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Featured Application: The proposed method can be applied to optimize welding stations with
two or more positioners for each welding robot. Such robotic cells ares used, e.g., in welding
aluminum bicycle frames.

Abstract: Welding frames with differing geometries is one of the most crucial stages in the production
of high-end bicycles. This paper proposes a parallel algorithm and a mixed integer linear program-
ming formulation for scheduling a two-machine robotic welding station. The time complexity of the
introduced parallel method is O(log2 n) on an n3-processor Exclusive Read Exclusive Write Parallel
Random-Access Machine (EREW PRAM), where n is the problem size. The algorithm is designed to
take advantage of modern graphics cards to significantly accelerate the computations. To present
the benefits of the parallelization, the algorithm is compared to the state of art sequential method
and a solver-based approach. Experimental results show an impressive speedup for larger problem
instances—up to 314 on a single Graphics Processing Unit (GPU), compared to a single-threaded
CPU execution of the sequential algorithm.

Keywords: robotic cell; cyclic production; flexible production; scheduling; parallel computing; frame
welding; GPU

1. Introduction

Scheduling problems are strongly connected to real-life production systems. Espe-
cially for cyclic (periodic) manufacturing, even a small improvement achieved by using
dedicated algorithms can lead to significant profits. Job scheduling problems in flexible
production systems are a particularly interesting subject of research, as indicated by numer-
ous publications analyzed in the literature reviews [1–3]. Optimization often involves not
only the assignment of operations (jobs) to machines, but also the order in which they are
performed. Exact algorithms such as Mixed Integer Programming (MIP) [4] can be used to
solve some (usually simpler) problems. For the NP-difficult ones, for instance, the Traveling
Salesman Problem [5], the Knapsack Problem [6] or the Vehicle Routing Problem [7,8], the
most common tools for solving them are heuristic algorithms. As shown for flexible the Job
Shop Scheduling Problem (JSSP) in [3,9] or Dynamic JSSP [10], hybrid solutions, based on
combining different algorithms to achieve the best possible results, are a common choice.
An exemplary hybrid algorithm could utilize a two-level optimization schema:

Level 1 The order in which jobs are processed in the system.

Level 2 Jobs to machines assignment.

Two-level metaheuristics were successfully used to solve scheduling problems [11,12].
Alternatively, one can solve the first level conventionally and treat the second level as the
so-called very large-scale neighborhood [13,14].
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This paper discusses the problem of assigning jobs to machines in a two-machine
robotic cell, where the order of jobs is determined (Level 2). Prior to each job, a setup is
performed, the length of which depends on the previous job performed on the machine.
The problem is inspired by the frame welding in a bicycle factory located in Poland.

The factory produces four types of aluminum bicycle frames: Mountain, trekking,
city and children’s. Moreover, some of the frames are produced in two variants—male
and female. The lengths and diameters of the components additionally depend on the
dimensions of the frame, which can be standardized or customized on request. The key
production stage is welding the frame elements, which is done in a robotic cell (see
Figure 1). The cell consists of a welding robot, two positioners and storage fields for
product components and ready-made bicycle frames. The frame welding process consists
of three stages:
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Figure 1. Robotic cell for aluminum bicycle frames welding.

1. Move the frame elements from the storage field with kit containers and fix them in the
positioner. The step is performed by a human operator, and—for safety reasons—with
the robot disabled.

2. Perform the welding job by the robotic arm. The time required to complete the job
depends on the type and the size of the frame and the parameters of the positioner
used. Human operator cannot enter the cell.

3. Retrieve the finished frame and store it in a dedicated field. The step is performed by
a human operator, and—for safety reasons—with the robot disabled.

The unique feature of the considered problem is that both jobs and setups occupy the
robotic cell exclusively (i.e., there is one operator—human or robotic). A batch of prod-
ucts (with a predefined mixture) is manufactured repeatedly, until the demand changes.
The problem will be referred to as the Cyclic Assignment Problem (CAP). The CAP corre-
sponds to the second level of the previously described hybrid metaheuristic schema.

A sequential, exact algorithm for CAP was proposed in [12]. Unfortunately, despite
the polynomial computational complexity, its execution time for CAP instances with a
large number of jobs may be unacceptable in practice. Moreover, if the order of jobs also
needs to be determined, a fast CAP solving algorithm could be used as a part of a two-stage
metaheuristic. This paper presents a parallel exact algorithm designed to employ multi-
processor environments, such as modern Graphic Processing Units (GPUs), drastically
reducing the computation time required to solve larger problem instances. The main
contributions can be summarized as follows:

1. A new, parallel algorithm for CAP is proposed, suitable for an execution in a multi-
processor environment (e.g., on a GPU).
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2. A formal analysis of the proposed algorithm is performed, showing O(log2 n) time
complexity on a n3-processor Exclusive Read Exclusive Write Parallel Random-Access
Machine (EREW PRAM), where n is the number of jobs in a single production cycle.

3. A Mixed Integer Linear Programming (MILP) model for CAP is proposed and its
performance is discussed. The model is solved by a commercial software; with several
standard improvement techniques tested, such as: Hot start, presolving, constraints
reduction and providing bounds.

The rest of the paper is organized as follows. Section 2 contains a review of related
work. Section 3 provides a definition and a mathematical model for the considered problem
(CAP). Section 4 contains MILP formulation for CAP. The sequential state-of-art algorithm
for CAP is summarized in Section 5, along with the graph model it utilizes. The new,
parallel algorithm introduced in this paper is presented and analyzed theoretically in
Section 6. Section 7 contains a description of the computational evaluation of the proposed
algorithm. Finally, the concluding remarks are in Section 8.

2. Related Work

The problem discussed in this article—CAP—can be considered from the perspec-
tive of various classical classes of optimization problems, such as: Robotic cells, flexible
production systems or cyclical scheduling. In addition, the unique element of CAP is
the presence of additional constraints on the production resources (a single operator and
setups). This section summarizes the related literature in each of the fields mentioned.

2.1. Robotic Cells

A practical implementation of CAP may be, as presented in the motivation, a single
robotic arm handling multiple machines (constituting a robotic cell). Optimization of
manufacturing processes where robots are used is a separate and interesting problem,
where two- [15,16] and three-machine [17] cases are often investigated. Multi-arm robotic
cells are also considered [18,19], however this topic lies outside the scope of the paper.

A typical robotic cell variant and solving methods are presented in the paper [20].
There, a Flow Shop Scheduling Problem (FSSP) in a multi-machine robotic cell with a single
robot was considered. The problem is NP-difficult, thus it was solved not only with Mixed
Integer Programming (MIP), but also a parallel, hybrid heuristics based on a taboo search
and a genetic algorithm. The influence of how cyclic production is defined on the overall
efficiency was also investigated. Another classic approach to modeling robotic cells are
Petri nets, the method favored when a complex, cyclic systems are considered. For example,
in [21], a robotic cell with one robot was tackled, using the Petri nets variant (Timed Petri
Nets, TPN). The initial TPN model was optimized with the LINGO solver to obtain the
optimal solution (sequence of robot movements).

A potentially promising field for research in robotic cell scheduling (and optimization
in general) is the use of Machine Learning (ML). While ML is a huge success in computer
vision and natural language processing, the applications in operations research are currently
relatively limited. Recent papers show a lot of interest in applying Reinforcement Learning
(RL) for scheduling problems. For example, the reward function modeling was discussed
in [22], where RL was used directly to optimize gantry cells. The empirical experiments
showed, that the Q-learning performance varied depending on the function definition,
with the rewards based on the problem properties outperforming others. A different angle
for integrating RL was investigated in [23], where the technique was used as a part of
classic solving method. The hybrid method performed better than a purely RL approach.

2.2. Cyclic and Flexible Production

The considered problem can be seen as a cyclic, flexible production system with single-
operation jobs. Cyclic scheduling problems are commonly researched, as they can model
mass-production, key in the global economy. Many classic multi-machine scheduling
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problems have cyclic variants [24]. For a comprehensive survey of models, algorithms and
solvability analysis, refer, e.g., to [25].

While the classic scheduling problems are not obsolete; the attention of researchers is
currently focused on solutions closer to the industrial applications. These, in the face of
a more diversified and changing market demand, lean towards flexible production [26].
The recent reviews on flexible counterparts of FSSP [27] or Job Shop Scheduling Problem
(JSSP) [28] present a vast body of literature. Vast enough to induce specialized surveys,
such as [29], where swarm intelligence and evolutionary algorithms in JSSP were dis-
cussed exclusively.

The solving methods used are diverse, with Mathematical Programming and meta-
heuristics being most prominent. For example, in [30] a flexible FSSP with m identical
machines was considered. The solution was based on a MILP formulation; authors pro-
posed a reduced model that is more computationally efficient than the previously known
ones. A heuristic approach was chosen in the study of flexible FSSP with some addi-
tional constraints was presented in [31]. The problem was solved with an iterated, greedy
metaheuristics, in 4 phases. The first phase generates the initial solution using NEH
heuristics [32], or randomly. Second phase disturbs the solution, improving exploratory
properties. Third phase fixes the solution destructed in the second phase, while the fourth
phase uses a descend neighborhood search to find the final solution. Paper [33] describes
minimizing makespan and total tardiness for a flexible JSSP with sequence-dependent
setup times that account for machine operators qualifications. The authors developed both
exact branch-and-cut algorithm and a heuristic-based approach. The multi-stage approach
showed a dominant performance both on randomly generated and real-world instances.

2.3. Additional Problem Constraints

Modeling real production systems entails considering many additional constraints
for the problems. They may refer to the presence of certain limited resources at different
stages of manufacturing, such as for example: Workers available, transport carts or robotic
arms. Typical elementary events requiring the presence of an additional resources are:
Transportation, performing operations (processing jobs) on machines and setups.

The variant in which the operations require resources, and optimization of their
allocation is part of the problem [34], is particularly often analyzed [35]. One of the first
works where the resource is discrete is [36]. There, the authors solved a FSSP with a limited
pool of resources. For a review of a more recent research addressing such constraints, refer,
e.g., to [37].

The case where the resource constraints are imposed only on the setups is relatively
rarely considered in the literature. In one of the recently published works [4], the authors
solved the problem of minimizing the makespan for Parallel Machines with disjoint setups.
The proposed solution was based on the MILP model, Constraint Programming (CP) and
dedicated heuristics. In [38], the problem of scheduling jobs on heterogeneous, parallel
machines was investigated; in which the time of setups depended, among others, on the
allocation of non-renewable resources. However, a limited number of simultaneous setups
was not considered. MILP and dedicated heuristics were used again as the solving methods.
Similarly, Integer Programming and CP (alongside a heuristics) were used in [39] to
solve the problem with realistic energy constraints on setups. A variant of lotsizing
problem was solved in [40]. The problem included sequence-dependent setups with
an operator shared between the machines. Again, the solving method was based on
Mathematical Programming and a commercial solver. Finally, a two-machine FSSP with
disjoint, sequence-dependend setups was researched in [41]. The authors derived several
problem properties, which they incorporated into a MILP formulation and a dedicated
greedy algorithm.
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3. Problem Definition

Cycling Assignment Problem (CAP) considers a robotic cell consisting of m machines
(here, m = 2 is usually assumed). The cell is processing n jobs from a set J = {1, 2, . . . , n}
in a repetitive manner, i.e., each job i ∈ J must be processed precisely every T time
(called cycle time). The processing cycles cannot overlap and the order of jobs is fixed,
however each job can be processed on any chosen machine (the same in every cycle). The
assignment of jobs to machines is given by P ∈ P , where P(i), i ∈ J denotes a machine
a job i is assigned to and P is a set of all possible assignments. Jobs processing times
depend on the assigned machines, for a job i ∈ J the processing time on machine a ∈ M
is given by pa

i . Between any two jobs i, j ∈ J , processed one after another on a machine
a ∈ M, there is a setup with a duration sa

i→j. Lastly, at most a single job or a single
setup can be performed in the cell simultaneously and both job processing and setups are
uninterruptible. The problem is to find P ∈ P allowing to minimize cycle time T.

Let Sk
i and Ck

i denote start and completion times of job i ∈ J in k-th production cycle
of some schedule. The schedule is feasible iff the aforementioned problem constraints are
satisfied, which can be formalized as follows:

∀i ∈ J \ {n} Sk
i+1 ≥ Sk

i + pP(i)
i + setup(P, i + 1), (1)

∀i ∈ J Ck
i = Sk

i + pP(i)
i , (2)

∀i ∈ J Sk+1
i = Sk

i + T, (3)

Sk+1
1 ≥ Ck

n + setup(P, 1), (4)

where setup(P, i) is a setup time before operation i according to assignment P,

setup(P, i) =

sP(i)
maxX (P,i) for: |X (P, i)| ≥ 1,

sP(i)
max{j∈J : P(i)=P(j)} otherwise,

(5)

X (P, i) =
{

j ∈ J :
(

j < i ∧ P(i) = P(j)
)}

. (6)

For a given assignment P ∈ P , it was shown in [12], that the minimal cycle time T(P) for
which a feasible schedule exists equals

T(P) = ∑
i∈J

(
pP(i)

i + setup(P, i)
)
. (7)

Therefore, the problem can be formulated as

min
P∈P

T(P) = min
P∈P ∑

i∈J

(
pP(i)

i + setup(P, i)
)
. (8)

4. Mixed Integer Linear Formulation

In this section, a first MILP-formulation for CAP is introduced. Solving methods for
scheduling problems commonly utilize MILP (e.g., refer to the related work in Section 2);
and as such—this approach can constitute a valid point of reference for the presented
dedicated exact algorithm.

The Equations (5), (6) and (8) define an objective function of CAP. They can be almost
directly transformed into the following MILP formulation:

min
x,s ∑

a∈M
∑

i∈J
xa

i pa
i + ∑

i∈J
si, (9)
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subject to:

∀i ∈ J ∑
a∈M

xa
i = 1, (10)

∀a ∈ M ∀i, j ∈ J , j < i si ≥ sa
j→i − M(2− xa

i − xa
j )︸ ︷︷ ︸

0 if P(i) = P(j) = a

− M
i−1

∑
d=j+1

xa
d︸ ︷︷ ︸

0 if j proceeds i

, (11)

∀a ∈ M ∀i, j ∈ J , j ≥ i si ≥ sa
j→i − M(2− xa

i − xa
j )︸ ︷︷ ︸

1 if P(i) = P(j) = a

− M
( i−1

∑
k=0

xa
k +

n

∑
k=j+1

xa
k

)
︸ ︷︷ ︸

0 if j proceeds i

, (12)

where M ∈ R+ is a large number and x ∈ Zm×n and s ∈ Rn are decision variables.
x encodes an assignment and for any a ∈ M and i ∈ J ,

xa
i =

{
1 if job i is assigned to machine a,
0 otherwise.

(13)

On the other hand, s encodes the duration of setups performed before the jobs, i.e.,
for any i ∈ J , si = setup(P, i), where P must be consistent with x. Constraint (10) ensures
each job is assigned to exactly one machine. Constraints (11) and (12) are used to compute
setup times before the jobs. For any machine a ∈ M and jobs i, j ∈ J , the right hand side
of the constraints is a negative number, except if according to the current x, both job i and
j are assigned to machine a and job j directly precedes i on a. Then, right side is equal to
sa

j→i, thus ensuring the correct value of si. Resulting MILP model consists of 2n binary and

n continuous variables; and n2 + n constraints.
When m = 2, the number of variables and constraints can be further reduced easily.

Consider the assignment encoded in x′ ∈ Zn, with

x′i =

{
0 if job i is assigned to machine 1,
1 if job i is assigned to machine 2.

(14)

Then, one can substitute x1
i := −(x′i − 1) and x2

i := x′i in Equations (9), (11) and (12);
then constrain x′ to be a vector of binary variables, instead of using (10). Reformulated
MILP model consists of n binary and n continuous variables; and n2 + n constraints (n
constraints on x′ being binary, i.e., n2 constraints and n bounds).

5. Sequential Algorithm

The purpose of this section is to provide an overview of the sequential algorithm for
CAP introduced in [12] and the accompanying graph model. The algorithm will be further
used to develop its parallel variant and as a baseline to compute a speedup.

5.1. Graph Model

A graph model for a two-machine CAP was first introduced and analyzed in [12],
where it was used to build the exact solving algorithm. For the completeness, the model is
summarized below. Note that m = 2 is assumed.

Let A = (V, E) be a directed graph, where V = W ∪W ′ is a set of nodes and
E = E ∪ E ′ ∪ E ′′ is a set of arcs, where:
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W =
⋃

i∈M

n⋃
j=1
{(j, i)}, W ′ =

⋃
i∈M

2n⋃
j=n+1

{(j, i)}, (15)

E =
⋃

a∈M

n−1⋃
i=1

n⋃
j=i+1

{(
(i, a), (j, a)

)}
, E ′ =

⋃
a∈M

n⋃
i=2

n−1+i⋃
j=n

{(
(i, a), (j, a)

)}
, (16)

E ′′ =
⋃

a∈M

{(
(n, a), (2n, a)

)}
, a =

{
1 if a = 2,
2 if a = 1.

(17)

Example 1. Consider CAP instance with n = 5 and m = 2. The corresponding graph A is shown
in Figure 2. Arcs from the set E are marked in black, arcs from the set E ′ are marked blue and arcs
from the set E ′′ are marked red.

(1, 1) (6, 1)

(1, 2) (6, 2)

(2, 1) (7, 1)

(2, 2) (7, 2)

(3, 1) (8, 1)

(3, 2) (8, 2)

(4, 1) (9, 1)

(4, 2) (9, 2)

(5, 1) (10, 1)

(5, 2) (10, 2)

Figure 2. Graph A for CAP instance with n = 5 and m = 2.

Any node (i, a) ∈ V represents a job i or i− n (depending on the cycle), performed
on a machine a. Arcs, on the other hand, represent sequences of jobs assigned to the
same machine, preceded by a job assigned to a different machine. More precisely, any arc
((i, a), (j, b)) ∈ E corresponds to a sequence of assignments P(i) = a, P(i + 1) = b, . . . ,
P(j− 1) = b, P(j) = b, if i, j ≤ n. For j > n, the indexes of assignments beyond n are
reduced by n (refer to Example 2).

Nodes are unweighted, while the weight of arcs reflect the duration of the jobs and
setups they represent. To simplify the notation, the definition of job and setup durations is
extended for all the indexes of nodes in A

sa
i,j := sa

((i−1) mod n)+1, ((j−1) mod n)+1 for: i, j > n, a ∈ M, (18)

pa
i := pa

((i−1) mod n)+1 for: i > n, a ∈ M. (19)

For example, if n = 5, then p1
11 = p1

1 and sa
2→6 = sa

2→1. With the extended indexing,
the weights of arcs in A are given by

d
(
((i, a), (j, b))

)
= pa

i + sa
i,j+1 +

j−1

∑
k=i+1

(
pb

k + sb
k,k+1

)
for: ((i, a), (j, b)) ∈ E. (20)

Definition 1. Any path from (i, a) to (i + n, a) in graph A, for any a ∈ M, i ∈ J , is called a
highlighted path. A set of all such paths is denoted by L.

Each highlighted path corresponds to exactly one assignment, and each assignment
corresponds to exactly one highlighted path. An assignment corresponding to a given high-
lighted path can be constructed by transforming each arc in the path into its corresponding
assignments (for a rigorous formula refer to [12]).
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Example 2. Consider a CAP instance with n = 6 and m = 2. A graph A build for this instance
is shown on Figure 3. A highlighted path

(
(1, 2), (3, 1), (4, 2), (5, 1), (7, 2)

)
, constructed for

P = (2, 1, 1, 2, 1, 2) is marked in red. Black dots represent job-machine assignments.

(1, 1) (7, 1)

(1, 2) (7, 2)

(2, 1) (8, 1)

(2, 2) (8, 2)

(3, 1) (9, 1)

(3, 2) (9, 2)

(4, 1) (10, 1)

(4, 2) (10, 2)

(5, 1) (11, 1)

(5, 2) (11, 2)

(6, 1) (12, 1)

(6, 2) (12, 2)

Figure 3. An example of a highlighted path (marked in red) for CAP instance with n = 6 and m = 2;
the path corresponds to P = (2, 1, 1, 2, 1, 2).

Theorem 1 ([12]). In graph A, the weight of highlighted path with the minimum weight is equal
to the minimal cycle time.

Based on Theorem 1, the highlighted paths can be used to find an optimal solution of
CAP. Such method is described in the following subsection.

5.2. Algorithm Description

The sequential algorithm for CAP is based on the graph model presented in the
previous section. The algorithm can be summarized in three steps:

1. Build graph A.
2. Find highlighted path of the lowest weight µ.
3. Transform µ into an assignment.

Steps 1. and 3. are straightforward. Step 2. is equivalent to the problem of finding
the path with the lowest weight in the graph among the paths connecting the pairs of
nodes (i, a) and (i + n, a), for all a ∈ M, i ∈ J (a total of 2n pairs). The A graph is an
acyclic, directed graph with non-negative weights on the arcs. Hence, to find the mentioned
path, one can use the All-Pairs Shortest Path (APSP) problem solving algorithm, and then
choose the shortest of 2n paths, or solve Single-Source Shortest Path (SSSP) 2n times.
The computational complexity of the algorithm is O(n3) [12].

6. Parallel Algorithm

In this section the new, parallel exact algorithm for CAP is introduced. The algorithm
is described and analyzed theoretically in the context of the abstract machine EREW PRAM.

6.1. Algorithm Description

The algorithm is based on the sequential method proposed in [12] and is designed for
computing machines with large number of processors and a shared memory that can be
used for communication (e.g., GPUs). The pseudocode for the algorithm is presented in
Algorithm 1.

In stage 1, the graphA is build in parallel. The procedure starts with calculating prefix
sums to accelerate the computations later. In lines 1–3, setup times and processing times
are copied to arrays S and P. Then, in lines 4–5, prefix sums are computed

P[a, i] =
i

∑
k=1

pa
k, S[a, i] =

i

∑
k=1

sa
k−1,k, (21)
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for a ∈ M and i ∈ {1, 2, . . . , 2n} (note the indexes up to 2n). Prefix sums are used
to calculate the weights of the graph A, in lines 7–11. The weights are stored in a 4-
dimensional array D, such that for any arc

(
(i, a), (j, b)

)
∈ E,

D[i, a, j, b] = d
(
((i, a), (j, b))

)
= pa

i + sa
i,j+1 +

j−1

∑
k=i+1

(
pb

k + sb
k,k+1

)
.

= pa
i + sa

i,j+1 +
j−1

∑
k=1

pb
k −

i

∑
k=1

pb
k +

j−1

∑
k=1

sb
k,k+1 −

i

∑
k=1

sb
k,k+1

= pa
i + sa

i,j+1 + P[b, j− 1]− P[b, i] + S[b, j]− S[b, i + 1]. (22)

For any combination of indexes i, j, a, b, not representing a valid arc, an infinity is written
into the array. Stage 1 is concluded, and the graphA is constructed, with its arcs represented
in the array D.

Algorithm 1: Parallel exact algorithm for CAP
input : CAP instance with n jobs and m = 2 machines
output : Optimal assignment P∗

/* Stage 1: Build the graph A. */
1 parfor i = 1, 2, . . . , 2n; a = 1, 2 do
2 S[a, i]← sa

i−1,i;
3 P[a, i]← pa

i ;

4 parfor a = 1, 2 do
5 PrefixSum(S[a, . . . ]);
6 PrefixSum(P[a, . . . ]);

7 parfor i, j = 1, 2, . . . , 2n; a, b = 1, 2 do
8 if (i ≤ n ∧ i < j < i + n ∧ b 6= a) ∨ (a = b ∧ i = n ∧ j = 2n) then
9 D[i, a, j, b]← pa

i + sa
i,j+1 + P[b, j− 1]− P[b, i]+ S[b, j]− S[b, i + 1];

10 else
11 D[i, a, j, b]← ∞;

/* Stage 2: Find a highlighted path with lowest weight. */
12 SolveAPSP(D);
13 Find such i ∈ J , a ∈ M, that D[i, a, i + n, a] is minimal;
14 Build path with lowest weight µ, from (i, a) to (i + n, a);

/* Stage 3: Build an optimal assignment. */
15 P∗ ← PathToAssignment(n, µ);
16 return P∗

The goal of stage 2 is to compute a highlighted path with the lowest weight. For this
purpose, APSP is solved in line 12 (by a chosen algorithm) in the graph G = (V, Eg),
described by D. This graph has the same set of nodes as A, however it is fully connected
(a complete digraph). Graph G is analogous to A, however non-existent arcs from A are
represented by arcs with infinite weights:

d
(
((i, a), (j, b))

)
= D[i, a, j, b], for:

(
(i, a), (j, b)

)
∈ Eg. (23)

It is assumed, that APSP solving algorithm writes distances between nodes into D.
Then, in line 13, a pair of nodes constituting a start and end of a highlighted path with
lowest weight is computed. Finally, in line 14, the path is constructed. The exact method is
derived from the APSP algorithm used.



Appl. Sci. 2021, 11, 8083 10 of 18

Stage 3 of the algorithm transforms the highlighted path found in stage 2, into the
optimal assignment. For the ease of presentation, the method is summarized in a separate
pseudocode, in Algorithm 2.

Algorithm 2: Building an assignment corresponding to a highlighted path

1 PathToAssignment(n, µ)
input : Instance size n, highlighted path µ
output : The assignment P, corresponding to the path µ

2 if |µ| = 1 then /* Single-machine assignment */
3 Broadcast µmach

1 to all elements of P;
4 return P

5 Broadcast n and |µ|;
6 parfor p = 1, 2, . . . , n do
7 P[p]← -1;
8 if p ≤ |µ| then /* Initialize P */
9 P[((µjob

p − 1) mod n) + 1]← µmach
p ;

10 else Iddle;
11 Synchronize;
12 TO[p]← -1 ; /* Initialize TO */
13 if p ≤ |µ| then
14 if p 6= 1 then
15 TO[((µjob

p − 1) mod n) + 1]← µmach
p−1 ;

16 else
17 TO[((µjob

p − 1) mod n) + 1]← µmach
|µ|

18 else Iddle;
19 Synchronize;
20 maxSteps← dlog2 ne;
21 for i = 1, 2, . . . , maxSteps do
22 shift← 2i−1;
23 if P[p] 6= −1 then
24 index← p− shift;
25 if p− shift < 1 then
26 index← n + index;
27 if index > TO[p] then
28 P[index]← P[p];
29 TO[index]← TO[p];
30 else Iddle;
31 else Iddle;
32 Synchronize;

33 return P

The method is designed so that it can be performed on a machine where a concurrent
memory access is impossible. First, in lines 2–4, a special case when all the jobs are assigned
to the same machine is handled. Then, if it is not the case, basic information is broadcasted
in parallel to each of n processors in line 5. The following code is performed on each
processor separately. The Synchronize command indicates the place in the logic where the
processors should synchronize the execution. It can be achieved, e.g., by placing Iddle
commands so that each branch requires the same number of processor cycles. In lines 7–10,
an array P is initialized. The array will contain the assignment constructed by the method.
During the initialization, only the assignments directly contained in µ are written. Other
elements of the array are filled with −1. Similarly, an array TO is initialized in lines 12–18.
The array contains information required to avoid conflicts during copying data into P.
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Each element of TO contains a left-side bound a certain assignment should be copied up
to. In other words, ignoring edge cases, if TO[i] = j, then jobs from j + 1 to i should be
assigned to the machine P[i]. The following part of the algorithm is divided into sequential
steps, iterations of the loop in line 21. The number of steps is computed in line 20. In line
22, a shift is computed. The shift determines which element of P will be modified in a
given step. Then, if a processor p is “active” (e.g., if P[p] 6= −1) and left-side bound in TO is
satisfied, a next value is written into P and TO. Each step of the algorithm is concluded by a
synchronization. Refer to Example 3 for a step-by-step analysis of the contents of P and TO

during a run of the algorithm.

Example 3. Consider CAP instance with n = 20 and m = 2. Let µ = ((5, 2), (8, 1), (19, 2)) be a
highlighted path in the graphA, constructed for this instance. Figure 4 shows the memory during the
construction of the assignment corresponding to µ, using Algorithm 2. The first two rows represent
the nodes of µ. The following two rows represent the state of arrays P and TO after synchronization
in line 19. Each of the following pairs of rows represent the state after synchronizations in line 35.
Finally, the arrows on the figure represent the write operations performed by the processors in each
iteration of loop in line 21.
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Figure 4. Memory during computations in Algorithm 2 for n = 20 and µ = ((5, 2), (8, 1), (19, 2)).

6.2. Computational Complexity

Algorithms are usually analyzed theoretically in the context of the so-called abstract
machines. They are simplified models of computer systems (in particular, the hardware),
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that allow to predict various properties of the software executed on real machines [42],
such as computation time or memory requirements.

For the analysis, Parallel Random Access Machine (PRAM) [43,44] model will be used,
which is an extension of the sequential RAM model. The PRAM model is one of the most
widely used models of parallel machines ([45], pp. 18–19), and has been the subject of
numerous scientific publications (examples of which can be found in ([46], pp. 74–76)).

In simple terms, the PRAM model assumes the existence of k processors having
access to a shared memory of an unlimited size at a constant time. The processors have
synchronized clocks, i.e., execute the instructions simultaneously, with each processor
being allowed to execute a different instruction. The instructions are limited to read/write
and simple local variable operations such as comparison or summation. Due to additional
limitations related to the access to the shared memory, there are four general subclasses
of PRAM models: EREW, CREW, ERCW and CRCW (in the abbreviations, “E” stands
for exclusive, “C” for concurrent, “R” for read and “W” for write). In EREW PRAM,
both read and write operations are exclusive, i.e., any memory cell can be accessed by a
single processor at a time. The model is restrictive, but closely reassembles many hardware
implementations. Another popular model is CREW PRAM, where concurrent read is
allowed. CREW is a good approximation of systems where shared memory access is not
a bottleneck. Note that any algorithm suitable for EREW, can also be executed on CREW.
For that reason, EREW PRAM will be applied for the analysis whenever possible.

Lemma 1. Consider a highlighted path in graph A, build for a CAP instance with n jobs and
m = 2 machines. The corresponding assignment can be calculated in O(log n) time on n-processor
EREW PRAM.

Proof. The assignment corresponding to any highlighted path can be found using Algorithm 2,
analyzed further for computational complexity on EREW PRAM. Assume there are n
processors available. Broadcasting any scalar information from a single processor, to all
processors can be performed in O(log n) time (lines 3, 5). Then, a special case check in
lines 2–4 can be performed in O(log n) time. Operations in the main, parallel loop from
lines 6–32 are designed to prevent conflicts in memory access. The synchronization is
achieved by tuning the number of processor cycles for each branch in logic, which does
not bring an additional overhead. Thus, operations in lines 7–20 take O(1) time on n
processors (assuming log2 n can be computed in constant time, otherwise the operation
would have to be performed outside the parallel region). Loop from lines 21–32 has
O(log n) iterations, and each can be performed in constant time on each processor. As a
result, the final computational complexity of the algorithm is in O(log n) on n-processor
EREW PRAM.

Theorem 2. Consider a CAP instance with n jobs and m = 2 machines. The optimal solution for
that instance can be found in

O
(

log n + TAPSP
)

time, on max{n2, PAPSP}-processor EREW PRAM, where TAPSP, PAPSP are time and number of
processors required to solve APSP on the graph A build for that instance.

Proof. The problem can be solved using Algorithm 1. The algorithm is divided into
three stages. Stage one starts with calculating prefix sums. Write operations from lines 1–3
can be performed in O(dn/ke) time on k processors (assigning 8 write operations for
each processor). Prefix sums from lines 5 and 6 can be calculated in O(log n) time on
n-processor EREW PRAM [47]. Assume k processors are available for the parallel region in
lines 7–11. There are several points in the execution where potential memory conflicts may
arise: Comparison with n from line 8, read operation on job duration stored in p (line 9)
and read operations on prefix sums S, P (also line 9). Without considering the conflicts,
the time complexity of the region is O(dn2/ke). With a maximal parallelism achieved with
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k = n2, at most O(n) processors can attempt to read O(n) data cells at the same time. Thus,
to avoid conflicts, it is enough to provide n copies of p, S and P, which takes O(log n) on n2

processors. In total, with n2 processors available, stage 1 takes O(log n) time.
Stage 2 assumes a APSP solving algorithm is used. The graph in the problem consists

of O(n) nodes and O(n2) arcs. Let TAPSP be the time required to solve the APSP in the
graph on PAPSP processors. Line 13 boils down to finding a minimum from O(2n) = O(n)
elements, which can be done in O(log n) time on n processors. Then, the highlighted path is
reconstructed from D in line 14, using the chosen APSP algorithm. The time and processors
required are already considered in TAPSP and PAPSP.

Finally, the time complexity of stage 3 is given by Lemma 1. The total time complexity
of the Algorithm 1 is

O(log n + TAPSP + log n) = O(log n + TAPSP),

on EREW PRAM machine with max{n2, PAPSP, n} = max{n2, PAPSP} processors.

Theorem 2 can be used to calculate the time complexity of the proposed method,
depending on the APSP (or SSSP) solving algorithm used. The choice of the algorithm may
be dictated by the hardware architecture, the availability of processors and memory, or the
size of the problem instance. In the literature, one can find many shortest path algorithms,
including parallel algorithms. In [48], a parallel algorithm for APSP was proposed with
the time complexity O(|V|3/k + log2 k) on EREW PRAM, where |V| is the number of
graph nodes, and k is the number of processors available. For CAP, |V| = 4n, so the time
complexity of determining the optimal solution is O(n3/k + log2 k) and thus O(log2 n) for
k = n3. The time can possibly be further reduced when executing on CREW PRAM and
when utilizing specific properties of the graph A. For more work-efficient algorithms, refer,
e.g., to lambda-based ones such as [49].

Corollary 1. Consider a CAP instance with n jobs and m = 2 machines. The optimal solution
for that instance can be found in O(log2 n) time on n3-processor EREW PRAM, using APSP
algorithm described in [48].

7. Computational Experiments

The purpose of the computational experiments is to practically evaluate the proposed
algorithm. The parallel implementation executed on GPU is confronted with the sequential,
state of art algorithm run on CPU, as well as a single-thread solver execution for the
MILP formulation.

7.1. Experimental Setup

Both the new parallel and the sequential algorithms were implemented in C++ and
compiled under MSVC++ 14.29. The parallel algorithm was partially written in CUDA
C++. To solve APSP in the parallel algorithm, Floyd-Warshall algorithm was used (for
implementation details, see in [50]). The MILP model was solved by Gurobi 9.1.2 Optimizer,
using a single thread. Experiments were conducted on a PC equiped with Intel Core i7-
4930K CPU @3.4 GHz, 32 GB of RAM and GeForce GTX 1080 Ti GPU, with 11 GB GDDR5X
memory and 3584 NVIDIA CUDA cores. The test CAP instances were generated with
m = 2 and a varying number of jobs

n = {16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192}.

The computational times of both the proposed parallel and the sequential algorithms
are invariant to the numerical values of the jobs and setups durations. However, small
values are preferred for MILP solver, due to numerical reasons. Therefore, both job and
setup times were taken from a discrete uniform distribution U{0, 100}. For each instance
size, 100 instances were generated for n ≤ 2048 and 10 instances for n > 2048. Then, for
each instance, the following parameters were measured and averaged:
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• CPU—sequential algorithm [12] run time;
• GPU—parallel algorithm run time;
• MILP—sequential MILP solver run time (for smaller instances only).

Additionally, for the parallel algorithm, a speedup to CPU was also calculated. The
speedup is computed to illustrate the feasibility and effectiveness of the GPU implementa-
tion. Due to vastly different architectures and hardware parameters, the result cannot be
directly used to derive a relation between the number of processors and the speedup.

7.2. Experiments Results and Discussion

The results of the experiments are shown in Table 1 and Figure 5. First, let us discuss
the MILP-based method. Gurobi Optimizer was unable to solve larger problem instances,
and shown an inferior performance also for smaller instances. The choice of the model
(with- or without the reduction, see Section 4) had no significant impact on the performance,
even thought the presolver did not prune any binary/integer variables. For the reduced
model, the presolver was also unable to decrease the number of constraints, however it
computed a correct upper bound on s,

∀i ∈ J si ≤ max
j∈J, a∈M

sa
j→i. (24)

To improve the performance, a hot-starting method was also tested. High-quality
solutions were generated using the one-opt heuristic [12]. Unfortunately, the hot-start had
no impact on the computation time, as the technique is generally more effective when
finding feasible solutions is hard. Providing a lower bound, analogous to (24), also did not
affect the computation time.

Table 1. Results of the experiments; for MILP and n > 64 no optimal solutions were found in 8 h of
computations per instance.

Number
of Jobs n

Speedup
CPU vs. GPU

Average Algorithm Run Time [s]

CPU [12] GPU MILP

16 0.013 0.000006 0.0005 0.4775
32 0.074 0.000140 0.0019 36.0980
64 0.538 0.000880 0.0017 7597.6177

128 2.601 0.006282 0.0024 –
256 9.605 0.062134 0.0065 –
512 32.904 0.729642 0.0222 –

1024 75.606 7.453988 0.0986 –
2048 122.774 69.092194 0.5628 –
4096 216.115 643.553306 2.9778 –
8192 313.890 5589.780725 17.8080 –

The sequential [12] algorithm and the new parallel one were able to solve all the
considered instances. The parallel algorithm was inferior in respect to the sequential one
for n < 128, mostly due to an overhead of using GPU. For larger instances, the speedup
was increasing steadily, reaching almost 314 for n = 8192 (see Figure 6). While in the
considered bicycle factory the number of jobs usually does not exceed 400, the ability to
schedule larger payloads might be important in different applications, e.g., where welding
time is shorter. However, even for n = 256 the speedup obtained is significant, allowing
to assign jobs in almost 10 times more product mixtures or processing orders in the same
time (i.e., solve 10 times more problem instances).
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Figure 6. Speedup of the parallel algorithm executed on GPU, in relation to the sequential algorithm
executed on a single CPU thread.

8. Concluding Remarks

The paper considered Cyclic Assignment Problem (CAP) in a two machine robotic
cell, the problem inspired by a bicycle frame welding station. Two solving methods were
introduced: One based on a Mixed Integer Linear Programming (MILP) model and a
dedicated parallel algorithm. The algorithm was designed to benefit from a large number
of processors, available, e.g. in modern GPUs. The proposed method efficiently transforms
CAP into All Pairs Shortest Path (APSP) problem, allowing the user to utilize a vast
literature on shortest path problems. The algorithm was analyzed theoretically, showing
the computational complexity of up to O(log n + TAPSP), where n is the size of the problem
and TAPSP is the computational complexity of the APSP solving method used. For a well-
known, parallel APSP solving algorithm, the overall computational complexity of the
proposed algorithm is O(log2 n) on n3-processor Exclusive Read Exclusive Write Parallel
Random-Access Machine (EREW PRAM).

The computational experiments shown CAP to be relatively hard for the solver-based
approach. MILP formulation, solved by Gurobi Optimizer, performed much worse than
the dedicated methods. The solver was unable to find any optimal solutions for instances
with n ≥ 128 jobs in 2 h, while the dedicated algorithms solved the instances with n = 128
in milliseconds. For the smaller instances, the solver was from 104 to 107 times slower on
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average than the sequential algorithm. The proposed parallel algorithm executed on a
Graphics Processing Unit (GPU) was shown to achieve up to 314 speedup, compared to a
sequential, state of art algorithm executed on CPU. The new method scheduled instances
consisting of 8192 jobs in under 18 s and can be used both to solve larger instances and to
shorten the computations for medium-sized ones. In practice, it allows to quickly re-assign
the machines on the fly, when the demand changes. Alternatively, when the order of jobs
is also to be determined, more potential orders can be evaluated by quickly finding the
optimal assignments for each one (e.g., within a two-level metaheuristics described in
Section 1).

A promising direction for future work is to address robotic cells with more than m = 2
machines. While a very large m might be unrealistic (only a single machine processes
jobs at any time; the remaining ones are idle), a moderate values 2 < m < 11 can model
various specialized pieces of equipment available at the workstation. Another interesting
direction is to research compound problems, where CAP is a part of a larger production
environment, similar to the one considered in [12].
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