with six sample images from the CT
database. The six images were randomly selected for qualitative evaluation. The authors
reviewed the images based on the results of each method compared to the corresponding
ground truth.

http://iys.inonu.edu.tr /webpanel/dosyalar/1348/file/OnlineSeg.rar
http://iys.inonu.edu.tr /webpanel/dosyalar/1348/file/OnlineSeg.rar
http://www.comp.polyu.edu.hk/~cslzhang/LSACM/ %MDPI: changed like this format, please confirm. The date has been added. LSACM.htm
http://www.comp.polyu.edu.hk/~cslzhang/LSACM/ %MDPI: changed like this format, please confirm. The date has been added. LSACM.htm
https://github.com/dingkeyan93/Active-Contour-Model-Matlab-Code-Set
https://github.com/dingkeyan93/Active-Contour-Model-Matlab-Code-Set
https://github.com/madd2014/ALF
https://github.com/madd2014/ALF
https://github.com/fangchj2002/FRAGL
https://github.com/fangchj2002/FRAGL
https://github.com/HuaxiangLiu/GLSEPF/
http://csvision.swan.ac.uk/public_html_XX/snakes/mac/index.html
http://csvision.swan.ac.uk/public_html_XX/snakes/mac/index.html
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To show the effectiveness of active contour methods, we compared the best active
contour method (GLSEPF), which achieves the best results among all methods in the
database based on Table 3, with deep learning methods. Due to the different structure of the
two sets of methods, the comparison is not fair. However, it can show the effectiveness of the
active contour methods. Table 4 shows the comparison in terms of recall measure. The deep
learning methods consist of 8 popular methods, namely MiniSeg [56], MobileNet [57], Inf-
Net [58], DeepLabv3+ [59], EfficientNet [60], EDANet [61], ENet [62], and ESPNetv2 [63].

Original Image

Ground-truth

C-V

MAC

ORACM

LSACM

RSFOLGE

ALF

FRAGL

GLSEPF

Figure 9. Outcomes of all active contour models in terms of the database.

Table 4. Comparison of the best active contour method with deep learning methods in terms of the Recall measure.

MiniSeg MobileNet Inf-Net DeepLabv3+ EfficientNet EDANet ENet ESPNetv2 GLSEPF (ACM)

84.95 81.19 76.50 79.58 80.25 82.86 81.26 77.84 78.81

4. Discussion

In this section, we elaborate on the results section. As shown in Table 2, ORACM
can perform the final segmentation based on the three initial contours in two cases: the
MAC of both methods. Additionally, LSACM failed only on one of the initial contours and
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the remaining methods succeeded only on one of the initial contours. It should be noted
that some methods (Figure 9) failed for at least one of the initial contours, which is why
we report the best results of each method. In the overall evaluation, it can be seen that
ORACM performs best in both quantitative and qualitative evaluations compared to the
other methods.

In the quantitative evaluation, Table 3 shows that ORACM performs significantly
better than all other methods in terms of Bfscore, iteration and time and performs as well
as the FRAGL method in terms of Dice and Jaccard measures. Therefore, as shown in
the table, FRAGL ranks first in terms of the DICE and Jaccard measures. Compared to
the other methods, LSACM reaches the highest score in terms of accuracy, followed by
ALF and MAC, which rank second and third, respectively. While GLSEPF ranks first
in terms of recall measure, ORACM scores second and the other methods do not have
promising results in this measure. As can be seen from the low value of time and iteration,
ORACM and ALF are also faster than the others. Since the Bfscore measures how well
the predicted boundary of an object matches the true boundary, ORACM preserves the
boundaries better than other methods. Moreover, Jaccard and Dice similarities of 100%
imply that the segmentations in the two images match perfectly. FRAGL and ORACM
achieve the best matching images compared to other methods.

As the qualitative evaluation in Figure 9 shows, RSFOLGE, MAC and C-V methods
achieve clean binary images. However, the results of the ORACM, FRAGL and GLSEPF
methods are more effective and can efficiently produce higher visual quality from the input
image with a dark shadow. In qualitative evaluation, as shown in the figure, ORACM is able
to keep the boundaries in the patterns smooth. As shown, ORACM, FRAGL and GLSEPF
methods are successful in delineating the area of infection, which serves as the foreground,
from the background, but they also fail in maintaining thin strokes. Nevertheless, the
methods achieve the best visual quality for the coronal and axial view database samples.

Finally, the comparison with deep learning methods shows that the active contour
methods are competitive with deep learning methods, although the results show that deep
learning methods are better overall.

5. Conclusions

This study is an introduction to the automatic investigation of infection COVID-19
with CTSI. Finding a collection of clinical quality images is a difficult task due to the sudden
onset of the disease. In this work, active contour methods are applied to the 2D lung scans
CT to automatically extract the infected sections. In this work, methods from 2008 to 2020
were tested, which are divided into four classes belonging to contour representation and
object boundary description categories. In addition to a brief explanation of the methods,
this paper also examined the advantages and disadvantages of the methods. Furthermore,
a comparison between the methods in terms of computational cost and accuracy has been
carried out. Based on the experimental results, ORACM2 (online region-based active
contour model with the morphological operations) has the best overall performance in
terms of speed and accuracy.

In the future, we plan to test more segmentation methods in other categories such as
the graph-cut-based and the clustering-based methods. We will also propose to implement
the following: (i) automatic detection and classification of COVID-19 cases into mild,
moderate, and severe classes; (ii) automatic detection of disease progression; and (iii)
automatic classification of CTSI slices into normal and COVID-19 pneumonia classes.
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