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Abstract: The graphene-based Field Effect Transistors (GFETs), due to their multi-parameter charac-
teristics, are growing rapidly as an important detection component for the apt detection of disease
biomarkers, such as DNA, in clinical diagnostics and biomedical research laboratories. In this pa-
per, the non-equilibrium Green function (NEGF) is used to create a compact model of GFET in
the ballistic regime as an important building block for DNA detection sensors. In the proposed
method, the self-consistent solutions of two-dimensional Poisson’s equation and NEGF, using the
nearest neighbor tight-binding approach on honeycomb lattice structure of graphene, are modeled
as an efficient numerical method. Then, the eight parameters of the phenomenological ambipolar
virtual source (AVS) circuit model are calibrated by a least-square curve-fitting routine optimization
algorithm with NEGF transfer function data. At last, some parameters of AVS that are affected
by induced charge and potential of DNA biomolecules are optimized by an experimental dataset.
The new compact model response, with an acceptable computational complexity, shows a good
agreement with experimental data in reaction with DNA and can effectively be used in the plan and
investigation of GFET biosensors.

Keywords: graphene field effect transistors; NEGF; AVS; biosensor compact model; DNA

1. Introduction

The early diagnosis of diseases such as viral infections and cancer cell disorders is
crucial and significantly improves patient survival. In recent years, Different detection
strategies are categorized into amplification techniques such as RT-PCR, Reverse Tran-
scription Polymerase Chain Reaction, detection based on biosensors, and immunological
assays such as ELIZA (Enzyme-Linked Immunosorbent Assay). The amplification-based
techniques need complex and expensive instruments and expert personnel and a longer
time for completion, whereas immunological assays require a complex production process
to recombinant biological molecules and antibodies [1]. However, both methods are time-
consuming and need costly and complex optical imaging instruments. Thus, researchers
are searching for a reliable, low-cost, and easy way for the selective detection of disease
biomarkers with sufficient precision. In recent methods for the detection of disease biomark-
ers such as DNA, biosensing is the most efficient procedure. The biosensors are composed
of five parts, a bio-receptor (e.g., enzyme, antibody, aptamer, DNA), a physiochemical
transducer (e.g., electrochemical, optical, pyroelectric, FET-based, piezoelectric), an am-
plifier, a processor, and a display. GFET-based biosensors provide significant advantages
over other mentioned methods due to the new sensing and high sensitivity mechanisms,
ease and cost-effectiveness of wafer fabrication, and label-free and rapid detection in a non-
destructive form [2]. Different types of FET-based biosensors are ion-sensitive field-effect
transistors (ISFET), biologically sensitive FET (BioFET), DNAFET, and GFET. Due to a zero
band structure and high electrical conductivity of graphene, different types of graphene
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devices such as single-layer nanoribbons (GNRs) and multilayer graphene nanoribbons
(MLGNRs), graphene oxide, multilayer graphene (MLG), and carbon nanotubes (CNT) are
exceptionally promising materials as a channel of FET for nanoelectronic biosensors [3,4].
Recent advances in GFET-based biosensors have improved the detection and diagnosis
of different diseases such as SARS-CoV-2 (COVID-19), bacteria infections, cancer cell dis-
orders, and so on. Unfortunately, the accurate design of GFET-based biosensors needs
nanoscale experimental equipment despite its high price. This shortcoming creates a chal-
lenge to overcome this deficiency in the design of the GFET biosensor by modeling it and
testing new materials and different structures to improve biosensor parameters such as
the limit of detection, LOD, dynamic range, selectivity, and sensitivity. Although excellent
efforts have been accomplished experimentally, the modeling of the GFET operation is
essential to advance development and optimization for different applications. There are
only a few reports on the modeling and simulation of GFET-based biosensors. Within the
previously proposed models, the surface graphene response with DNA molecules has been
modeled by the carrier mobility, transfer characteristics, surface capacitance, and conduc-
tivity of graphene [5–13]. In [5], doping effects of graphene surface functionalization were
investigated. In the proposed method, the PBASE (1-pyrenebutanoic acid succinimidyl
ester) was immobilized on a graphene surface, and two solvents, dimethyl formamide
(DMF) and methanol (CH3OH), were used to dissolve PBASE. Raman spectra analysis and
electrical measurement revealed that PBASE imposes a p-doping effect while DMF and
CH3OH impose an n-doping effect. In [6], the incremental Support Vector Regression, ISVR,
algorithm was used to detect interferon-gamma by the aptamer-functionalized GFETs, that
the shift of neutral point voltage was mathematically modeled and simulated. In the
proposed model, a GFET-based biosensor was employed for tuberculosis susceptibility de-
tection by its interferon-gamma biomarker. In the proposed method, the graphene surface
carrier concentration and drain-source current would change when the interferon-gamma
molecules attach to the surface of graphene. To create a pattern for drain-source current, an
ISVR algorithm was employed that shows an acceptable agreement between outcomes of
ISVR and experimental data. Recently, the modeling of GFETs for the detection of DNA
hybridization has been employed [7,8]. In [7], a quantum capacitance-sensitive model for a
GFET was established, which shows more than 97% accuracy. In the proposed method,
a theoretical parametric model for quantum capacitance has been constructed; then, the
unknown parameters are estimated by an ant-colony optimization (ACO) algorithm to
decrease error with experimental data.

In [8], the source-drain current versus gate-source voltage was modeled by a parabolic
parametric function of DNA concentration with three parameters. In the proposed method,
three parameters are estimated via experimental data by particle swarm optimization
(PSO), where the graphene channel of FET was functionalized by single-stranded DNA
and was exposed to the complementary DNA. In [9], an efficient numerical approach was
proposed for modeling of transport of armchair graphene ribbon. This method is based
on an envelope function in the reciprocal space and a recursive matrix approach that the
computation time was decreased with respect to the finite difference method.

Additionally, references [10] and [11] for Escherichia coli detection employed G-
FETs and functionalized it by antibody and aptamer sensing probes, respectively. In the
proposed method, GFETs were experimentally modified with PBASE 1-pyrenebutanoic
acid succinimidyl ester and E. coli antibodies [10] pyrene-tagged aptamer [11]. The results
show the electrical response depends on Escherichia coli concentration. In [12], a liquid-
gated GFET based biosensor model is analytically developed for Escherichia Coli O157:H7
bacteria detection by simulation of its effects on the graphene surface in the form of
conductance variation. Additionally, the GFET current-voltage characteristics as a function
of E. coli concentration were modeled. In [13], a computational approach was proposed
to build state-space models (SSMs) for the time-series data of a G-FET biosensor. The
SSMS model parameters were estimated through Markov chain Monte Carlo methods. The
Bayesian information criterion evaluation of SSMs showed that SSMs well fitted the time-
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series data of the G-FET biosensor. Although these models can be used in special situations,
they suffer from accuracy due to a lack of considering all parameters of GFET. Accurate
compact models such as NanoTCAD ViDES [14] for GFET modeling, based on NEGF, are
time-consuming. In NanoTCAD ViDES, constructed code is a three-dimensional Poisson
equation solver, in which different physical parameters for the simulation of nanoscale
devices have been included at an atomistic level, which increases the computational
complexity in addition to difficulty modifying it as a biosensor. To create an accurate
and time-saving algorithm, in this paper, a compact numerical model is developed by a
combination of NEGF for graphene FET modeling and the AVS model for considering
charge and potential effects of DNA biomolecule to study the possibility of realizing a
GFET as a biosensor detector. In the proposed model, quantum transportation based on
ballistic transfer for graphene-based FET is developed using NEGF and a physical-based
AVS model. First, the proposed GNR-FETs Hamiltonian matrix in [15] is expanded for
G-FET by changing the values of the transverse wave vector along the width direction of
the graphene lattice. Then, using the extracted Hamiltonian matrix, complete quantum
simulation can be developed by self consistently solving the NEGF formalization and the
Poisson equation [16,17]. Thus, the proposed approach reduces computational costs with
respect to [15], without a precise risk.

Further, by running the NEGF model, the transfer and output characteristics data are
used to train the physical-based AVS model, so that its parameters agree with biomolecule
physical effects. At last, pre-training AVS parameters, corresponding with the effects
of DNA biomolecules on graphene channel, are optimized according to the trust-region
reflective optimization algorithm [18]. Additionally, the sensitivity of the GFET-based
biosensor due to DNA biomolecule concentration is considered in the proposed model. The
developed transport model has been validated by comparing it with previously reported
simulation results and experimental data.

2. Proposed Model

In the proposed method, NEGF with Poisson’s equation is solved consistently to create
an accurate GFET model considering different effects such as source and drain contacts
broadening effects. Then, a phenomenological AVS circuit model is tuned according to
data-driven from the NEGF model and is optimized by experimental data to create a
compact biosensor model. The proposed approach of 1D NEGF and modified AVS models
are considered in this part.

2.1. One-Dimensional Energy Band Structure of GNR

In Appendix A, the basic structure and two-dimensional energy dispersion of a sin-
gle layer of graphene have been explained. In this section, to reduce the computational
complexity, a one-dimensional band structure is proposed for GNR, and by some modi-
fication is used for graphene-based channels. Figure 1 shows the schematic of GNR for
Na = 15, where Na is the number of dimer lines of the lattice. In order to improve the
computation cost, we consider an elementary cell containing 16 atoms, repeating along
the width of graphene, by applying only the nearest neighbor approximation [19] among
the pz orbitals [20], reference [21] as shown in Figure 1. Additionally, similar to [15], by
2 × 2 coupling matrices, the Hamiltonian matrix has been constructed for the elementary
cell. By assuming the graphene width is large, the Hamiltonian can be further simplified as:

H =


α β1
βt

1 α β2
βt

2 α
. . . . . . . . .

 (1)

where α, β1 , and β 2 are all 2 × 2 matrices given by
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α =

[
0 tc
tc 0

]
β1 =

[
0 0
tt
y 0

]
β2 =

[
0 0
ty 0

]
(2)

where tc is the nearest neighbor coupling energy and ty = tc + tceiky
√

3ac−c , and ky is
quantized according to [22] as:

ky = (
2π

3
√

3ac−c
+

2πn
2w +

√
3ac−c

)± 2π

3
√

3ac−c
(3)

where W is the width of graphene and n is an integer. The last term accounts for the K and
Γ, Dirac points, where the +/− is used when n is even/odd, respectively.
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2.2. Green’s Function and Current–Voltage Derivation

The quantum ballistic transport through graphene-based FET by NEGF approach is
considered in this section [17,23]. The main quantity in the NEGF theory is the Green’s
function as:

G
(
E, ky

)
= [(E + iδ)I − H

(
ky
)
−U(r)−∑

l

(
E, ky

)
−∑

r

(
E, ky

)
]
−1 (4)

where δ is an infinitesimal value in order to provide non-vanishing DOS at the Dirac point
for the source/drain channel contacts [24,25].

The contacts’ self-energies ∑
r,l

(
E, ky

)
is yielded by solving, ∑

r,l
= tt

ygr,lty, where gr,l is

the Green function related to drain/source contact. According to the Dirac formalisms [22]
and tight-binding [26], a closed-form for gr,l is yielded as:

gr,l
(
ky
)
=
−(E−U0)

2 + t2 − tytt
y ±

√[
(E−U0)

2 − t2 − tytt
y

]
− 4(E−U0)

2 × tytt
y

2(E−U0)× tytt
y

. (5)

At last, the current through the drain/source contact can be computed by:

Ii(E) =
2q
h ∑

ky

trace[
in

∑
i
(E)A(E)− Γi(E)Gn(E)] (6)

Here, A = i
(
G− Gt): the LDOS,

in
∑
i
= f0(E)Γi(E): filling function, f0(E): the Fermi
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function, Gn(E) = G(
in
∑
l
+

in
∑
r
)Gt: electron correlation function, and Γi(E) = i(∑

i
−

t
∑
i
) is the

contact-broadening factor. Additionally, G and Gn can be computed by the recursive Green
function method since the Hamiltonian is a tridiagonal matrix [27].

2.3. Electrostatics

Suitable treatment of electrostatics is essential to yielding self-consistent potential,
U(r), for precisely analyzing the GFET characteristics according to NEGF formalism. In a
self-consistent approach, Poisson’s equation is solved to yield the potential field caused by
a given electric charge. Then, this computed potential is applied as the input to NEGF, and
an electric charge is obtained. Since the ballistic assumption in graphene-based elements
yields one-dimensional transportation, the potential field is constant along the device
width; therefore, the Poisson’s equation becomes a two-dimensional problem along the
length and height of the channel and can be written as:

∇.[ε∇U(r)] = qQ(x) (7)

Here, q: electron charge, ε: dielectric constant, and Q(x): the charge density along the
length of graphene, as:

Q(x) = (−q)
∫ +∞

−∞
dE ∑

ky

[
Ds
(
E, x, ky

)
fs(E) + DD

(
E, x, ky

)
fD(E)

]
(8)

where Ds = GsΓ1,1
s G+

s and DD = GDΓNx ,Nx
D G+

D are the source and drain LDOS, respectively.
The solving of the transport equations with Poisson’s equation, which accounts for

electron–electron interactions through a potential U is shown in Figure 2.
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2.4. Physical-Based AVS Model

Since the energy gap in graphene is zero, the current ID in the AVS model for GFET
has two parts due to electron Qx0e and hole Qx0h concentrations:

ID
W

= (Qx0e +Qx0h)vx0Fsat (9)
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Injection velocity vx0 was computed using the least-squared curve-fitting routine [18].
Fsat is empirically derived to conduct the transition from the triode to the active region of
transfer and output characteristics and is computed as:

Fsat=
Vdsi/Vdsat(

1 +
(

Vdsi
Vdsat

)β
)1/β

(10)

Vdsat =
Vx0 LG

µ
(11)

where µ is mobility, LG is the GFET channel length, Vdsi, Vgsi, and Vdgi are the intrinsic
drain-source, gate-source, and drain-gate bias, respectively, and computed as voltage drop
of the circuit shown in Figure 3.

Vdsi = Vds − 2(Relec Ielec + Rhole Ihole) (12a)

Vgsi = Vgs − (Relec Ielec + Rhole Ihole) (12b)

Vgdi = Vgd + (Relec Ielec + Rhole Ihole) (12c)
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The electron and hole concentrations are given as:

Qx0e= Cg nOtlog(1 + exp(
Vgs −Vtn−αOt FFe

n
)) + Qmin (13)

Qx0h= aCg nOtlog(1 + exp(
Vdg −Vtp+αOt FFh

nOt
)) + Qmin (14)

where Qmin, is minimum background doping, n is the subthreshold slope of GFET, and Vtn,
Vtp, electron and hole threshold, respectively, are computed by:

Vtn= Vmin0 + ∆V (15)

Vtp= Vmin0 − ∆V (16)

where Vmin0 shows the Diac-point voltage.

FFe=
1

1 + exp
(

Vgsi−(Vtn−
αOt

2 )
αOt

2

) (17)

FFh =
1

1 + exp
(

Vdgi+(Vtp+
αOt

2 )
αOt

2

) (18)

Here, α gives the shift in the threshold voltage, Ot = KBT/q = 0.0258*Tjun/298, is the
thermal voltage, ∆V shows the trap charging on the graphene channel, and Qre f is the
electron and hole inhomogeneity near the Dirac point in graphene, as:

Qre f = Cgn0Ot (19)
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where Cg is gate capacitance, and n0 is the non-ideality factor. In the proposed method,
some of these parameters are optimized according to the NEGF algorithm, and special
features compatible with graphene/DNA effects are chosen for biosensor modeling.

3. Results

This section shows some instances where in the proposed compact model can be used
in healthcare fields to realize the response of GFET that is functionalized as a receptor of
biological markers, such as DNA from living cells. First, the proposed transport model,
based on NEGF, is simulated and verified by comparing with Low’s approach [15]. Then,
eight parameters of the physical-based AVS model are optimized according to NEGF’s
derived data. The effect of different variables on GFET transfer function are tested and
compared with experimental results of DNA biomolecules and their effect on the graphene
surface; four parameters of AVS are chosen. Then, these parameters are optimized by a
least-square curve-fitting optimization algorithm according to experimental data to yield
the AVS model as a DNA biosensor.

3.1. Simulation of GFET

To simulate the band structure of honeycomb graphene lattice, a proper unit cell,
Figure 1, with the nearest neighbor approximation is chosen to compute the Hamiltonian
matrix, h(k). Then, h(k) eigenvalues are extracted as energy for different values of k. The
simulated results show the energy dispersion of Bulk Graphene has no bandgap, and
the conduction and valence bands touch each other. The metallic nature and ambipolar
conduction of the bulk graphene are due to its zero bandgap. There are six points of high
symmetry in the band structure of bulk graphene at (kxa, kyb) = (0, ±2π/3), (±π, ±π/3) as
observed from Figure 4, so the bandgap is zero at these points. The E–k relationship around
of the high symmetry points is almost linear, that shows the ‘nearly massless’ nature of
electron in graphene. Additionally, the simple tight-binding model predicts that Zigzag
GNR (ZGNR) has no bandgap, regardless of its width. The band structure of wide ZGNR
looks similar to that of bulk graphene quantized along the kx axis, Figure 5a. Narrow
Armchair GNR (AGNR) has a bandgap similar to semiconductors for particular values of
the number of armchairs, Na, so it can be used as a semiconductor to create graphene-based
FET, Figure 6.
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The bandgap of AGNR for armchair number, Na = 3l; + 2; l integer, loses its semicon-
ducting properties and becomes metallic. Additionally, the bandgap of AGNR decreases
with increasing width. The band structure of wide AGNR looks similar to that of bulk
graphene sampled along the ky. axis (Figure 5b).

3.2. NEGF Modeling of GFET

To simulate devices, the graphene FET at IBM with gate length 40 nm is used [28],
when the gate oxide is Si3N4 with an oxide thickness of 10 nm. The pure graphene
channel length is 40 nm, and the metals of drain and source are palladium. GFET potential
values and corresponding transmission spectrum of the proposed method agree well
with Low’s method [15], as shown in Figure 7. Figure 7 shows the transmission that is
contributed by the thermionic current, the source-channel, and the channel-drain tunneling
current. The transmission is non-zero for all energies, which shows the device is gapless,
but there are minimum values that separate the regions in the transmission spectrum.
According to Id/Vgs and Id/Vds shown in Figure 8, for negative and positive Vgs Values the
negative differential resistance (NDR) and positive resistance appeared, respectively. These
effects in current/voltage characteristics are agreed well with other simulations [29–31]
and experimental results [32,33]. The above results show that the formalization and
assumptions considered for GFET are acceptable.
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3.3. Physical-Based AVS Model Parameter Optimization

To create an appropriate biosensor model, the extracted data from NEGF modeling are
used to determine AVS model parameters that are compatible with GFET characteristics.
In the first step, the training data file provided by the proposed NEGF approach is formed
in a three-column format. The first column corresponds to the drain-source bias, Vds, the
second column corresponds to the gate-source bias, Vgs, while the third column is the
measured drain-source current, Ids/W, in Amperes per meter of the device width. Then,
MATLAB’s built-in routine least-square curve-fitting routine, lsqcurvefit, is used to optimize
the parameters in the AVS model according to the training file. In the used AVS v1.0.0 circuit
model [34], the fixed parameters are shown in Table 1, and a total of eight parameters can be
optimized as shown in Table 2. In order to extract a realistic and physically meaningful way,
all the optimized parameters are considered with appropriate lower and upper bounds,
including a robust initial guess. Table 2 shows the extracted parameters with their lower
and upper bounds and initial guess values used in the nonlinear parameter extraction
routine. After optimizing AVS parameters, a good agreement is yielded with NEGF results;
Figure 9.

Table 1. Fixed parameters in the AVS v1.0.0. model.

Variable Meaning Values

w Device width (m) 20 × 10−6

Lg Device Length 140,300,650 × 10−9

cg Gate capacitance (F/m2) 3.6 × 10−3

n0 Non-ideality factor (unit-less) 2;

alpha Shift in threshold voltage (unit-less) 6;

Tjun Junction temperature 298

zeta Channel ballisticity parameter (unit-less) 0.2

mc Relative effective mass of carriers (kg) 0.04

cofs Outer-fringing capacitance for the source—terminal (F/M) 0

cofd Outer fringing capacitance for the drain—terminal (F/M) 0
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Table 2. Parameters in the AVS v1.0.0 model that are extracted upon calibration with NEGF data.

Variable Meaning Lg = 140 nm Lg = 3000 nm Lg = 650 nm

Relec Resistance due to electron concentrations (Ω-µm) 373.8705 450.2130 486.7588

Rhole Resistance due to hole concentrations (Ω-µm) 586.6873 760.9854 1092.3329

β Saturation parameter (unit-less) 1.8000 1.8000 1.8000

Qmin Minimum background doping (unit-less) 3.0000 3.0000 1.0000

µ Carrier mobility ( m2

vs ) 1130.7361 1721.3129 2220.9262

vx0 Injection velocity of carriers (m/s) 5.4084 4.5471 3.0554

∆V Shift in threshold (v) 0.0000 0.2363 0.2564

Vmin0 Dirac-point voltage (v) −0.6401 −0.8731 −1.0608
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3.4. Biosensor Modelling by AVS Model

In this section, the general sensing system operation pattern is explained and applied
to biological samples. Specifically, the physical properties of GFET are influenced by
the charge magnitude and/or dipole moment of DNA molecules attached to the surface
of graphene. Figure 10 shows the GFET transfer characteristic with its related physical
phenomena. When DNA molecules are bound by receptors attached to the graphene
surface, positive or negative charges transfer between them depending on the energy
dispersion, and the neutral point shifts, as shown in Figure 10a. Additionally, the hole
and electron mobility is influenced by the Coulomb potential to produce a slope change in
the hole and electron branch of the Id/Vgs profile, respectively, as shown in Figure 10b,c.
Additionally, the minimum conductivity changes at the near of NP due to modulation of
residual carriers and/or charged impurities by DNA molecules, as shown in Figure 10d.
Therefore, it is possible to model these four effects by similarity parameters of the AVS
model as the electron branch resistance Relec, the hole branch resistance Rhole, injection
velocity carrier vx0, and Dirac-point voltage vmin0. The DNA-specific information and its
effects on GFET can be characterized within a feature space, as shown in Figure 11.
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To optimize the proposed AVS parameters according to experimental data, the results
in [35] are considered. Probe DNAs (5′-AGG-TCG-CCG-CCC-SH-3′) with a high concen-
tration (1 mM in 40 mL PBS buffer), complementary (3′ TCC-AGC-GGC-GGG-5′), and
one-base mismatched (3′ TCC-AGC-GGC-GTG-5′) DNAs were used in [35]. In [35], the
transfer profile, Id/Vgs, has been measured before and after the addition of probe DNA
molecules, and after the addition of complementary and one-base mismatched DNAs, with
different concentrations. The transfer curve, Id/Vgs, shows ambipolar behavior of GFET,
as shown in Figure 12. The results show that the Vmin0 is left-shifted to the immobilization
of probe DNAs and significantly left-shifted with the addition of complementary DNA
molecules, proposing an n-doped GFET. Additionally, the minimum current at Vmin0
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decreased by adding complementary DNAs concentration. Additionally, some changes
are viewed in the resistors, the slope of lines, in ambipolar parts of electron and hole
conduction area in the transfer curve. These experimental data are extracted for different
cases, bare, DNA probe, and different concentrations of DNA and applied to the optimiza-
tion algorithm to extract AVS model parameters. After training, the extracted parameters
Relec = 400, Rhole = 600, vmin0 = −0.4, and vx0 = 0.35 are used to yield transfer curves, as
shown in Figure 12, that are in agreement with experimental data.
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Figure 12. Transfer characteristics for GFET–based biosensor, bare, with the probe, and after DNA reaction, at different
concentrations. (a) Mismatched (b) and complementary DNAs. Experimental data are shown in symbols, while solid lines
show the GFET–based biosensor model fits by AVS.

4. Conclusions

The interface between nanomaterials and biomolecules, such as Graphene/DNA,
is growing for the electrical detection of different biomarkers of diseases. Specifically,
sequence-selective GFET-based sensors have attracted much attention for genetic disease
diagnosis in recent years. Most DNA sensors are implemented by optical or electrochemical
transducers, which require their special labels, but label-free electrical detection of DNAs
by GFET allows a sensitive and rapid measurement. In comparison to other nanomaterials,
graphene is expected to excel due to its large surface-to-volume ratio, high conductance,
biocompatibility, and ambipolar profile. In the proposed approach, according to the ID/Vgs
profile, four distinctive parameters were recognized in correspondence to the physical pa-
rameters of AVS models. These parameters are optimized by the least-square curve-fitting
routine according to experimentally derived data. In the AVS model, the constant parame-
ters are yielded from analytical formalization, and other variable parameters are extracted
by optimization algorithms using NEGF’s data. The proposed compact model yields
compatible characteristics with the physical phenomenon of the GFET/DNA molecule.
The model can be easily used in the design and investigation of GFET biosensors for the
detection of single-base polymorphism or mutation as an essential key to the hereditary
infections diagnosis and personalized medicine realization.
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Appendix A. Basic Concepts of Graphene

Appendix A.1. Basic Concepts of Graphene Band Structure

In the twentieth century, scientists confirmed Schrödinger’s Equation (A1) as a formal
quantitative basis to calculate the energy levels for any confining potential as:

ih
∂Ψ(r, t)

∂t
= (− h2

2m
∇2 + U(r))Ψ(r, t) (A1)

where h, m, U(r), and Ψ show the Planck constant, the mass of an electron, confined
potential, and wave function of the electron, respectively. After solving this equation, Ψ is
used to extract other electrical parameters, such as Ψ∗Ψdv gives the presence probability
of electron in a volume of dv and adds it up for all the electrons is used to obtain average
electron density n(x, t). Additionally, the current density probability is obtained as:

J = ih/2m(Ψ
∂Ψ∗

∂x
−Ψ∗

∂Ψ
∂x

) (A2)

Schrödinger’s equation can be solved when the self-consistent potential U(r) is yielded
from Poisson’s Equation (A3).

−∇.(εr∇U(r)) = q2n/ε0 (A3)

Analytical modeling of a device in equilibrium generally requires an iterative solution
of Equations (A1) and (A3). These equations for simple material structures and boundaries
can be solved analytically, but most practical problems require a numerical solution. In
numerical models such as finite-difference, the Partial Differential Equation (PDE) is
converted to matrix equation as:

ih
d
dt
{Ψ1(t) Ψ2(t) . . . .Ψn(t)} = [H]{Ψ1(t)Ψ2(t) . . . .Ψn(t)} (A4)

where Ψi(t) is the wave function value around lattice points i at time t.
Additionally, the second derivative must be turned into a difference equation:

∂2Ψ
∂r2 =

1
a2 (Ψn+1(t) + Ψn−1(t)− 2Ψn(t)) (A5)

Therefore:

H =



u0 + 2t0 −t0 0 0 · · · 0
−t0 u0 + 2t0 −t0 0 · · · 0

0 −t0 u0 + 2t0 −t0 · · · 0
.
.

0 0 0 −t0 u0 + 2t0

 (A6)

where t0 = h2

2ma2 .

The solution of Equation (4) becomes any superposition e−ti Eγ
h {ϕγ}:

{Ψ1(t)Ψ2(t) . . . .Ψn(t)} =
n

∑
γ=1

cγe−ti Eγ
h {ϕγ} (A7)
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So the eigenvalues Eγ, energy dispersion, and eigenvectors {ϕα(r)} of H are ex-
tracted from:

[H]{ϕγ} = Eγ{ϕγ} (A8)

That is known as the time-independent Schrödinger equation.
This approach can be used for calculating the band structure of any periodic solid,

such as graphene, with an arbitrary number of atoms per unit cell. In the general procedure,
the reciprocal lattice in the k-space is constructed. In this case, any point on the direct
lattice can be shown as: →

R = m
→
a1 + n

→
a2 + p

→
a3 (A9)

where m, n, and p are integers and
→
a1,
→
a2, and

→
a3 are lattice basis vectors.

Then, the points on the reciprocal lattice can be written as Equation (A10), where M,
N, P are integers.

→
K = M

→
b1 + N

→
b2 + P

→
b3 (A10)

The basis vectors of the reciprocal lattice
→
b1,
→
b2, and

→
b3 are constructed according to

the external and internal product, as:

→
bi =

2π
(
aj × ak

)
ai.
(
aj × ak

) where i, j, k : 1, 2, 3 and are not equal. (A11)

The above relations are used to yield reciprocal space for energy dispersion extraction
of graphene in the proceeding sections.

Appendix A.2. Two-Dimensional Energy Band Structure of Single-Layer Graphene

Graphene is constructed from carbon atoms bonded in the hexagonal 2D plane as in
the honeycomb lattice (Figure A1).
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The basis vectors in real space,
→
a1/
→
a2, and reciprocal vectors,

→
b1/
→
b2, are shown in

Figure A1 and calculated as:

→
a1 =

(√
3a
2

,
a
2

)
,
→
a2 =

(√
3a
2

,− a
2

)
(A12)

→
b1 =

(
2π√

3a
,

2π

a

)
,
→
b2 =

(
2π√

3a
,−2π

a

)
(A13)

where a = |→a1| = |
→
a2| =

√
3 ac−c = 0.246 nm, ac−c = 0.142 nm is carbon–carbon atom

distance, and diamond contains A and B shows the unit cell.
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Because we have two atoms in the unit cell, the Hamiltonian matrix is a 2 × 2 ma-
trix [16,17]:

H =

[
HAA HAB
HBA HBB

]
The unit cell, shown in Figure A2, is A1 and B1, so B2, B3, A3, and A2 are the nearest

atoms of its neighbor cells.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 20 
 

Graphene is constructed from carbon atoms bonded in the hexagonal 2D plane as in 

the honeycomb lattice (Figure A1). 

  
 

(a) (b) (c) 

Figure A1. Single-layer graphene. (a) Real space and 𝑎1⃗⃗⃗⃗ , 𝑎2⃗⃗⃗⃗  basis vectors; (b) reciprocal space and 𝑏1
⃗⃗  ⃗, 𝑏2

⃗⃗⃗⃗  basis vectors; 

(c) Brillouin zone. 

The basis vectors in real space, 𝑎1⃗⃗⃗⃗ /𝑎2⃗⃗⃗⃗ , and reciprocal vectors, 𝑏1
⃗⃗  ⃗/𝑏2

⃗⃗  ⃗, are shown in 

Figure A1 and calculated as: 

𝑎1⃗⃗⃗⃗ = (
√3𝑎

2
,
𝑎

2
) , 𝑎2⃗⃗⃗⃗ = (

√3𝑎

2
,−

𝑎

2
) (A12) 

𝑏1
⃗⃗  ⃗ = (

2𝜋

√3𝑎
,
2𝜋

𝑎
) , 𝑏2

⃗⃗  ⃗ = (
2𝜋

√3𝑎
,−

2𝜋

𝑎
) (A13) 

where 𝑎 = |𝑎1⃗⃗⃗⃗ | = |𝑎2⃗⃗⃗⃗ | = √3 𝑎𝑐−𝑐 = 0.246 nm , 𝑎𝑐−𝑐 = 0.142 nm  is carbon–carbon atom 

distance, and diamond contains A and B shows the unit cell. 

Because we have two atoms in the unit cell, the Hamiltonian matrix is a 2 × 2 matrix 

[16,17]: 

𝐻 = [
𝐻𝐴𝐴             𝐻𝐴𝐵

𝐻𝐵𝐴            𝐻𝐵𝐵  
] 

The unit cell, shown in Figure A2, is A1 and B1, so B2, B3, A3, and A2 are the nearest 

atoms of its neighbor cells. 

 

Figure A2. Graphene cell (A1 and B1) and its neighbors. 

Where the Hamiltonian matrix is computed as the equation represented in the previ-

ous section, and for this case is formalized as below. 

 𝐻𝐴𝐴 = 𝐻𝐵𝐵 =∈2𝑝𝑧
 (A14a) 

𝐻𝐴𝐵 = 𝑡 (𝑒𝑖𝑘.⃗⃗  ⃗𝑅1⃗⃗⃗⃗  ⃗ + 𝑒𝑖𝑘.⃗⃗  ⃗𝑅2⃗⃗⃗⃗  ⃗ + 𝑒𝑖𝑘.⃗⃗  ⃗𝑅3⃗⃗⃗⃗  ⃗ ) = 𝑡𝑓(𝑘) (A14b) 

where 

Figure A2. Graphene cell (A1 and B1) and its neighbors.

Where the Hamiltonian matrix is computed as the equation represented in the previous
section, and for this case is formalized as below.

HAA = HBB =∈2pz (A14a)

HAB = t
(

ei
→
k.
→
R1 + ei

→
k.
→
R2 + ei

→
k.
→
R3

)
= t f (k) (A14b)

where
R1 = RB1 − RA1 = (

a√
3

, 0) (A15a)

R2 = RB2 − RA1 = (− a
2
√

3
,

a
2
) (A15b)

R3 = RB3 − RA1 = (− a
2
√

3
,− a

2
) (A15c)

Thus, H is yielded as:

H =

[
∈2pz t f (k)

t f (k)∗ ∈2pz

]
, s =

[
1 s f (k)
s f (k)∗ 1

]
(A16)

where:

f (k) = eikxa/
√

3 + 2e−ikxa/2
√

3cos
(

ky

2
a
)

(A17)

Additionally, H eigenvalues are computed for extracting energy dispersion, as:

Eg2D
(
kx, ky

)
=
∈2pz ±tw(

→
k )

1± sw(
→
k )

(A18)

where

w(
→
k ) =

√
| f
(→

k
)
|
2
=

√
1 + 4cos

√
3kxa
2

cos
kya
2

+ 4cos2 kya
2

(A19)

The energy dispersion for ∈2pz= 0, t = −3.033 ev, and s = 0.129 is shown in Figure A3.
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point route.

By Slater-Koster [16] approximation s = 0, the dispersion equation becomes:

Eg2D
(
kx, ky

)
= ±tw

(→
k
)

(A20)

If other orbitals such as 2s, 2px, 2py, and 2pz were considered, the Hamiltonian matrix
becomes 8 × 8, so eight eigenvalues are shown in Figure A4.
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Additionally, for the three nearest neighbors, the dispersion energy is shown in
Figure A5.
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